Skip to main content

Quantitative Tools and Procedures for Shelf Life Determination in Minimally Processed Fruits and Vegetables

  • Chapter
  • First Online:
Book cover Quantitative Methods for Food Safety and Quality in the Vegetable Industry

Abstract

In minimally processed fruits and vegetables (MPFV) the exposure of internal tissues, the lack of skin or cuticle and the accelerated metabolism after processing lead to deterioration of sensory attributes mainly due to biochemical processes, physiological ageing and microbial spoilage. Therefore, processing operations such as peeling, slicing or shredding make MPFV more perishable than intact fresh produce. Shelf life of these products is not homogenous and can greatly vary mainly due to differences in manufacturing processes to which they are subjected. Reliable techniques that allow determining shelf life in an effective and precise way are necessary, as small changes in shelf life determinations could represent big economic losses. The shelf life of MPFV is usually determined by means of methods that evaluate changes in organoleptic characteristics during the distribution chain. Hence, it is essential to understand the processes influencing changes in MPFV quality as well as treatments and management techniques that are applied to evaluate and monitor their quality. Innovative techniques that allow modelling the influence of different environmental conditions and processing operations on MPFV quality are being proposed as more objective techniques to determine shelf life. Within these innovative procedures, shelf life estimation by means of the use of predictive microbiology models is one of the most useful ones. The purpose of this chapter is to provide an overview on processes influencing quality changes of minimally processed fruits and vegetables as well as the available procedures and quantitative tools that are applied in shelf life determination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadias M, Usall J, Oliveira M, Alegre I, Viñas I (2008) Efficacy of neutral electrolyzed water (NEW) for reducing microbial contamination on minimally-processed vegetables. Int J Food Microbiol 123:151–158

    Article  CAS  PubMed  Google Scholar 

  • Ahvenainen R, Hurme E, Hagg M, Skyta E, Laurila E (1998) Shelf life of pre-peeled potato cultivated, stored and processed by various methods. J Food Prot 61:591–600

    Article  CAS  PubMed  Google Scholar 

  • Aked J (2000) Fruits and Vegetables. In: Kilcast D, Subramaniam P (eds) The stability and shelf life of food. Woodhead Publishing Ltd., Cambridge, England, pp 249–278

    Chapter  Google Scholar 

  • Alegre I, Viñas I, Usall J, Teixidó N, Figge MJ, Abadias M (2013) Control of foodborne pathogens on fresh-cut fruit by a novel strain of Pseudomonas graminis. Food Microbiol 34:390–399

    Article  PubMed  Google Scholar 

  • Ali HM, El-Gizawy AM, El-Bassiouny REI, Saleh MA (2016) The role of various amino acids in enzymatic browning process in potato tubers, and identifying the browning products. Food Chem 192:879–885

    Article  CAS  PubMed  Google Scholar 

  • Allende A, Selma MV, López-Gálvez F, Villaescusa R, Gil MI (2008) Role of commercial sanitizers and washing systems on epiphytic microorganisms and sensory quality of fresh-cut escarole and lettuce. Postharvest Biol Tec 49:155–163

    Article  Google Scholar 

  • Altunkaya A, Gökmen V (2008) Effect of various inhibitors on enzymatic browning, antioxidant activity and total phenol content of fresh lettuce (Lactuca sativa). Food Chem 107:1173–1179

    Article  CAS  Google Scholar 

  • Ankita, Prasad K (2015) Characterization of dehydrated functional fractional radish leaf powder. Pharm Lett 7:269–279

    CAS  Google Scholar 

  • Anzaldúa A (2005) La evaluación sensorial de los alimentos en la teoría y la práctica. Acribia Ed. p 67–117

    Google Scholar 

  • Arango J, Rubino M, Auras R, Gillett J, Schilder A, Grzesiak A (2016) Evaluation of chlorine dioxide as an antimicrobial against Botrytis cinerea in California strawberries. Food Packag Shelf Life 9:45–54. https://doi.org/10.1016/j.fpsl.2016.05.003

    Article  Google Scholar 

  • Araújo MM, Duarte RC, Silva PV, Marchioni E, Villavicencio A (2009) Application of the microbiological method DEFT/APC to detect minimally processed vegetables treated with gamma radiation. Radiat Phys Chem 78:691–693

    Article  Google Scholar 

  • Artés F, Gómez PA, Artés-Hernández F (2007) Physical, physiological and microbial deterioration of minimally fresh processed fruits and vegetables. Food Sci Technol Int 13:177–188

    Article  Google Scholar 

  • Baranyi J, Roberts T (1994) A dynamic approach to predicting bacterial growth in food. Int J Food Microbiol 23:277–294

    Article  CAS  PubMed  Google Scholar 

  • Barrett DM, Beaulieu JC, Shewfelt R (2010) Color, flavor, texture, and nutritional quality of fresh-cut fruits and vegetables: desirable levels, instrumental and sensory measurement, and the effects of processing. Crit Rev Food Sci Nutr 50:369–389

    Article  PubMed  Google Scholar 

  • Bitencourt R, Possas A, Camilloto G, Cruz R, Otoni C, Soares N (2014) Antimicrobial and aromatic edible coating on fresh-cut pineapple preservation. Ciência Rural 44:1119–1125. https://doi.org/10.1590/S0103-84782014000600027

    Article  CAS  Google Scholar 

  • Bodbodak S, Rafiee Z (2016) Recent trends in active packaging in fruits and vegetables. In: Siddiqui MW (ed) Eco-friendly technology for postharvest prod quality. Academic Press, London, UK, pp 77–125. https://doi.org/10.1016/B978-0-12-804313-4.00003-7

    Chapter  Google Scholar 

  • Caleb O, Mahajan P, Al-Said F, Opara U (2013) Modified atmosphere packaging technology of fresh and fresh-cut produce and the microbial consequences: a review. Food Bioproc Tech 6:303–329

    Article  CAS  Google Scholar 

  • Carrasco E, Pérez-Rodríguez F, Valero A, García-Gimeno RM, Zurera G (2008) Growth of Listeria monocytogenes on shredded, ready-to-eat iceberg lettuce. Food Control 19:487–494

    Article  CAS  Google Scholar 

  • CDC (2011) Multistate outbreak of E. coli O157:H7 infections linked to Romaine lettuce (final update) [WWW document]. http://www.cdc.gov/ecoli/2011/romaine-lettace-3-23-12.html. Accessed 20 Apr 2016

  • CDC (2012) Multistate outbreak of shiga toxin-producing Escherichia coli O157:H7 infections linked to organic spinach and spring mix blend (final update) [WWW document]. http://www.cdc.gov/ecoli/2012/O157H7-11-12/index.html. Accessed 20 Apr 2016

  • CDC (2013) Multistate outbreak of shiga toxin-producing Escherichia coli O157:H7 infections linked to ready-to-eat salads (final update) [WWW document]. http://www.cdc.gov/ecoli/2013/O157H7-11-13/index.html. Accessed 20 Apr 2016

  • CDC (2016) Multistate outbreak of Listeriosis linked to packaged salads produced at Springfield, Ohio Dole processing facility (final update) [WWW document]. http://www.cdc.gov/listeria/outbreaks/bagged-salads-01-16/index.html. Accessed 20 Apr 2016

  • Chazarra S, Garcıa-Carmona F, Cabanes J (1999) Characterization of monophenolase activity of polyphenol oxidase from iceberg lettuce. J Agric Food Chem 47:1422–1426

    Article  CAS  PubMed  Google Scholar 

  • Chéour F, Arul J, Makhlouf J, Willemot C (1992) Delay of membrane lipid degradation by calcium treatment during cabbage leaf senescence. Plant Physiol 100:1656–1660

    Article  PubMed  PubMed Central  Google Scholar 

  • Chun HH, Park SJ, Jung SH, Song KB (2013) Predicting and extending the shelf life of red cabbage sprouts. J Korean Soc Food Sci Nutr 42:1518–1523

    Article  CAS  Google Scholar 

  • Corbo MR, Del Nobile MA, Sinigaglia M (2006) A novel approach for calculating shelf life of minimally processed vegetables. Int J Food Microbiol 106:69–73

    Article  PubMed  Google Scholar 

  • Daelman J, Membré JM, Jacxsens L, Vermeulen A, Devlieghere F, Uyttendaele M (2013) A quantitative microbiological exposure assessment model for Bacillus cereus in REPFEDs. Int J Food Microbiol 166:433–449

    Article  PubMed  Google Scholar 

  • Denoya GI, Polenta GA, Apóstolo NM, Budde CO, Sancho AM, Vaudagna SR (2016) Optimization of high hydrostatic pressure processing for the preservation of minimally processed peach pieces. Innov Food Sci Emerg Technol 33:84–93

    Article  CAS  Google Scholar 

  • Dotto GL, Vieira ML, Pinto LA (2015) Use of chitosan solutions for the microbiological shelf life extension of papaya fruits during storage at room temperature. LWT-Food Sci Technol 64:126–130. https://doi.org/10.1016/j.lwt.2015.05.042

    Article  CAS  Google Scholar 

  • European Commission (2005) Commission Regulation (EC) No. 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Off J Eur Union 338:1–26

    Google Scholar 

  • Fang T, Liu Y, Huang L (2013) Growth kinetics of Listeria monocytogenes and spoilage microorganisms in fresh-cut cantaloupe. Food Microbiol 34:174–181

    Article  CAS  PubMed  Google Scholar 

  • FAO (Food Agriculture Organisation of the United Nations) (1995) Fruit and vegetable processing. http://www.fao.org/docrep/v5030E/V5030E00.htm. Accessed 25 Apr 2016

  • FAO (Food Agriculture Organisation of the United Nations) (2003) Chapter 5. Procedure for vegetables preserved by combined methods. http://www.fao.org/docrep/005/y4358e/y4358e08.htm#TopOfPage. Accessed 25 Apr 2016

  • FAO (Food Agriculture Organisation of the United Nations) (2011) Processing of fresh-cut tropical fruits and vegetables: a technical guide. http://www.fao.org/docrep/014/i1909e/i1909e00.pdf. Accessed 25 Apr 2016

  • Feliziani E, Lichter A, Smilanick JL, Ippolito A (2016) Disinfecting agents for controlling fruit and vegetable diseases after harvest. Postharvest Biol Technol 122:53–69

    Article  CAS  Google Scholar 

  • Francis GA, Thomas C, O’Beirne D (1999) The microbiological safety of minimally processes vegetables. Int J Food Sci Tech 34:1–22

    Article  CAS  Google Scholar 

  • Froder H, Geraldes C, Oliveira KL, Landgraf M, Franco B, Destro M (2007) Minimally processed vegetable salads: microbial quality evaluation. J Food Prot 70:1277–1280

    Article  PubMed  Google Scholar 

  • Geeraerd A, Valdramidis VP, Van Impe JF (2005) GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. Int J Food Microbiol 102:95–105

    Article  CAS  PubMed  Google Scholar 

  • Ghidelli C, Mateos M, Rojas-Argudo C, Pérez-Gago MB (2015) Novel approaches to control browning of fresh-cut artichoke: effect of a soy protein-based coating and modified atmosphere packaging. Postharvest Biol Tec 99:105–113

    Article  CAS  Google Scholar 

  • Gibson AM, Bratchell N, Roberts TA (1987) The effect of sodium chloride and temperature on the rate and extent of growth of Clostridium botulinum type A in pasteurized pork slurry. J Appl Bacteriol 62:479–490

    Article  CAS  PubMed  Google Scholar 

  • González-Aguilar GA (2007) Efecto de tratamientos con antioxidantes sobre la vida de anaquel de frutos tropicales mínimamente procesados: cambios fisiológicos y bioquímicos. Centro de Investigación de Alimentación y Desarrollo, A.C. México. In: Lobo MG, González M (eds) Procesado Mínimo de Frutas. ICIA, Tenerife, España, pp 37–54

    Google Scholar 

  • Graça A, Santo D, Quintas C, Nunes C (2017) Growth of Escherichia coli, Salmonella enterica and Listeria spp., and their inactivation using ultraviolet energy and electrolyzed water, on “Rocha” fresh-cut pears. Food Control 77:41–49

    Article  Google Scholar 

  • Heaton JW, Marangoni AG (1996) Chlorophyll degradation in processed foods and senescent plant tissues. Trends Food Sci Technol 7:8–15

    Article  CAS  Google Scholar 

  • ICMSF (1998a) International Commission on Microbiological Specifications for Foods Principles for the establishment of microbiological food safety objectives and related control measures. Food Control 9:379–384

    Article  Google Scholar 

  • ICMSF (1998b) International Commission on Microbiological Specifications for Foods Potential application of risk assessment techniques to microbiological issues related to international trade in food and food products. J. Food Protection 61:1075–1086

    Article  Google Scholar 

  • ICMSF (2005) Microorganisms in Foods 6. Microbial Ecology of Food Commodity. Kluwer Academic, New York, Bostan

    Google Scholar 

  • ICMSF (2011) Microorganisms in Foods 8. Springer, New York. https://doi.org/10.1007/978-1-4419-9374-8

    Google Scholar 

  • IFPA (2003) Flexible packaging material basics. In: Gorny JR (ed) Packaging design for fresh-cut produce. International Fresh-Cut Produce Association, Alexandria VA, pp 1–3

    Google Scholar 

  • Jalili M, Ansari F (2015) Identification and quantification of 5-hydroxymethylfurfural in food products. Nut Food Sci Res 2:47–53

    Google Scholar 

  • Kader A (2013) Postharvest technology of horticultural crops: an overview from farm to fork. Ethiop. J Appl Sci Technol 1:1–8

    Google Scholar 

  • Ke D, Rodriguez-Sinobas L, Kader AA (1991) Physiology and prediction of fruit tolerance to low-oxygen atmospheres. J Amer Soc Hort Sci 116:253–260

    CAS  Google Scholar 

  • Khan AU, Wei Y, Ahmad A, Khan ZUH, Tahir K, Khan SU, Muhammad N, Khan FU, Yuan Q (2016) Enzymatic browning reduction in white cabbage, potent antibacterial and antioxidant activities of biogenic silver nanoparticles. J Mol Liq 215:39–46

    Article  CAS  Google Scholar 

  • Kilcast D (2000) Sensory evaluation methods for shelf life assessment. In: Kilcast D, Subramaniam P (eds) The stability and shelf life of food. Woodhead Publishing Ltd., Cambridge. England, pp 79–106

    Chapter  Google Scholar 

  • Kim SY, Oh DH (2014) Predictive modeling of Bacillus cereus on carrot treated with slightly acidic electrolyzed water and ultrasonication at various storage temperatures. J Korean Soc Food Sci Nutr 43:1296–1303

    Article  CAS  Google Scholar 

  • Kim HK, An DS, Yam KL, Lee DS (2011) Package headspace composition changes of chill-stored perishable foods in relation to microbial spoilage. Packag Technol Sci 24:343–352

    Article  CAS  Google Scholar 

  • Kim HJ, Kim SJ, An DS, Lee DS (2014) Monitoring and modelling of headspace-gas concentration changes for shelf life control of a glass packaged perishable food. LWT-Food Sci Technol 55:685–689

    Article  CAS  Google Scholar 

  • Koseki S, Isobe S (2005) Prediction of pathogen growth on iceberg lettuce under real temperature history during distribution from farm to table. Int J Food Microbiol 104:239–248

    Article  PubMed  Google Scholar 

  • Koutsoumanis K, Kendall P, Sofos J (2004) Modeling the boundaries of growth of Salmonella Typhimurium in broth as a function of temperature, water activity, and pH. J Food Prot 67:53–59

    Article  PubMed  Google Scholar 

  • Lante A, Tinello F, Nicoletto M (2016) UV-A light treatment for controlling enzymatic browning of fresh-cut fruits. Innov Food Sci Emerg Technol 34:141–147

    Article  CAS  Google Scholar 

  • Lee D, Hwang K, An D, Park J, Lee H (2007) Model on the microbial quality change of seasoned soybean sprouts for on-line shelf life prediction. Int J Food Microbiol 118:285–293

    Article  CAS  PubMed  Google Scholar 

  • Losio MN, Pavoni E, Bilei S, Bertasi B, Bove D, Capuano F, Farneti S, Blasi G, Comin D, Cardamone C, Decastelli L, Delibato E, De Santis P, Di Pasquale S, Gattuso A, Goffredo E, Fadda A, Pisanu M, De Medici D (2015) Microbiological survey of raw and ready-to-eat leafy green vegetables marketed in Italy. Int J Food Microbiol 210:88–91

    Article  CAS  PubMed  Google Scholar 

  • Manolopoulou E, Varzakas TH (2013) Effect of modified atmosphere packaging (MAP) on the quality of ‘ready-to-eat’ shredded cabbage. Int J Agric Food Res 2:30–43

    Google Scholar 

  • Marrufo-Hernández N, Palma-Orozco G, Beltran H, Najera H (2017) Purification, partial biochemical characterization and inactivation of polyphenol oxidase from Mexican Golden Delicious apple (Malus domestica). J Food Biochem 41:e12356. https://doi.org/10.1111/jfbc.12356

    Article  Google Scholar 

  • Melesse S, Sobratee N, Workneh T (2016) Application of logistic regression statistical technique to evaluate tomato quality subjected to different pre- and post-harvest treatments. Biol Agric Hortic 32:277–287. https://doi.org/10.1080/01448765.2016.1184587

    Article  Google Scholar 

  • Mercanoglu Taban B, Halkman AK (2011) Do leafy green vegetables and their ready-toeat [RTE] salads carry a risk of foodborne pathogens? Anaerobe 17:286–287. https://doi.org/10.1016/j.anaerobe.2011.04.004

    Article  PubMed  Google Scholar 

  • Mishra A, Guo M, Buchanan R, Schaffner D, Pradhan A (2017) Development of growth and survival models for Salmonella and Listeria monocytogenes during non-isothermal time-temperature profiles in leafy greens. Food Control 71:32–41. https://doi.org/10.1016/j.foodcont.2016.06.009

    Article  CAS  Google Scholar 

  • Moreira M, Ponce A, Ansorena R, Roura S (2011) Effectiveness of edible coatings combined with mild heat shocks on microbial spoilage and sensory quality of fresh cut broccoli (brassica oleraceal). J Food Sci 76:M367–M374. https://doi.org/10.1111/j.1750-3841.2011.02210.x

    Article  CAS  Google Scholar 

  • Nguyen-the C, Carlin F (1994) The microbiology of minimally processed fresh fruits and vegetables. Crc Cr Rev Food Sci 34:371–401

    Article  CAS  Google Scholar 

  • Nicoli MC (2012) An introduction to food shelf life: definitions, basic concepts, and regulatory aspects. In: Nicoli MC (ed) Shelf life assessment of food. CRS Press, Boca Raton, FL, pp 7–15

    Chapter  Google Scholar 

  • O’Beirne D, Gomez-Lopez V, Tudela J, Allende A, Gil MI (2015) Effects of oxygen-depleted atmospheres on survival and growth of Listeria monocytogenes on fresh-cut Iceberg lettuce stored at mild abuse commercial temperatures. Food Microbiol 48:17–21

    Article  PubMed  Google Scholar 

  • Oliveira M, Abadias M, Usall J, Torres R, Teixidó N, Viñas I (2015) Application of modified atmosphere packaging as a safety approach to fresh-cut fruits and vegetables e A review. Trends Food Sci Technol 46:13–26

    Article  CAS  Google Scholar 

  • Özdemir K, Gökmen V (2017) Extending the shelf-life of pomegranate arils with chitosan-ascorbic acid coating. LWT-Food Sci Technol 76:172–180. https://doi.org/10.1016/j.lwt.2016.10.057

    Article  Google Scholar 

  • Patrignani F, Siroli L, Serrazanetti DI, Gardini F, Lanciotti R (2015) Innovative strategies based on the use of essential oils and their components to improve safety, shelf life and quality of minimally processed fruits and vegetables. Trends Food Sci Technol 46:311–319

    Article  CAS  Google Scholar 

  • Pérez-Rodríguez F, Valero A (2013) Predictive microbiology in foods. Springer, New York

    Book  Google Scholar 

  • Posada-Izquierdo GD, Pérez-Rodríguez F, López-Gálvez F, Allende A, Gil MI, Zurera G (2014) Modeling growth of Escherichia coli O157:H7 in fresh-cut lettuce treated with neutral electrolyzed water and under modified atmosphere packaging. Int J Food Microbiol 177:1–8

    Article  CAS  PubMed  Google Scholar 

  • Quevedo R, Pedreschi F, Bastias JM, Díaz O (2016) Correlation of the fractal enzymatic browning rate with the temperature in mushroom, pear and apple slices. Food Sci Technol 65:406–413

    CAS  Google Scholar 

  • Ragaert P et al (2003) Microbiological and safety aspects of fresh-cut fruits and vegetables. In: Martín-Belloso O, Soliva-Fortuny R (eds) Advances in fresh-cut fruits and vegetables processing. Taylor & Francis, Boca Raton, pp 53–86

    Google Scholar 

  • Ragaert P, Devlieghere F, Debevere J (2007) Role of microbiological and physiological spoilage mechanisms during storage of minimally processed vegetables. Postharvest Biol Tec 44:185–194

    Article  Google Scholar 

  • Rahman S, Khan I, DH O (2016) Electrolyzed water as a novel sanitizer in the food industry: current trends and future perspectives. Compr Rev Food Sci Food Saf 15:471–490. https://doi.org/10.1111/1541-4337.12200

    Article  Google Scholar 

  • Ramos B, Miller FA, Brandão TRS, Teixeira P, Silva CLM (2013) Fresh fruits and vegetables: an overview on applied methodologies to improve its quality and safety. Innov Food Sci Emerg Technol 20:1–15

    Article  CAS  Google Scholar 

  • Ratkowsky D, Olley J, McMeekin T, Ball A (1982) Relationship between temperature and growth rate of bacterial cultures. J Bacteriol 149:1–5

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ratkowsky D, Lowry R, McMeekin T, Stokes A, Chandler R (1983) Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J Bacteriol 154:1222–1226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rezende ACB, Crucello J, Moreira RC, Silva BS, Sant’Ana AS (2016) Incidence and growth of Salmonella enterica on the peel and pulp of avocado (Persea americana) and custard apple (Annona squamosa). Int J Food Microbiol 235:10–16. https://doi.org/10.1016/j.ijfoodmicro.2016.06.034

    Article  PubMed  Google Scholar 

  • Rico D, Martın-Diana A, Barat J, Barry-Ryan C (2007) Extending and measuring the quality of fresh-cut fruit and vegetables: a review. Trends Food Sci Technol 18:373–386

    Article  CAS  Google Scholar 

  • Riva M, Franzetti L, Galli A (2001) Microbiological quality and shelf life modeling of ready-to-eat cicorino. J Food Prot 64:228–234

    Article  CAS  PubMed  Google Scholar 

  • Rocha M, Oliveira E (2007) Analice sensorial de frutas mínimamente procesadas. In: Lobo MG, González M (eds) Procesado Mínimo de Frutas. ICIA, Tenerife, España, pp 137–146

    Google Scholar 

  • Romero-Gil V, Garrido-Fernandez A, Arroyo-Lopez FN (2016) In silico logistic model for table olive related microorganisms as a function of sodium metabisulphite, cinnamaldehyde, pH, and type of acidifying agent. Front Microbiol 7:1370. https://doi.org/10.3389/fmicb.2016.01370

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandhya (2010) Modified atmosphere packaging of fresh produce: current status and future needs. Food Sci Technol 43:381–392

    CAS  Google Scholar 

  • Sant’Ana A, Franco B, Schaffner D (2012) Modeling the growth rate and lag time of different strains of Salmonella enterica and Listeria monocytogenes in ready-to-eat lettuce. Food Microbiol 30:267–273

    Article  PubMed  Google Scholar 

  • Scolforo C, Bairros J, Rezende A, Silva B, Alves R, Costa D, Andrade N, Sant’Ana A, Pena W (2017) Modeling the fate of Listeria monocytogenes and Salmonella enterica in the pulp and on the outer rind of Canary melons (Cucumis melo (Indorus Group)). LWT-Food Sci Technol 77:290–297. https://doi.org/10.1016/j.lwt.2016.11.059

    Article  CAS  Google Scholar 

  • Silveira AC, Escalona VG (2014) The use of physical treatments on fresh-cut produce. Stewart Postharvest Rev 3:1–5

    Google Scholar 

  • Simões A, Puiatti M, Salomão LCC, Mosquim PR, Puschmann R (2009) Effect in the quality of intact and minimally processed leaves of collard greens stored at different temperatures. Hortic bras 28:81–86

    Article  Google Scholar 

  • Sinigaglia M, Corbo M, Bevilacqua A (2012) Modeling microbial growth. In: Gómez-López VM (ed) Decontamination of Fresh and Minimally Processed Produce. Wiley-Blackwell, Ames, Iowa, pp 529–539

    Chapter  Google Scholar 

  • Speranza B, Corbo M (2012) Essential oils for preserving perishable foods: possibilities and limitations. In: Bevilacqua A, Corbo MR, Sinigaglia M (eds) Application of alternative food-preservation technologies to enhance food safety & stability. Bentham Science Publishers Ltd., Sharjah, United Arab Emirates, pp 35–57

    Chapter  Google Scholar 

  • Taiti C, Costa C, Menesatti P, Caparrotta S, Bazihizina N, Azzarello E, Petrucci WA, Masi E, Giordani E (2015) Use of volatile organic compounds and physicochemical parameters for monitoring the post-harvest ripening of imported tropical fruits. Eur Food Res Technol 241:91–102

    Article  CAS  Google Scholar 

  • Toivonen P, Brummell D (2008) Review Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biol Technol 48:1–14

    Article  CAS  Google Scholar 

  • Toivonen P, DeEll JR (2002) Physiology of fresh-cut fruits and vegetables. In: Lamikanra O (ed) Fresh-cut fruits and vegetables. Science, technology and market. CRC Press, Boca Raton, FL, pp 100–132

    Google Scholar 

  • Trebitsh T, Goldschmidt E, Riov J (1993) Ethylene induces de novo synthesis of chlorophyllase, a chlorophyll degrading enzyme, in Citrus fruit peel. Proc Natl Acad Sci 90:9441–9445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsironi T, Dermesonlouoglou E, Giannoglou M, Gogou E, Katsaros G, Taoukis P (2017) Shelf-life prediction models for ready-to-eat fresh cut salads: Testing in real cold chain. Int J Food Microbiol 240:131–140. https://doi.org/10.1016/j.ijfoodmicro.2016.09.032

    Article  PubMed  Google Scholar 

  • Valero A, Carrasco E, García-Gimeno RM (2012) Principles and methodologies for the determination of shelf life in foods. Trends Vital Food Control Eng:1–41

    Google Scholar 

  • Wang J, Rahman S, Zhao X, Forghani F, Park M, Oh D (2013) Predictive models for the growth kinetics of listeria monocytogenes on white cabbage. J Food Saf 33:50–58

    Article  CAS  Google Scholar 

  • WHO/FAO (World Health Organization/Food Agriculture Organization) (2008) Microbiological hazards in fresh leafy vegetables and herbs. Meeting report. Accessed 25 Apr 2016

    Google Scholar 

  • Wiley RC (ed) (1994) Minimally processed refrigerated fruits and vegetables. Chapman &, Hall, New York and London

    Google Scholar 

  • Xue L, Yang L (2009) Deriving leaf chlorophyll content of green-leafy vegetables from hyperspectral reflectance. ISPRS J Photogramm Remote Sens 64:97–106

    Article  Google Scholar 

  • Yamauchi N, Watada AE (1991) Regulated chlorophyll degradation in spinach leaves during storage. J Amer Soc Hort Sci 116:58–62

    CAS  Google Scholar 

  • Yan S, Yang T, Luo Y (2015) The mechanism of ethanol treatment on inhibiting lettuce enzymatic browning and microbial growth. Food Sci Technol 63:383–390

    CAS  Google Scholar 

  • Zagory D (1999) Effects of post-processing handling and packaging on microbial populations. Postharvest Biol Tec 15:313–321

    Article  Google Scholar 

  • Zwietering M, Jongenburger I, Rombouts F, Van’t Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875–1881

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Posada-Izquierdo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Possas, A., Benítez, F.J., Savran, D., Brotóns, N.J., Rodríguez, P.J., Posada-Izquierdo, G.D. (2018). Quantitative Tools and Procedures for Shelf Life Determination in Minimally Processed Fruits and Vegetables. In: Pérez-Rodríguez, F., Skandamis, P., Valdramidis, V. (eds) Quantitative Methods for Food Safety and Quality in the Vegetable Industry. Food Microbiology and Food Safety(). Springer, Cham. https://doi.org/10.1007/978-3-319-68177-1_11

Download citation

Publish with us

Policies and ethics