Skip to main content

Microelectronics for Muscle Fatigue Monitoring Through Surface EMG

  • Chapter
  • First Online:
CMOS Circuits for Biological Sensing and Processing

Abstract

Electromyogram (EMG), the recording of the electrical impulses of the muscles, is a rich source of information, which can facilitate such an insight into our muscles and especially their activation and fatigue level. Muscle fatigue has been shown to be one of the most important biofeedback parameters of EMG in rehabilitation, ergonomics and training, by using measured results from the body to change the way we behave, improve our performance and achieve better compliance to rehabilitation. This chapter addresses the challenge of reliably and efficiently estimating a muscle’s fatigue state through monitoring surface EMG signals, with the use of low power integrated circuits. CMOS technology facilitates localised real-time processing to achieve complete miniaturisation, resulting in an information driven system rather than conventionally data driven system. Thus, reducing requirements on data transmission, saving power and increasing the degree of freedom for the user. Several EMG properties progressively change during muscle fatigue and can be quantified in the time and frequency domains using different processing techniques, however this chapter focuses on the measurement of muscle fibre conduction velocity as an indicator of fatigue. A novel bit-stream cross-correlator design that greatly simplifies the sEMG signal without any loss of information is presented for the estimation of the EMG conduction velocity, which is associated with the physiological changes of the muscle during fatigue. The proposed approach is scalable, as several muscle fatigue monitoring SoCs can operate in parallel and periodically relay key information about the muscle, thus reducing data transmission costs and bandwidth requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. M. Reaz, M. Hussain, F. Mohd-Yasin, Techniques of EMG signal analysis: detection, processing, classification and applications. Biol. Proced. online 8(1), 11–35 (2006)

    Article  Google Scholar 

  2. G. Caffier, D. Heinecke, R. Hinterthan, Surface EMG and load level during long-lasting static contractions of low intensity. Int. J. Ind. Ergon. 12(1–2), 77–83 (1993)

    Article  Google Scholar 

  3. S.H. Roy, C.J. De Luca, L. Snyder-Mackler, M.S. Emley, R.L. Crenshaw, J.P. Lyons, Fatigue, recovery, and low back pain in varsity rowers. Med. Sci. Sports Exerc. 22(4), 463–469 (1990)

    Article  Google Scholar 

  4. R. Merletti, P.A. Parker, Electromyography: Physiology, Engineering, and Non-invasive Applications, vol. 11 (Wiley, New York, 2004)

    Book  Google Scholar 

  5. M. Cifrek, S. Tonković, V. Medved, Measurement and analysis of surface myoelectric signals during fatigued cyclic dynamic contractions. Measurement 27(2), 85–92 (2000)

    Article  Google Scholar 

  6. J. Petrofsky, Filter bank analyser for automatic analysis of the EMG. Med. Biol. Eng. Comput. 18(5), 585–590 (1980)

    Article  Google Scholar 

  7. L.D. Gilmore, C.J. De Luca, Muscle fatigue monitor (MFM): second generation. IEEE Trans. Biomed. Eng. 1, 75–78 (1985)

    Article  Google Scholar 

  8. F.B. Stulen, C.J. De Luca, Muscle fatigue monitor: a noninvasive device for observing localized muscular fatigue. IEEE Trans. Biomed. Eng. 12, 760–768 (1982)

    Article  Google Scholar 

  9. R. Merletti, D. Biey, M. Biey, G. Prato, A. Orusa, On-line monitoring of the median frequency of the surface EMG power spectrum. IEEE Trans. Biomed. Eng. 1, 1–7 (1985)

    Article  Google Scholar 

  10. A. Peyton, Circuit for monitoring the median frequency of the spectrum of the surface EMG signal. IEEE Trans. Biomed. Eng. 5(BME-34), 391–394 (1987)

    Google Scholar 

  11. J. Duchêne, F. Goubel, Acquisition and processing of surface EMG signals with a low-cost microprocessor based system. J. Biomech. 15(10), 791–793 (1982)

    Article  Google Scholar 

  12. G. Inbar, O. Paiss, J. Allin, H. Kranz, Monitoring surface EMG spectral changes by the zero crossing rate. Med. Biol. Eng. Comput. 24(1), 10–18 (1986)

    Article  Google Scholar 

  13. M.Z. Jamal, Signal acquisition using surface EMG and circuit design considerations for robotic prosthesis in Computational Intelligence in Electromyography Analysis-A Perspective on Current Applications and Future Challenges (InTech, Rijeka, 2012)

    Google Scholar 

  14. C.J. De Luca, The use of surface electromyography in biomechanics. J. Appl. Biomech. 13, 135–163 (1997)

    Article  Google Scholar 

  15. A. Cechetto, P. Parker, R. Scott, The effects of four time-varying factors on the mean frequency of a myoelectric signal. J. Electromyogr. Kinesiol. 11(5), 347–354 (2001)

    Article  Google Scholar 

  16. D. Farina, W. Jensen, M. Akay, Introduction to Neural Engineering for Motor Rehabilitation, vol. 40 (Wiley, New York, 2013)

    Google Scholar 

  17. Y. Blanc, U. Dimanico, Electrode placement in surface electromyography (sEMG) minimal crosstalk area (MCA). Open Rehabil. J. 3, 110–126 (2010)

    Article  Google Scholar 

  18. E. Zuniga, X. Truong, D. Simons, Effects of skin electrode position on averaged electromyographic potentials. Arch. Phys. Med. Rehabil. 51(5), 264–272 (1970)

    Google Scholar 

  19. J.H. Viitasalo, P.V. Komi, Signal characteristics of EMG with special reference to reproducibility of measurements. Acta Physiol. Scand. 93(4), 531–539 (1975)

    Article  Google Scholar 

  20. A. Rainoldi, M. Nazzaro, R. Merletti, D. Farina, I. Caruso, S. Gaudenti, Geometrical factors in surface EMG of the vastus medialis and lateralis muscles. J. Electromyogr. Kinesiol. 10(5), 327–336 (2000)

    Article  Google Scholar 

  21. D. Farina, R. Merletti, M. Nazzaro, I. Caruso, Effect of joint angle on EMG variables in leg and thigh muscles. IEEE Eng. Med. Biol. Mag. 20(6), 62–71 (2001)

    Article  Google Scholar 

  22. D.B. Chaffin, Localized muscle fatigue-definition and measurement. J. Occup. Environ. Med. 15(4), 346–354 (1973)

    Google Scholar 

  23. H. Piper, Elektrophysiologie menschlicher muskeln (Springer, Berlin, 1912)

    Book  Google Scholar 

  24. S. Cobb, A. Forbes, Electromyographic studies of muscular fatigue in man. Am. J. Physiol.–Legacy Content 65(2), 234–251 (1923)

    Google Scholar 

  25. E. Kuroda, V. Klissouras, J. Milsum, Electrical and metabolic activities and fatigue in human isometric contraction. J. Appl. Physiol. 29(3), 358–367 (1970)

    Article  Google Scholar 

  26. B. Bigland, O. Lippold, The relation between force, velocity and integrated electrical activity in human muscles. J. Physiol. 123(1), 214 (1954)

    Google Scholar 

  27. R. Harding, R. Sen, Evaluation of total muscular activity by quantification of electromyograms through a summing amplifier. Med. Biol. Eng. 8(4), 343–356 (1970)

    Article  Google Scholar 

  28. P. Komi, Relationship between muscle tension, EMG and velocity of contraction under concentric and eccentric work, in New Concepts of the Motor Unit, Neuromuscular Disorders, Electromyographic Kinesiology (Karger Publishers, Basel, 1973), pp. 596–606

    Google Scholar 

  29. A. Fuglsang-Frederiksen, The utility of interference pattern analysis. Muscle Nerve 23(1), 18–36 (2000)

    Article  Google Scholar 

  30. D.A. Gabriel, J.R. Basford, K.-N. An, Assessing fatigue with electromyographic spike parameters. IEEE Eng. Med. Biol. Mag. 20(6), 90–96 (2001)

    Article  Google Scholar 

  31. D. Farina, R. Merletti, Methods for estimating muscle fibre conduction velocity from surface electromyographic signals. Med. Biol. Eng. Comput. 42(4), 432–445 (2004)

    Article  Google Scholar 

  32. K. Masuda, T. Masuda, T. Sadoyama, M. Inaki, S. Katsuta, Changes in surface EMG parameters during static and dynamic fatiguing contractions. J. Electromyogr. Kinesiol. 9(1), 39–46 (1999)

    Article  Google Scholar 

  33. J. Potvin, L. Bent, A validation of techniques using surface EMG signals from dynamic contractions to quantify muscle fatigue during repetitive tasks. J. Electromyogr. Kinesiol. 7(2), 131–139 (1997)

    Article  Google Scholar 

  34. G. Kamen, D. Gabriel, Essentials of Electromyography (Human Kinetics, Champaign, 2010)

    Google Scholar 

  35. M. Barbero, R. Merletti, A. Rainoldi, Atlas of Muscle Innervation Zones (Springer, Berlin, 2011)

    Google Scholar 

  36. Anatomy diagram, Arm muscles (2015)

    Google Scholar 

  37. R. Merletti, L.L. Conte, Advances in processing of surface myoelectric signals: part 1. Med. Biol. Eng. Comput. 33(3), 362–372 (1995)

    Article  Google Scholar 

  38. H. Broman, G. Bilotto, C.J. De Luca, A note on the noninvasive estimation of muscle fiber conduction velocity. IEEE Trans. Biomed. Eng. 5(BME-32), 341–344 (1985)

    Google Scholar 

  39. R. Merletti, L.R.L. Conte, Surface EMG signal processing during isometric contractions. J. Electromyogr. Kinesiol. 7(4), 241–250 (1997)

    Article  Google Scholar 

  40. T.-D. Chiueh, P.-Y. Tsai, I.-W. Lai, Baseband Receiver Design for Wireless MIMO-OFDM Communications (Wiley, New York, 2012)

    Book  Google Scholar 

  41. T.S. Lande, T.G. Constandinou, A. Burdett, C. Toumazou, Running cross-correlation using bitstream processing. Electron. Lett. 43(22), 1181–1183 (2007)

    Article  Google Scholar 

  42. M. Zwarts, T. Van Weerden, H. Haenen, Relationship between average muscle fibre conduction velocity and EMG power spectra during isometric contraction, recovery and applied ischemia. Eur. J. Appl. Physiol. Occup. Physiol. 56(2), 212–216 (1987)

    Article  Google Scholar 

  43. T. Sadoyama, T. Masuda, H. Miyano, Relationships between muscle fibre conduction velocity and frequency parameters of surface EMG during sustained contraction. Eur. J. Appl. Physiol. Occup. Physiol. 51(2), 247–256 (1983)

    Article  Google Scholar 

  44. S. Andreassen, L. Arendt-Nielsen, Muscle fibre conduction velocity in motor units of the human anterior tibial muscle: a new size principle parameter. J. Physiol. 391(1), 561–571 (1987)

    Article  Google Scholar 

  45. T. Sadoyama, T. Masuda, H. Miyata, S. Katsuta, Fibre conduction velocity and fibre composition in human vastus lateralis. Eur. J. Appl. Physiol. Occup. Physiol. 57(6), 767–771 (1988)

    Article  Google Scholar 

  46. X. Ye, T. Beck, N. Wages, Relationship between innervation zone width and mean muscle fiber conduction velocity during a sustained isometric contraction. J. Musculoskelet. Neuronal Interact. 15(1), 95–102 (2015)

    Google Scholar 

  47. M. Naeije, Estimation of the action potential conduction velocity in human skeletal muscle using the surface EMG cross-correlation technique. Electromyogr. Clin. Neurophysiol. 23, 73–80 (1983)

    Google Scholar 

  48. S. Henzler, Time-to-digital converter basics, in Time-to-Digital Converters (Springer, Berlin, 2010), pp. 5–18

    Google Scholar 

  49. R. Pallas-Areny, Interference-rejection characteristics of biopotential amplifiers: a comparative analysis. IEEE Trans. Biomed. Eng. 35(11), 953–959 (1988)

    Article  Google Scholar 

  50. J.H. Nagel, Biopotential amplifiers. Biomed. Eng. Handb. 1185–1195 (1995)

    Google Scholar 

  51. M.J. Burke, D.T. Gleeson, A micropower dry-electrode ecg preamplifier. IEEE Trans. Biomed. Eng. 47(2), 155–162 (2000)

    Article  Google Scholar 

  52. E.M. Spinelli, N.H. Martinez, M.A. Mayosky, A single supply biopotential amplifier. Med. Eng. Phys. 23(3), 235–238 (2001)

    Article  Google Scholar 

  53. E.M. Spinelli, N. Martínez, M.A. Mayosky, R. Pallàs-Areny, A novel fully differential biopotential amplifier with dc suppression. IEEE Trans. Biomed. Eng. 51(8), 1444–1448 (2004)

    Article  Google Scholar 

  54. E.M. Spinelli, R. Pallàs-Areny, M.A. Mayosky, Ac-coupled front-end for biopotential measurements. IEEE Trans. Biomed. Eng. 50(3), 391–395 (2003)

    Article  Google Scholar 

  55. R.F. Yazicioglu, S. Kim, T. Torfs, H. Kim, C. Van Hoof, A 30 w analog signal processor ASIC for portable biopotential signal monitoring. IEEE J. Solid State Circuits 46(1), 209–223 (2011)

    Article  Google Scholar 

  56. N. Verma, A. Shoeb, J. Bohorquez, J. Dawson, J. Guttag, A.P. Chandrakasan, A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. IEEE J. Solid State Circuits 45(4), 804–816 (2010)

    Article  Google Scholar 

  57. R.R. Harrison, C. Charles, A low-power low-noise cmos amplifier for neural recording applications. IEEE J. Solid State Circuits 38(6), 958–965 (2003)

    Article  Google Scholar 

  58. R. Yazicioglu, P. Merken, R. Puers, C. Van Hoof, A 60 uw 60 nv/ hz readout front-end for portable biopotential acquisition systems. IEEE J. Solid State Circuits 42(5), 1100–1110 (2007)

    Article  Google Scholar 

  59. R.F. Yazicioglu, P. Merken, R. Puers, C. Van Hoof, A 200 weight-channel EEG acquisition ASIC for ambulatory EEG systems. IEEE J. Solid State Circuits 43(12), 3025–3038 (2008)

    Article  Google Scholar 

  60. T. Denison, K. Consoer, W. Santa, A.-T. Avestruz, J. Cooley, A. Kelly, A 2 uw 100 nv/rthz chopper-stabilized instrumentation amplifier for chronic measurement of neural field potentials. IEEE J. Solid State Circuits 42(12), 2934–2945 (2007)

    Article  Google Scholar 

  61. C.J. De Luca, L. Donald Gilmore, M. Kuznetsov, S.H. Roy, Filtering the surface EMG signal: movement artifact and line noise contamination. J. Biomech. 43(8), 1573–1579 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pantelis Georgiou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Georgiou, P., Koutsos, E. (2018). Microelectronics for Muscle Fatigue Monitoring Through Surface EMG. In: Mitra, S., Cumming, D. (eds) CMOS Circuits for Biological Sensing and Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-67723-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67723-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67722-4

  • Online ISBN: 978-3-319-67723-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics