Skip to main content

Young’s Modulus Control in Material and Topology Optimization

  • Conference paper
  • First Online:
Advances in Structural and Multidisciplinary Optimization (WCSMO 2017)

Abstract

We discuss compliance minimization from the broad perspective of Free Material Design (FMD) with Young’s moduli in place of Hooke’s tensor. By this, we attempt to optimize these elastic moduli which tightly correspond to principal components of stress at each point in the design space. The optimization task under study takes a form of the following constrained variational problem: In a given design space, fix two variables for which the total stored energy functional is minimal: (i) design variable - the directional Young modulus field restricted by an isoperimetric condition, and (ii) state variable - the statically admissible stress field. The functional is parametrically dependent on the Poisson ratios; these moduli are not optimized in the proposed approach. Similarly to FMD, our problem also reduces to minimizing a functional of linear growth in stresses. A characteristic feature is that the functional to be minimized is Michell-like, i.e. it takes a form of an integral of absolute values of principal components of stress tensor if the Poisson ratios are set to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allaire, G.: Shape Optimization by the Homogenization Method. Springer, New York (2002)

    Book  MATH  Google Scholar 

  2. Allaire, G., Kohn, R.V.: Optimal design for minimum weight and compliance in plane stress using extremal microstructures. Eur. J. Mech. A/Solids 12(6), 839–878 (1993)

    MathSciNet  MATH  Google Scholar 

  3. Attouch, H., Butazzo, G., Michaille, G.: Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization. SIAM and MPS, Philadelphia (2006)

    Book  MATH  Google Scholar 

  4. Barbarosie, C., Lopes, S.: Study of the cost functional for free material design problems. Numer. Funct. Anal. Optim. 29(1–2), 115–125 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bendsøe, M.P., Díaz, A.R., Lipton, R., Taylor, J.E.: Optimal design of material properties and material distribution for multiple loading conditions. Int. J. Numer. Meth. Eng. 38(7), 1149–1170 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bendsøe, M.P., Guedes, J.M., Haber, R.B., Pedersen, P., Taylor, J.E.: An analytical model to predict optimal material properties in the context of optimal structural design. J. Appl. Mech. Trans. ASME 61(4), 930–937 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cherkaev, A.V.: Variational Methods for Structural Optimization. Springer, New York (2000)

    Book  MATH  Google Scholar 

  8. Czarnecki, S.: Isotropic material design. Comput. Methods Sci. Technol. 21(2), 49–64 (2015)

    Article  Google Scholar 

  9. Czarnecki, S., Wawruch, P.: The emergence of auxetic material as a result of optimal isotropic design. Phys. Status Solidi B 252(7), 1620–1630 (2015)

    Article  Google Scholar 

  10. Czarnecki, S., Lewiński, T.: On material design by the optimal choice of Young’s modulus distribution. Int. J. Solids Struct. 110–111, 315–331 (2017)

    Article  Google Scholar 

  11. Czubacki, R., Lewiński, T.: Topology optimization of spatial continuum structures made of non-homogeneous material of cubic symmetry. J. Mech. Mater. Struct. 10(4), 519–535 (2015)

    Article  MathSciNet  Google Scholar 

  12. Du, J., Taylor, J.E.: Application of an energy-based model for the optimal design of structural materials and topology. Struct. Multi. Optim. 24(4), 277–292 (2002)

    Article  Google Scholar 

  13. Dzierżanowski, G., Lewiński, T.: Compliance minimization of thin plates made of material with predefined Kelvin moduli. Part I. Solving the local optimization problem. Arch. Mech. 64(1), 21–40 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Dzierżanowski, G., Lewiński, T.: Compliance minimization of thin plates made of material with predefined Kelvin moduli. Part II. The effective boundary value problem and exemplary solutions. Arch. Mech. 64(2), 111–135 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Haslinger, J., Kočvara, M., Leugering, G., Stingl, M.: Multidisciplinary free material optimization. SIAM J. Appl. Math. 70(7), 2709–2728 (2010)

    Google Scholar 

  16. Hayes, M.: Connexions between the moduli for anisotropic elastic materials. J. Elast. 2(2), 135–141 (1972)

    Article  Google Scholar 

  17. Kolodner, I.I.: Existence of longitudinal waves in anisotropic media. J. Acoust. Soc. Am. 40(3), 730–731 (1966)

    Article  Google Scholar 

  18. Michell, A.G.M.: The limits of economy of material in frame structures. Phil. Mag. 8(47), 589–597 (1904)

    Article  MATH  Google Scholar 

  19. Nečas, J., Hlavaček, J.: Mathematical Theory of Elasto- and Elasto-Plastic Bodies: An Introduction. Elsevier, Amsterdam (1981)

    Google Scholar 

  20. Ostrowska-Maciejewska, J., Rychlewski, J.: Generalized proper states for anisotropic elastic materials. Arch. Mech. 53(4–5), 501–518 (2001)

    MathSciNet  MATH  Google Scholar 

  21. Ringertz, U.T.: On finding the optimal distribution of material properties. Struct. Optim. 5(4), 265–267 (1993)

    Article  Google Scholar 

  22. Rychlewski, J.: On Hooke’s law [in Russian]. Prikladnaya Matematika i Mekhanika 48(3), 420–435 (1984)

    MathSciNet  Google Scholar 

  23. Strang, G., Kohn, R.V.: Hencky-Prandtl nets and constrained Michell trusses. Comput. Methods Appl. Mech. Eng. 36(2), 207–222 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  24. Taylor, J.E.: An energy model for the optimal design of linear continuum structures. Struct. Optim. 16(2), 116–127 (1998)

    Article  Google Scholar 

  25. Walpole, L.J.: Fourth-rank tensors of the thirty-two crystal classes: multiplication tables. Proc. Roy. Soc. London A 391(1800), 149–179 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The paper was prepared within the Research Grant no 2013/11/B/ST8/04436 financed by the National Science Centre (Poland), entitled: Topology optimization of engineering structures. An approach synthesizing the methods of: free material design, composite design and Michell-like trusses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Dzierżanowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dzierżanowski, G., Lewiński, T. (2018). Young’s Modulus Control in Material and Topology Optimization. In: Schumacher, A., Vietor, T., Fiebig, S., Bletzinger, KU., Maute, K. (eds) Advances in Structural and Multidisciplinary Optimization. WCSMO 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-67988-4_103

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67988-4_103

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67987-7

  • Online ISBN: 978-3-319-67988-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics