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Abstract. MR-only radiotherapy treatment planning requires accurate
MR-to-CT synthesis. Current deep learning methods for MR-to-CT syn-
thesis depend on pairwise aligned MR and CT training images of the
same patient. However, misalignment between paired images could lead
to errors in synthesized CT images. To overcome this, we propose to train
a generative adversarial network (GAN) with unpaired MR and CT im-
ages. A GAN consisting of two synthesis convolutional neural networks
(CNNs) and two discriminator CNNs was trained with cycle consistency
to transform 2D brain MR image slices into 2D brain CT image slices
and vice versa. Brain MR and CT images of 24 patients were analyzed.
A quantitative evaluation showed that the model was able to synthesize
CT images that closely approximate reference CT images, and was able
to outperform a GAN model trained with paired MR and CT images.
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thesis, Generative Adversarial Networks

1 Introduction

Radiotherapy treatment planning requires a magnetic resonance (MR) volume
for segmentation of tumor volume and organs at risk, as well as a spatially
corresponding computed tomography (CT) volume for dose planning. Separate
acquisition of these volumes is time-consuming, costly and a burden to the pa-
tient. Furthermore, voxel-wise spatial alignment between MR and CT images
may be compromised, requiring accurate registration of MR and CT volumes.
Hence, to circumvent separate CT acquisition, a range of methods have been
proposed for MR-only radiotherapy treatment planning in which a substitute or
synthetic CT image is derived from the available MR image [2].

Previously proposed methods have used convolutional neural networks (CNNs)
for CT synthesis in the brain [4] and pelvic area [8]. These CNNs are trained
by minimization of voxel-wise differences with respect to reference CT volumes
that are rigidly aligned with the input MR images. However, slight voxel-wise
misalignment of MR and CT images may lead to synthesis of blurred images.
To address this, Nie et al. [9] proposed to combine the voxel-wise loss with an
image-wise adversarial loss in a generative adversarial network (GAN) [3]. In this
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Fig. 1: Left When training with paired data, MR and CT slices that are simul-
taneously provided to the network correspond to the same patient at the same
anatomical location. Right When training with unpaired data, MR and CT slices
that are simultaneously provided to the network belong to different patients at
different locations in the brain.

GAN, the synthesis CNN competes with a discriminator CNN that aims to dis-
tinguish synthetic images from real CT images. The discriminator CNN provides
feedback to the synthesis CNN based on the overall quality of the synthesized
CT images.

Although the GAN method by Nie et al. [9] addresses the issue of image
misalignment by incorporating an image-wise loss, it still contains a voxel-wise
loss component requiring a training set of paired MR and CT volumes. In prac-
tice, such a training set may be hard to obtain. Furthermore, given the scarcity
of training data, it may be beneficial to utilize additional MR or CT training
volumes from patients who were scanned for different purposes and who have
not necessarily been imaged using both modalities. The use of unpaired MR
and CT training data would relax many of the requirements of current deep
learning-based CT synthesis systems (Fig. 1).

Recently, methods have been proposed to train image-to-image translation
CNNs with unpaired natural images, namely DualGAN [11] and CycleGAN [12].
Like the methods proposed in [4,8,9], these CNNs translate an image from one
domain to another domain. Unlike these methods, the loss function during train-
ing depends solely on the overall quality of the synthesized image as determined
by an adversarial discriminator network. To prevent the synthesis CNN from
generating images that look real but bear little similarity to the input image,
cycle consistency is enforced. That is, an additional CNN is trained to translate
the synthesized image back to the original domain and the difference between
this reconstructed image and the original image is added as a regularization term
during training.

Here, we use a CycleGAN model to synthesize brain CT images from brain
MR images. We show that training with pairs of spatially aligned MR and CT
images of the same patients is not necessary for deep learning-based CT synthe-
sis.
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Fig. 2: Examples showing local misalignment between MR and CT images after
rigid registration using mutual information. Although the skull is generally well-
aligned, misalignments may occur in the throat, mouth, vertebrae, and nasal
cavities.

2 Data

This study included brain MR and CT images of 24 patients that were scanned
for radiotherapy treatment planning of brain tumors. MR and CT images were
acquired on the same day in radiation treatment position using a thermoplastic
mask for immobilization. Patients with heavy dental artefacts on CT and/or
MR were excluded. T1 3D MR (repetition time 6.98 ms, echo time 3.14 ms, flip
angle 8◦) images were obtained with dual flex coils on a Philips Ingenia 1.5T MR
scanner (Philips Healthcare, Best, The Netherlands). CT images were acquired
helically on a Philips Brilliance Big Bore CT scanner (Philips Healthcare, Best,
The Netherlands) with 120 kVp and 450 mAs. To allow voxel-wise comparison
of synthetic and reference CT images, MR and CT images of the same patient
were aligned using rigid registration based on mutual information following a
clinical procedure. This registration did not correct for local misalignment (Fig.
2). CT images had a resolution of 1.00 × 0.90 × 0.90 mm3 and were resampled
to the same voxel size as the MR, namely 1.00× 0.87× 0.87 mm3. Each volume
had 183× 288× 288 voxels. A head region mask excluding surrounding air was
obtained in the CT image and propagated to the MR image.

3 Methods

The CycleGAN model proposed by Zhu et al. and used in this work contains a
forward and a backward cycle (Fig. 3) [12].

The forward cycle consists of three separate CNNs. First, network SynCT is
trained to translate an input MR image IMR into a CT image. Second, network
SynMR is trained to translate a synthesized CT image SynCT (IMR) back into an
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MR image. Third, network DisCT is trained to discriminate between synthesized
SynCT (IMR) and real CT images ICT . Each of these three neural networks has
a different goal. While DisCT aims to distinguish synthesized CT images from
real CT images, network SynCT tries to prevent this by synthesizing images
that cannot be distinguished from real CT images. These images should be
translated back to the MR domain by network SynMR so that the original
image is reconstructed from SynCT (IMR) as accurately as possible.

To improve training stability, the backward cycle is also trained, translating
CT images into MR images and back into CT images. For synthesis, this model
uses the same CNNs SynCT and SynMR. In addition, it contains a discriminator
network DisMR that aims to distinguish synthesized MR images from real MR
images.

The adversarial goals of the synthesis and discriminator networks are re-
flected in their loss functions. The discriminator DisCT aims to predict the
label 1 for real CT images and the label 0 for synthesized CT images. Hence,
the discriminator DisCT tries to minimize

LCT = (1−DisCT (ICT ))2 +DisCT (SynCT (IMR))2 (1)

for MR images IMR and CT images ICT . At the same time, synthesis net-
work SynCT tries to maximize this loss by synthesizing images that cannot be
distinguished from real CT images.

Similarly, the discriminator DisMR aims to predict the label 1 for real MR
images and the label 0 for synthesized MR images. Hence, the loss function for
MR synthesis that DisMR aims to minimize and SynMR aims to maximize is
defined as

LMR = (1−DisMR(IMR))2 +DisMR(SynMR(ICT ))2 (2)

To enforce bidirectional cycle consistency during training, additional loss
terms are defined as the difference between original and reconstructed images,

LCycle = ||SynMR(SynCT (IMR))− IMR||1 + ||SynCT (SynMR(ICT ))− ICT ||1.
(3)

During training, this term is weighted by a parameter λ and added to the
loss functions for SynCT and SynMR.

3.1 CNN Architectures

The PyTorch implementation provided by the authors of [12] was used in all
experiments3. This implementation performs voxel regression and image classifi-
cation in 2D images. Here, experiments were performed using 2D sagittal image
slices (Fig. 1). We provide a brief description of the synthesis and discriminator
CNNs. Further implementation details are provided in [12].

3 https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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Fig. 3: The CycleGAN model consists of a forward cycle and a backward cycle.
In the forward cycle, a synthesis network SynCT is trained to translate an in-
put MR image IMR into a CT image, network SynMR is trained to translate
the resulting CT image back into an MR image that approximates the original
MR image, and DisCT discriminates between real and synthesized CT images.
In the backward cycle, SynMR synthesizes MR images from input CT images,
SynCT reconstructs the input CT image from the synthesized image, and DisMR

discriminates between real and synthesized MR images.
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The network architectures of SynCT and SynMR are identical. They are 2D
fully convolutional networks with two strided convolution layers, nine residual
blocks and two fractionally strided convolution layers, based on the architecture
proposed in [6] and used in [12]. Hence, the CNN takes input images of size
256× 256 pixels and predicts output images of the same size.

Networks DisCT and DisMR also use the same architecture. This architec-
ture does not provide one prediction for the full 256 × 256 pixel image, but
instead uses a fully convolutional architecture to classify overlapping 70 × 70
image patches as real or fake [5]. This way, the CNN can better focus on high-
frequency information that may distinguish real from synthesized images.

3.2 Evaluation

Real and synthesized CT images were compared using the mean absolute error

MAE =
1

N

N∑
i=1

|ICT (i)− SynCT (IMR(i))|, (4)

where i iterates over aligned voxels in the real and synthesized CT images.
Note that this was based on the prior alignment of IMR and ICT . In addition,
agreement was evaluated using the peak-signal-to-noise-ratio (PSNR) as pro-
posed in [8,9] as

PSNR = 20 log10

4095

MSE
, (5)

whereMSE is the mean-squared error, i.e. 1
N

∑N
i=1(ICT (i)−SynCT (IMR(i))2.

The MAE and PSNR were computed within a head region mask determined in
both the CT and MR that excludes any surrounding air.

4 Experiments and Results

The 24 data sets were separated into a training set containing MR and CT
volumes of 18 patients and a separate test set containing MR and corresponding
reference CT volumes of 6 patients.

Each MR or CT volume contained 183 sagittal 2D image slices. These were
resampled to 256 × 256 pixel images with 256 grayscale values uniformly dis-
tributed in [−600, 1400] HU for CT and [0, 3500] for MR. This put image values
in the same range as in [12], so that the default value of λ = 10 was used to
weigh cycle consistency loss. To augment the number of training samples, each
image was padded to 286 × 286 pixels and sub-images of 256 × 256 pixels were
randomly cropped during training. The model was trained using Adam [7] for
100 epochs with a fixed learning rate of 0.0002, and 100 epochs in which the
learning rate was linearly reduced to zero. Model training took 52 hours on a
single NVIDIA Titan X GPU. MR to CT synthesis with a trained model took
around 10 seconds.
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Fig. 4: From left to right Input MR image, synthesized CT image, reference real
CT image, and absolute error between real and synthesized CT image.

Figure 4 shows an example MR input image, the synthesized CT image ob-
tained by the model and the corresponding reference CT image. The model has
learned to differentiate between different structures with similar intensity values
in MR but not in CT, such as bone, ventricular fluid and air. The difference image
shows the absolute error between the synthesized and real CT image. Differences
are least pronounced in the soft brain tissue, and most in bone structures, such
as the eye socket, the vertebrae and the jaw. This may be partly due to the re-
duced image quality in the neck area and misalignment between the MR image
and the reference CT image. Table 1 shows a quantitative comparison between
real CT and synthesized CT images in the test set. MAE and PSNR values show
high consistency among the different test images.

To compare unpaired training with conventional paired training, an addi-
tional synthesis CNN with the same architecture as SynCT was trained using
paired MR and CT image slices. For this, we used the implementation of [5]
which, like [9], combines voxel-wise loss with adversarial feedback from a dis-
criminator network. This discriminator network had the same architecture as
DisCT . A paired t-test on the results in Table 1 showed that agreement with the
reference CT images was significantly lower (p < 0.05) for images obtained using
this model than for images obtained using the unpaired model. Fig. 5 shows a
visual comparison of results obtained with unpaired and paired training data.
The image obtained with paired training data is more blurry and contains a
high-intensity artifact in the neck.

During training, cycle consistency is explicitly imposed in both directions.
Hence, an MR image that is translated to the CT domain should be successfully
translated back to the MR domain. Fig. 6 shows an MR image, a synthesized
CT image and the reconstructed MR image. The difference map shows that
although there are errors with respect to the original image, these are very small
and homogeneously distributed. Relative differences are largest at the contour
of the head and in air, where intensity values are low. The reconstructed MR
image is remarkably similar to the original MR image.
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Table 1: Mean absolute error (MAE) values in HU and peak-signal-to-noise ratio
(PSNR) between synthesized and real CT images when training with paired or
unpaired data.

MAE PSNR
Unpaired Paired Unpaired Paired

Patient 1 70.3 86.2 31.1 29.3
Patient 2 76.2 98.8 32.1 30.1
Patient 3 75.5 96.9 32.9 30.1
Patient 4 75.2 86.0 32.9 31.7
Patient 5 72.0 81.7 32.3 31.2
Patient 6 73.0 87.0 32.5 30.9
Average ± SD 73.7 ± 2.3 89.4 ± 6.8 32.3 ± 0.7 30.6 ± 0.9

Fig. 5: From left to right Input MR image, synthesized CT image with paired
training, synthesized CT image with unpaired training, reference real CT image.

5 Discussion and Conclusion

We have shown that a CNN can be trained to synthesize a CT image from
an MR image using unpaired and unaligned MR and CT training images. In
contrast to previous work, the model learns to synthesize realistically-looking
images guided only by the performance of an adversarial discriminator network
and the similarity of back-transformed output images to the original input image.

Quantitative evaluation using an independent test set of six images showed
that the average correspondence between synthetic CT and reference CT im-
ages was 73.7 ± 2.3 HU (MAE) and 32.3 ± 0.7 (PSNR). In comparison, Nie
et al. reported an MAE of 92.5 ± 13.9 HU and a PSNR of 27.6 ± 1.3 [9], and
Han et al. reported an MAE of 84.8 ± 17.3 HU [4]. However, these studies used
different data sets with different anatomical coverage, making a direct compari-
son infeasible. Furthermore, slight misalignments between reference MR and CT
images, and thus between synthesized CT and reference CT, may have a large
effect on quantitative evaluation. In future work, we will evaluate the accuracy
of synthesized CT images in radiotherapy treatment dose planning.

Yi et al. showed that a model using cycle consistency for unpaired data can
in some cases outperform a GAN-model on paired data [11]. Similarly, we found
that in our test data sets, the model trained using unpaired data outperformed
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Fig. 6: From left to right Input MR image, synthesized CT image, reconstructed
MR image, and relative error between the input and reconstructed MR image.

the model trained using paired data. Qualitative analysis showed that CT im-
ages obtained by the model trained with unpaired data looked more realistic,
contained less artifacts and contained less blurring than those obtained by the
model trained with paired data. This was reflected in the quantitative analysis.
This could be due to misalignment between MR and CT images (Fig. 2), which
is ignored when training with unpaired data.

The results indicate that image synthesis CNNs can be trained using un-
aligned data. This could have implications for MR-only radiotherapy treatment
planning, but also for clinical applications where patients typically receive only
one scan of a single anatomical region. In such scenarios, paired data is scarce,
but there are many single acquisitions of different modalities. Possible applica-
tions are synthesis between MR images acquired at different field strengths [1],
or between CT images acquired at different dose levels [10].

Although the CycleGAN implementation used in the current study was de-
veloped for natural images, synthesis was successfully performed in 2D medical
images. In future work, we will investigate whether 3D information as present
in MR and CT images can further improve performance. Nonetheless, the cur-
rent results already showed that the synthesis network was able to efficiently
translate structures with complex 3D appearance, such as vertebrae and bones.

The results in this study were obtained using a model that was trained with
MR and CT images of the same patients. These images were were rigidly reg-
istered to allow a voxel-wise comparison between synthesized CT and reference
CT images. We do not expect this registration step to influence training, as
training images were provided in a randomized unpaired way, making it unlikely
that both an MR image and its registered corresponding CT image were simul-
taneously shown to the GAN. In addition, images were randomly cropped, which
partially cancels the effects of rigid registration. Nevertheless, using images of
the same patients in the MR set and the CT set may affect training. The syn-
thesis networks could receive stronger feedback from the discriminator, which
would occasionally see the corresponding reference image. In future work, we
will extend the training set to investigate if we can similarly train the model
with MR and CT images of disjoint patient sets.
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