Skip to main content

Targeting Myeloid-Derived Suppressor Cells in Cancer

  • Chapter
  • First Online:
Tumor Immune Microenvironment in Cancer Progression and Cancer Therapy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1036))

Abstract

Myeloid derived suppressor cells (MDSC) represent only a minor fraction of circulating blood cells but play an important role in tumor formation and progression. They are a heterogeneous group of cells that influence the tumor microenvironment by depletion of amino acids, oxidative stress, decreased trafficking of antitumor effector cells, and increased regulatory T and regulatory dendritic cell responses. Investigational treatment strategies targeting MDSCs have attempted to inhibit MDSC development and expansion (stem cell factor blockade, modulate of cell signaling, and target MDSC migration and recruitment), inhibit MDSC function (nitric oxide inhibition and reactive oxygen and nitrogen species inhibition), differentiate MDSCs into more mature cells (Vitamins A and D, all-trans retinoic acid, interleukin-2, toll-like receptor 9 inhibitors, taxanes, beta-glucan particles, tumor-derived exosome inhibition, and very small size proteoliposomes), and destroy MDSCs (cytotoxic agents, ephrin A2 degradation, anti-interleukin 13, and histamine blockers). To date, there are no Food and Drug Administration approved therapies selectively targeting MDSCs, but such therapies are likely to be implemented in the future, due to the key role of MDSCs in antitumor immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012;12(4):253–68. https://doi.org/10.1038/nri3175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gutkin DW, Shurin MR. Clinical evaluation of systemic and local immune responses in cancer: time for integration. Cancer Immunol Immunother. 2014;63(1):45–57. https://doi.org/10.1007/s00262-013-1480-0.

    Article  CAS  PubMed  Google Scholar 

  3. Zhong H, Gutkin DW, Han B, Ma Y, Keskinov AA, Shurin MR, Shurin GV. Origin and pharmacological modulation of tumor-associated regulatory dendritic cells. Int J Cancer. 2014;134(11):2633–45. https://doi.org/10.1002/ijc.28590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9(3):162–74. https://doi.org/10.1038/nri2506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother. 2009;58(1):49–59. https://doi.org/10.1007/s00262-008-0523-4.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang B, Wang Z, Wu L, Zhang M, Li W, Ding J, Zhu J, Wei H, Zhao K. Circulating and tumor-infiltrating myeloid-derived suppressor cells in patients with colorectal carcinoma. PLoS One. 2013;8(2):e57114. https://doi.org/10.1371/journal.pone.0057114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Keskinov AA, Shurin MR. Myeloid regulatory cells in tumor spreading and metastasis. Immunobiology. 2015;220(2):236–42. https://doi.org/10.1016/j.imbio.2014.07.017.

    Article  CAS  PubMed  Google Scholar 

  8. Albeituni SH, Ding C, Yan J. Hampering immune suppressors: therapeutic targeting of myeloid-derived suppressor cells in cancer. Cancer J. 2013;19(6):490–501. https://doi.org/10.1097/PPO.0000000000000006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Akashi K, Traver D, Miyamoto T, Weissman IL. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature. 2000;404(6774):193–7. https://doi.org/10.1038/35004599.

    Article  CAS  PubMed  Google Scholar 

  10. Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ, Lush RM, Antonia S, Gabrilovich DI. All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res. 2006;66(18):9299–307. https://doi.org/10.1158/0008-5472.CAN-06-1690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ochoa AC, Zea AH, Hernandez C, Rodriguez PC. Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res. 2007;13(2 Pt 2):721s–6s. https://doi.org/10.1158/1078-0432.CCR-06-2197.

    Article  CAS  PubMed  Google Scholar 

  12. Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC, Carbone DP, Gabrilovich DI. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol. 2001;166(1):678–89.

    Article  CAS  PubMed  Google Scholar 

  13. Lechner MG, Russell SM, Bass RS, Epstein AL. Chemokines, costimulatory molecules and fusion proteins for the immunotherapy of solid tumors. Immunotherapy. 2011;3(11):1317–40. https://doi.org/10.2217/imt.11.115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pak AS, Wright MA, Matthews JP, Collins SL, Petruzzelli GJ, Young MR. Mechanisms of immune suppression in patients with head and neck cancer: presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factor. Clin Cancer Res. 1995;1(1):95–103.

    CAS  PubMed  Google Scholar 

  15. Youn JI, Nagaraj S, Collazo M, Gabrilovich DI. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol. 2008;181(8):5791–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol. 2004;172(2):989–99.

    Article  CAS  PubMed  Google Scholar 

  17. Kusmartsev S, Gabrilovich DI. Immature myeloid cells and cancer-associated immune suppression. Cancer Immunol Immunother. 2002;51(6):293–8. https://doi.org/10.1007/s00262-002-0280-8.

    Article  CAS  PubMed  Google Scholar 

  18. Seung LP, Rowley DA, Dubey P, Schreiber H. Synergy between T-cell immunity and inhibition of paracrine stimulation causes tumor rejection. Proc Natl Acad Sci U S A. 1995;92(14):6254–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Youn JI, Collazo M, Shalova IN, Biswas SK, Gabrilovich DI. Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J Leukoc Biol. 2012;91(1):167–81. https://doi.org/10.1189/jlb.0311177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A, De Baetselier P, Van Ginderachter JA. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood. 2008;111(8):4233–44. https://doi.org/10.1182/blood-2007-07-099226.

    Article  CAS  PubMed  Google Scholar 

  21. Dietlin TA, Hofman FM, Lund BT, Gilmore W, Stohlman SA, van der Veen RC. Mycobacteria-induced Gr-1+ subsets from distinct myeloid lineages have opposite effects on T cell expansion. J Leukoc Biol. 2007;81(5):1205–12. https://doi.org/10.1189/jlb.1006640.

    Article  CAS  PubMed  Google Scholar 

  22. Youn JI, Gabrilovich DI. The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol. 2010;40(11):2969–75. https://doi.org/10.1002/eji.201040895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jiang J, Guo W, Liang X. Phenotypes, accumulation, and functions of myeloid-derived suppressor cells and associated treatment strategies in cancer patients. Hum Immunol. 2014;75(11):1128–37. https://doi.org/10.1016/j.humimm.2014.09.025.

    Article  CAS  PubMed  Google Scholar 

  24. Schmielau J, Finn OJ. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res. 2001;61(12):4756–60.

    CAS  PubMed  Google Scholar 

  25. Rodriguez PC, Ernstoff MS, Hernandez C, Atkins M, Zabaleta J, Sierra R, Ochoa AC. Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res. 2009;69(4):1553–60. https://doi.org/10.1158/0008-5472.CAN-08-1921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Poschke I, Mougiakakos D, Hansson J, Masucci GV, Kiessling R. Immature immunosuppressive CD14+HLA-DR−/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res. 2010;70(11):4335–45. https://doi.org/10.1158/0008-5472.CAN-09-3767.

    Article  CAS  PubMed  Google Scholar 

  27. Rodriguez PC, Zea AH, Ochoa AC. Mechanisms of tumor evasion from the immune response. Cancer Chemother Biol Response Modif. 2003;21:351–64.

    Article  CAS  PubMed  Google Scholar 

  28. Rodriguez PC, Quiceno DG, Ochoa AC. L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood. 2007;109(4):1568–73. https://doi.org/10.1182/blood-2006-06-031856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mannick JB, Hausladen A, Liu L, Hess DT, Zeng M, Miao QX, Kane LS, Gow AJ, Stamler JS. Fas-induced caspase denitrosylation. Science. 1999;284(5414):651–4.

    Article  CAS  PubMed  Google Scholar 

  30. Lu T, Ramakrishnan R, Altiok S, Youn JI, Cheng P, Celis E, Pisarev V, Sherman S, Sporn MB, Gabrilovich D. Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Invest. 2011;121(10):4015–29. https://doi.org/10.1172/JCI45862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Angelini G, Gardella S, Ardy M, Ciriolo MR, Filomeni G, Di Trapani G, Clarke F, Sitia R, Rubartelli A. Antigen-presenting dendritic cells provide the reducing extracellular microenvironment required for T lymphocyte activation. Proc Natl Acad Sci U S A. 2002;99(3):1491–6. https://doi.org/10.1073/pnas.022630299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res. 2010;70(1):68–77. https://doi.org/10.1158/0008-5472.CAN-09-2587.

    Article  CAS  PubMed  Google Scholar 

  33. Eruslanov E, Neuberger M, Daurkin I, Perrin GQ, Algood C, Dahm P, Rosser C, Vieweg J, Gilbert SM, Kusmartsev S. Circulating and tumor-infiltrating myeloid cell subsets in patients with bladder cancer. Int J Cancer. 2012;130(5):1109–19. https://doi.org/10.1002/ijc.26123.

    Article  CAS  PubMed  Google Scholar 

  34. Hanson EM, Clements VK, Sinha P, Ilkovitch D, Ostrand-Rosenberg S. Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells. J Immunol. 2009;183(2):937–44. https://doi.org/10.4049/jimmunol.0804253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, Divino CM, Chen SH. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 2006;66(2):1123–31. https://doi.org/10.1158/0008-5472.CAN-05-1299.

    Article  CAS  PubMed  Google Scholar 

  36. Pan PY, Wang GX, Yin B, Ozao J, Ku T, Divino CM, Chen SH. Reversion of immune tolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function. Blood. 2008;111(1):219–28. https://doi.org/10.1182/blood-2007-04-086835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sevko A, Umansky V. Myeloid-derived suppressor cells interact with tumors in terms of myelopoiesis, tumorigenesis and immunosuppression: thick as thieves. J Cancer. 2013;4(1):3–11. https://doi.org/10.7150/jca.5047.

    Article  CAS  PubMed  Google Scholar 

  38. Finke J, Ko J, Rini B, Rayman P, Ireland J, Cohen P. MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapy. Int Immunopharmacol. 2011;11(7):856–61. https://doi.org/10.1016/j.intimp.2011.01.030.

    Article  CAS  PubMed  Google Scholar 

  39. Panka DJ, Liu Q, Geissler AK, Mier JW. Effects of HDM2 antagonism on sunitinib resistance, p53 activation, SDF-1 induction, and tumor infiltration by CD11b+/Gr-1+ myeloid derived suppressor cells. Mol Cancer. 2013;12:17. https://doi.org/10.1186/1476-4598-12-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P, Golshayan A, Rayman PA, Wood L, Garcia J, Dreicer R, Bukowski R, Finke JH. Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res. 2009;15(6):2148–57. https://doi.org/10.1158/1078-0432.CCR-08-1332.

    Article  CAS  PubMed  Google Scholar 

  41. Dutta P, Li WX. Role of the JAK-STAT signalling pathway in cancer. In: eLS. Wiley. 2001. doi:https://doi.org/10.1002/9780470015902.a0025214.

  42. Ugel S, Delpozzo F, Desantis G, Papalini F, Simonato F, Sonda N, Zilio S, Bronte V. Therapeutic targeting of myeloid-derived suppressor cells. Curr Opin Pharmacol. 2009;9(4):470–81. https://doi.org/10.1016/j.coph.2009.06.014.

    Article  CAS  PubMed  Google Scholar 

  43. Condamine T, Gabrilovich DI. Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol. 2011;32(1):19–25. https://doi.org/10.1016/j.it.2010.10.002.

    Article  CAS  PubMed  Google Scholar 

  44. Sansone P, Bromberg J. Targeting the interleukin-6/Jak/stat pathway in human malignancies. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30(9):1005–14. https://doi.org/10.1200/JCO.2010.31.8907.

    Article  CAS  Google Scholar 

  45. Lin L, Deangelis S, Foust E, Fuchs J, Li C, Li PK, Schwartz EB, Lesinski GB, Benson D, Lu J, Hoyt D, Lin J. A novel small molecule inhibits STAT3 phosphorylation and DNA binding activity and exhibits potent growth suppressive activity in human cancer cells. Mol Cancer. 2010;9:217. https://doi.org/10.1186/1476-4598-9-217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bill MA, Fuchs JR, Li C, Yui J, Bakan C, Benson DM Jr, Schwartz EB, Abdelhamid D, Lin J, Hoyt DG, Fossey SL, Young GS, Carson WE 3rd, Li PK, Lesinski GB. The small molecule curcumin analog FLLL32 induces apoptosis in melanoma cells via STAT3 inhibition and retains the cellular response to cytokines with anti-tumor activity. Mol Cancer. 2010;9:165. https://doi.org/10.1186/1476-4598-9-165.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Dhillon N, Aggarwal BB, Newman RA, Wolff RA, Kunnumakkara AB, Abbruzzese JL, Ng CS, Badmaev V, Kurzrock R. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res. 2008;14(14):4491–9. https://doi.org/10.1158/1078-0432.CCR-08-0024.

    Article  CAS  PubMed  Google Scholar 

  48. SP T, Jin H, Shi JD, Zhu LM, Suo Y, Lu G, Liu A, Wang TC, Yang CS. Curcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growth. Cancer Prev Res. 2012;5(2):205–15. https://doi.org/10.1158/1940-6207.CAPR-11-0247.

    Article  CAS  Google Scholar 

  49. Yang WC, Ma G, Chen SH, Pan PY. Polarization and reprogramming of myeloid-derived suppressor cells. J Mol Cell Biol. 2013;5(3):207–9. https://doi.org/10.1093/jmcb/mjt009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Carroll RE, Benya RV, Turgeon DK, Vareed S, Neuman M, Rodriguez L, Kakarala M, Carpenter PM, McLaren C, Meyskens FL Jr, Brenner DE. Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prev Res. 2011;4(3):354–64. https://doi.org/10.1158/1940-6207.CAPR-10-0098.

    Article  CAS  Google Scholar 

  51. Cheng AL, Hsu CH, Lin JK, Hsu MM, Ho YF, Shen TS, Ko JY, Lin JT, Lin BR, Ming-Shiang W, Yu HS, Jee SH, Chen GS, Chen TM, Chen CA, Lai MK, Pu YS, Pan MH, Wang YJ, Tsai CC, Hsieh CY. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001;21(4B):2895–900.

    CAS  PubMed  Google Scholar 

  52. Lu P, Yu B, Xu J. Cucurbitacin B regulates immature myeloid cell differentiation and enhances antitumor immunity in patients with lung cancer. Cancer Biother Radiopharm. 2012;27(8):495–503. https://doi.org/10.1089/cbr.2012.1219.

    Article  CAS  PubMed  Google Scholar 

  53. Stewart MW. Aflibercept (VEGF trap-eye): the newest anti-VEGF drug. Br J Ophthalmol. 2012;96(9):1157–8. https://doi.org/10.1136/bjophthalmol-2011-300654.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Fricke I, Mirza N, Dupont J, Lockhart C, Jackson A, Lee JH, Sosman JA, Gabrilovich DI. Vascular endothelial growth factor-trap overcomes defects in dendritic cell differentiation but does not improve antigen-specific immune responses. Clin Cancer Res. 2007;13(16):4840–8. https://doi.org/10.1158/1078-0432.CCR-07-0409.

    Article  CAS  PubMed  Google Scholar 

  55. Aparicio-Gallego G, Blanco M, Figueroa A, Garcia-Campelo R, Valladares-Ayerbes M, Grande-Pulido E, Anton-Aparicio L. New insights into molecular mechanisms of sunitinib-associated side effects. Mol Cancer Ther. 2011;10(12):2215–23. https://doi.org/10.1158/1535-7163.MCT-10-1124.

    Article  CAS  PubMed  Google Scholar 

  56. Bose A, Taylor JL, Alber S, Watkins SC, Garcia JA, Rini BI, Ko JS, Cohen PA, Finke JH, Storkus WJ. Sunitinib facilitates the activation and recruitment of therapeutic anti-tumor immunity in concert with specific vaccination. Int J Cancer. 2011;129(9):2158–70. https://doi.org/10.1002/ijc.25863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ozao-Choy J, Ma G, Kao J, Wang GX, Meseck M, Sung M, Schwartz M, Divino CM, Pan PY, Chen SH. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res. 2009;69(6):2514–22. https://doi.org/10.1158/0008-5472.CAN-08-4709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ko JS, Rayman P, Ireland J, Swaidani S, Li G, Bunting KD, Rini B, Finke JH, Cohen PA. Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained. Cancer Res. 2010;70(9):3526–36. https://doi.org/10.1158/0008-5472.CAN-09-3278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. van Cruijsen H, van der Veldt AA, Vroling L, Oosterhoff D, Broxterman HJ, Scheper RJ, Giaccone G, Haanen JB, van den Eertwegh AJ, Boven E, Hoekman K, de Gruijl TD. Sunitinib-induced myeloid lineage redistribution in renal cell cancer patients: CD1c+ dendritic cell frequency predicts progression-free survival. Clin Cancer Res. 2008;14(18):5884–92. https://doi.org/10.1158/1078-0432.CCR-08-0656.

    Article  PubMed  CAS  Google Scholar 

  60. Xin H, Zhang C, Herrmann A, Du Y, Figlin R, Yu H. Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Res. 2009;69(6):2506–13. https://doi.org/10.1158/0008-5472.CAN-08-4323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sinha P, Okoro C, Foell D, Freeze HH, Ostrand-Rosenberg S, Srikrishna G. Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol. 2008;181(7):4666–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Srikrishna G. S100A8 and S100A9: new insights into their roles in malignancy. J Innate Immun. 2012;4(1):31–40. https://doi.org/10.1159/000330095.

    Article  CAS  PubMed  Google Scholar 

  63. Turovskaya O, Foell D, Sinha P, Vogl T, Newlin R, Nayak J, Nguyen M, Olsson A, Nawroth PP, Bierhaus A, Varki N, Kronenberg M, Freeze HH, Srikrishna G. RAGE, carboxylated glycans and S100A8/A9 play essential roles in colitis-associated carcinogenesis. Carcinogenesis. 2008;29(10):2035–43. https://doi.org/10.1093/carcin/bgn188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mok S, Koya RC, Tsui C, Xu J, Robert L, Wu L, Graeber TG, West BL, Bollag G, Ribas A. Inhibition of CSF-1 receptor improves the antitumor efficacy of adoptive cell transfer immunotherapy. Cancer Res. 2014;74(1):153–61. https://doi.org/10.1158/0008-5472.CAN-13-1816.

    Article  CAS  PubMed  Google Scholar 

  65. Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S, Sylvestre V, Stanley ER. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood. 2002;99(1):111–20.

    Article  CAS  PubMed  Google Scholar 

  66. Li J, Chen K, Zhu L, Pollard JW. Conditional deletion of the colony stimulating factor-1 receptor (c-fms proto-oncogene) in mice. Genesis. 2006;44(7):328–35. https://doi.org/10.1002/dvg.20219.

    Article  CAS  PubMed  Google Scholar 

  67. De Santo C, Serafini P, Marigo I, Dolcetti L, Bolla M, Del Soldato P, Melani C, Guiducci C, Colombo MP, Iezzi M, Musiani P, Zanovello P, Bronte V. Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc Natl Acad Sci U S A. 2005;102(11):4185–90. https://doi.org/10.1073/pnas.0409783102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Priceman SJ, Sung JL, Shaposhnik Z, Burton JB, Torres-Collado AX, Moughon DL, Johnson M, Lusis AJ, Cohen DA, Iruela-Arispe ML, Wu L. Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. Blood. 2010;115(7):1461–71. https://doi.org/10.1182/blood-2009-08-237412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xu J, Escamilla J, Mok S, David J, Priceman S, West B, Bollag G, McBride W, Wu L. CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res. 2013;73(9):2782–94. https://doi.org/10.1158/0008-5472.CAN-12-3981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. He D, Li H, Yusuf N, Elmets CA, Li J, Mountz JD, Xu H. IL-17 promotes tumor development through the induction of tumor promoting microenvironments at tumor sites and myeloid-derived suppressor cells. J Immunol. 2010;184(5):2281–8. https://doi.org/10.4049/jimmunol.0902574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rodan GA, Fleisch HA. Bisphosphonates: mechanisms of action. J Clin Invest. 1996;97(12):2692–6. https://doi.org/10.1172/JCI118722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, Werb Z, Rafii S. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell. 2002;109(5):625–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Melani C, Sangaletti S, Barazzetta FM, Werb Z, Colombo MP. Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res. 2007;67(23):11438–46. https://doi.org/10.1158/0008-5472.CAN-07-1882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Porembka MR, Mitchem JB, Belt BA, Hsieh CS, Lee HM, Herndon J, Gillanders WE, Linehan DC, Goedegebuure P. Pancreatic adenocarcinoma induces bone marrow mobilization of myeloid-derived suppressor cells which promote primary tumor growth. Cancer Immunol Immunother. 2012;61(9):1373–85. https://doi.org/10.1007/s00262-011-1178-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gnant M, Mlineritsch B, Schippinger W, Luschin-Ebengreuth G, Postlberger S, Menzel C, Jakesz R, Seifert M, Hubalek M, Bjelic-Radisic V, Samonigg H, Tausch C, Eidtmann H, Steger G, Kwasny W, Dubsky P, Fridrik M, Fitzal F, Stierer M, Rucklinger E, Greil R, Investigators A-T, Marth C. Endocrine therapy plus zoledronic acid in premenopausal breast cancer. N Engl J Med. 2009;360(7):679–91. https://doi.org/10.1056/NEJMoa0806285.

    Article  CAS  PubMed  Google Scholar 

  76. Diel IJ, Solomayer EF, Costa SD, Gollan C, Goerner R, Wallwiener D, Kaufmann M, Bastert G. Reduction in new metastases in breast cancer with adjuvant clodronate treatment. N Engl J Med. 1998;339(6):357–63. https://doi.org/10.1056/NEJM199808063390601.

    Article  CAS  PubMed  Google Scholar 

  77. Schilling B, Sucker A, Griewank K, Zhao F, Weide B, Gorgens A, Giebel B, Schadendorf D, Paschen A. Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Int J Cancer. 2013;133(7):1653–63. https://doi.org/10.1002/ijc.28168.

    Article  CAS  PubMed  Google Scholar 

  78. Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H, Cho KH, Aiba S, Brocker EB, LeBoit PE, Pinkel D, Bastian BC. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353(20):2135–47. https://doi.org/10.1056/NEJMoa050092.

    Article  CAS  PubMed  Google Scholar 

  79. Ribas A, Hodi FS, Callahan M, Konto C, Wolchok J. Hepatotoxicity with combination of vemurafenib and ipilimumab. N Engl J Med. 2013;368(14):1365–6. https://doi.org/10.1056/NEJMc1302338.

    Article  CAS  PubMed  Google Scholar 

  80. Shojaei F, Wu X, Zhong C, Yu L, Liang XH, Yao J, Blanchard D, Bais C, Peale FV, van Bruggen N, Ho C, Ross J, Tan M, Carano RA, Meng YG, Ferrara N. Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature. 2007;450(7171):825–31. https://doi.org/10.1038/nature06348.

    Article  CAS  PubMed  Google Scholar 

  81. Kowanetz M, Wu X, Lee J, Tan M, Hagenbeek T, Qu X, Yu L, Ross J, Korsisaari N, Cao T, Bou-Reslan H, Kallop D, Weimer R, Ludlam MJ, Kaminker JS, Modrusan Z, van Bruggen N, Peale FV, Carano R, Meng YG, Ferrara N. Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+Ly6C+ granulocytes. Proc Natl Acad Sci U S A. 2010;107(50):21248–55. https://doi.org/10.1073/pnas.1015855107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hasnis E, Alishekevitz D, Gingis-Veltski S, Bril R, Fremder E, Voloshin T, Raviv Z, Karban A, Shaked Y. Anti-Bv8 antibody and metronomic gemcitabine improve pancreatic adenocarcinoma treatment outcome following weekly gemcitabine therapy. Neoplasia. 2014;16(6):501–10. https://doi.org/10.1016/j.neo.2014.05.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pienta KJ, Machiels JP, Schrijvers D, Alekseev B, Shkolnik M, Crabb SJ, Li S, Seetharam S, Puchalski TA, Takimoto C, Elsayed Y, Dawkins F, de Bono JS. Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer. Investig New Drugs. 2013;31(3):760–8. https://doi.org/10.1007/s10637-012-9869-8.

    Article  CAS  Google Scholar 

  84. Kirk PS, Koreckij T, Nguyen HM, Brown LG, Snyder LA, Vessella RL, Corey E. Inhibition of CCL2 signaling in combination with docetaxel treatment has profound inhibitory effects on prostate cancer growth in bone. Int J Mol Sci. 2013;14(5):10483–96. https://doi.org/10.3390/ijms140510483.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Sumida K, Wakita D, Narita Y, Masuko K, Terada S, Watanabe K, Satoh T, Kitamura H, Nishimura T. Anti-IL-6 receptor mAb eliminates myeloid-derived suppressor cells and inhibits tumor growth by enhancing T-cell responses. Eur J Immunol. 2012;42(8):2060–72. https://doi.org/10.1002/eji.201142335.

    Article  CAS  PubMed  Google Scholar 

  86. Fiorucci S, Santucci L, Cirino G, Mencarelli A, Familiari L, Soldato PD, Morelli A. IL-1 beta converting enzyme is a target for nitric oxide-releasing aspirin: new insights in the antiinflammatory mechanism of nitric oxide-releasing nonsteroidal antiinflammatory drugs. J Immunol. 2000;165(9):5245–54.

    Article  CAS  PubMed  Google Scholar 

  87. Molon B, Ugel S, Del Pozzo F, Soldani C, Zilio S, Avella D, De Palma A, Mauri P, Monegal A, Rescigno M, Savino B, Colombo P, Jonjic N, Pecanic S, Lazzarato L, Fruttero R, Gasco A, Bronte V, Viola A. Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med. 2011;208(10):1949–62. https://doi.org/10.1084/jem.20101956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W, Dolcetti L, Bronte V, Borrello I. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med. 2006;203(12):2691–702. https://doi.org/10.1084/jem.20061104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Meyer C, Sevko A, Ramacher M, Bazhin AV, Falk CS, Osen W, Borrello I, Kato M, Schadendorf D, Baniyash M, Umansky V. Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model. Proc Natl Acad Sci U S A. 2011;108(41):17111–6. https://doi.org/10.1073/pnas.1108121108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kasic T, Colombo P, Soldani C, Wang CM, Miranda E, Roncalli M, Bronte V, Viola A. Modulation of human T-cell functions by reactive nitrogen species. Eur J Immunol. 2011;41(7):1843–9. https://doi.org/10.1002/eji.201040868.

    Article  CAS  PubMed  Google Scholar 

  91. Rosenberg SA. Cancer vaccines based on the identification of genes encoding cancer regression antigens. Immunol Today. 1997;18(4):175–82.

    Article  CAS  PubMed  Google Scholar 

  92. Maier T, Holda JH, Claman HN. Murine natural suppressor cells in the newborn, in bone marrow, and after cyclophosphamide. Genetic variations and dependence on IFN-gamma. J Immunol. 1989;143(2):491–8.

    CAS  PubMed  Google Scholar 

  93. Zhang B, Zhang Y, Bowerman NA, Schietinger A, YX F, Kranz DM, Rowley DA, Schreiber H. Equilibrium between host and cancer caused by effector T cells killing tumor stroma. Cancer Res. 2008;68(5):1563–71. https://doi.org/10.1158/0008-5472.CAN-07-5324.

    Article  CAS  PubMed  Google Scholar 

  94. Varol C, Landsman L, Fogg DK, Greenshtein L, Gildor B, Margalit R, Kalchenko V, Geissmann F, Jung S. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J Exp Med. 2007;204(1):171–80. https://doi.org/10.1084/jem.20061011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nagaraj S, Youn JI, Weber H, Iclozan C, Lu L, Cotter MJ, Meyer C, Becerra CR, Fishman M, Antonia S, Sporn MB, Liby KT, Rawal B, Lee JH, Gabrilovich DI. Anti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancer. Clin Cancer Res. 2010;16(6):1812–23. https://doi.org/10.1158/1078-0432.CCR-09-3272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Thimmulappa RK, Fuchs RJ, Malhotra D, Scollick C, Traore K, Bream JH, Trush MA, Liby KT, Sporn MB, Kensler TW, Biswal S. Preclinical evaluation of targeting the Nrf2 pathway by triterpenoids (CDDO-Im and CDDO-Me) for protection from LPS-induced inflammatory response and reactive oxygen species in human peripheral blood mononuclear cells and neutrophils. Antioxid Redox Signal. 2007;9(11):1963–70. https://doi.org/10.1089/ars.2007.1745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wesolowski R, Markowitz J, Carson WE 3rd. Myeloid derived suppressor cells—a new therapeutic target in the treatment of cancer. J Immunother Cancer. 2013;1:10. https://doi.org/10.1186/2051-1426-1-10.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hong DSKR, Supko JG, Lawrence DP, Wheler JJ, Meyer CJ, Mier JW, Andreeff M, Shapiro GI, Dezube BJ. Phase I trial with a novel oral NF-κB/STAT3 inhibitor RTA 402 in patients with solid tumors and lymphoid malignancies. J Clin Oncol (Meeting Abstracts). 2008;26:3517.

    Article  Google Scholar 

  99. Rodriguez PC, Hernandez CP, Quiceno D, Dubinett SM, Zabaleta J, Ochoa JB, Gilbert J, Ochoa AC. Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med. 2005;202(7):931–9. https://doi.org/10.1084/jem.20050715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Eruslanov E, Daurkin I, Ortiz J, Vieweg J, Kusmartsev S. Pivotal advance: tumor-mediated induction of myeloid-derived suppressor cells and M2-polarized macrophages by altering intracellular PGE(2) catabolism in myeloid cells. J Leukoc Biol. 2010;88(5):839–48. https://doi.org/10.1189/jlb.1209821.

    Article  CAS  PubMed  Google Scholar 

  101. Obermajer N, Kalinski P. Generation of myeloid-derived suppressor cells using prostaglandin E2. Transplant Res. 2012;1(1):15. https://doi.org/10.1186/2047-1440-1-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Raccosta L, Fontana R, Maggioni D, Lanterna C, Villablanca EJ, Paniccia A, Musumeci A, Chiricozzi E, Trincavelli ML, Daniele S, Martini C, Gustafsson JA, Doglioni C, Feo SG, Leiva A, Ciampa MG, Mauri L, Sensi C, Prinetti A, Eberini I, Mora JR, Bordignon C, Steffensen KR, Sonnino S, Sozzani S, Traversari C, Russo V. The oxysterol-CXCR2 axis plays a key role in the recruitment of tumor-promoting neutrophils. J Exp Med. 2013;210(9):1711–28. https://doi.org/10.1084/jem.20130440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ye J, Ma C, Hsueh EC, Eickhoff CS, Zhang Y, Varvares MA, Hoft DF, Peng G. Tumor-derived gammadelta regulatory T cells suppress innate and adaptive immunity through the induction of immunosenescence. J Immunol. 2013;190(5):2403–14. https://doi.org/10.4049/jimmunol.1202369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fujita M, Kohanbash G, Fellows-Mayle W, Hamilton RL, Komohara Y, Decker SA, Ohlfest JR, Okada H. COX-2 blockade suppresses gliomagenesis by inhibiting myeloid-derived suppressor cells. Cancer Res. 2011;71(7):2664–74. https://doi.org/10.1158/0008-5472.CAN-10-3055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Serafini P, Carbley R, Noonan KA, Tan G, Bronte V, Borrello I. High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res. 2004;64(17):6337–43. https://doi.org/10.1158/0008-5472.CAN-04-0757.

    Article  CAS  PubMed  Google Scholar 

  106. Yu LB, Dong XS, Sun WZ, Zhao DL, Yang Y. Effect of a nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester on invasion of human colorectal cancer cell line SL-174T. World J Gastroenterol. 2005;11(40):6385–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rigamonti N, Capuano G, Ricupito A, Jachetti E, Grioni M, Generoso L, Freschi M, Bellone M. Modulators of arginine metabolism do not impact on peripheral T-cell tolerance and disease progression in a model of spontaneous prostate cancer. Clin Cancer Res. 2011;17(5):1012–23. https://doi.org/10.1158/1078-0432.CCR-10-2547.

    Article  CAS  PubMed  Google Scholar 

  108. Capuano G, Rigamonti N, Grioni M, Freschi M, Bellone M. Modulators of arginine metabolism support cancer immunosurveillance. BMC Immunol. 2009;10:1. https://doi.org/10.1186/1471-2172-10-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Kuwata T, Wang IM, Tamura T, Ponnamperuma RM, Levine R, Holmes KL, Morse HC, De Luca LM, Ozato K. Vitamin A deficiency in mice causes a systemic expansion of myeloid cells. Blood. 2000;95(11):3349–56.

    CAS  PubMed  Google Scholar 

  110. Young MR, Wright MA, Vellody K, Lathers DM. Skewed differentiation of bone marrow CD34+ cells of tumor bearers from dendritic toward monocytic cells, and the redirection of differentiation toward dendritic cells by 1alpha,25-dihydroxyvitamin D3. Int J Immunopharmacol. 1999;21(10):675–88.

    Article  CAS  PubMed  Google Scholar 

  111. Kulbersh JS, Day TA, Gillespie MB, Young MR. 1alpha,25-Dihydroxyvitamin D(3) to skew intratumoral levels of immune inhibitory CD34(+) progenitor cells into dendritic cells. Otolaryngol Head Neck Surg. 2009;140(2):235–40. https://doi.org/10.1016/j.otohns.2008.11.011.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Lathers DM, Clark JI, Achille NJ, Young MR. Phase 1B study to improve immune responses in head and neck cancer patients using escalating doses of 25-hydroxyvitamin D3. Cancer Immunol Immunother. 2004;53(5):422–30. https://doi.org/10.1007/s00262-003-0459-7.

    Article  CAS  PubMed  Google Scholar 

  113. Walsh JE, Clark AM, Day TA, Gillespie MB, Young MR. Use of alpha,25-dihydroxyvitamin D3 treatment to stimulate immune infiltration into head and neck squamous cell carcinoma. Hum Immunol. 2010;71(7):659–65. https://doi.org/10.1016/j.humimm.2010.04.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhang H, Maric I, DiPrima MJ, Khan J, Orentas RJ, Kaplan RN, Mackall CL. Fibrocytes represent a novel MDSC subset circulating in patients with metastatic cancer. Blood. 2013;122(7):1105–13. https://doi.org/10.1182/blood-2012-08-449413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bastien J, Rochette-Egly C. Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene. 2004;328:1–16. https://doi.org/10.1016/j.gene.2003.12.005.

    Article  CAS  PubMed  Google Scholar 

  116. Hengesbach LM, Hoag KA. Physiological concentrations of retinoic acid favor myeloid dendritic cell development over granulocyte development in cultures of bone marrow cells from mice. J Nutr. 2004;134(10):2653–9.

    CAS  PubMed  Google Scholar 

  117. Kusmartsev S, Cheng F, Yu B, Nefedova Y, Sotomayor E, Lush R, Gabrilovich D. All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Res. 2003;63(15):4441–9.

    CAS  PubMed  Google Scholar 

  118. Kusmartsev S, Su Z, Heiser A, Dannull J, Eruslanov E, Kubler H, Yancey D, Dahm P, Vieweg J. Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma. Clin Cancer Res. 2008;14(24):8270–8. https://doi.org/10.1158/1078-0432.CCR-08-0165.

    Article  CAS  PubMed  Google Scholar 

  119. Adamson PC, Matthay KK, O'Brien M, Reaman GH, Sato JK, Balis FM. A phase 2 trial of all-trans-retinoic acid in combination with interferon-alpha2a in children with recurrent neuroblastoma or Wilms tumor: a Pediatric Oncology Branch, NCI and Children’s Oncology Group Study. Pediatr Blood Cancer. 2007;49(5):661–5. https://doi.org/10.1002/pbc.21011.

    Article  PubMed  Google Scholar 

  120. Pillai RN, Aisner J, Dahlberg SE, Rogers JS, DiPaola RS, Aisner S, Ramalingam SS, Schiller JH. Interferon alpha plus 13-cis-retinoic acid modulation of BCL-2 plus paclitaxel for recurrent small-cell lung cancer (SCLC): an eastern cooperative oncology group study (E6501). Cancer Chemother Pharmacol. 2014;74(1):177–83. https://doi.org/10.1007/s00280-014-2427-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S. Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol. 2007;179(2):977–83.

    Article  CAS  PubMed  Google Scholar 

  122. Steding CE, ST W, Zhang Y, Jeng MH, Elzey BD, Kao C. The role of interleukin-12 on modulating myeloid-derived suppressor cells, increasing overall survival and reducing metastasis. Immunology. 2011;133(2):221–38. https://doi.org/10.1111/j.1365-2567.2011.03429.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Chinnasamy D, Yu Z, Kerkar SP, Zhang L, Morgan RA, Restifo NP, Rosenberg SA. Local delivery of interleukin-12 using T cells targeting VEGF receptor-2 eradicates multiple vascularized tumors in mice. Clin Cancer Res. 2012;18(6):1672–83. https://doi.org/10.1158/1078-0432.CCR-11-3050.

    Article  CAS  PubMed  Google Scholar 

  124. Kerkar SP, Goldszmid RS, Muranski P, Chinnasamy D, Yu Z, Reger RN, Leonardi AJ, Morgan RA, Wang E, Marincola FM, Trinchieri G, Rosenberg SA, Restifo NP. IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors. J Clin Invest. 2011;121(12):4746–57. https://doi.org/10.1172/JCI58814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ansell SM, Witzig TE, Kurtin PJ, Sloan JA, Jelinek DF, Howell KG, Markovic SN, Habermann TM, Klee GG, Atherton PJ, Erlichman C. Phase 1 study of interleukin-12 in combination with rituximab in patients with B-cell non-Hodgkin lymphoma. Blood. 2002;99(1):67–74.

    Article  CAS  PubMed  Google Scholar 

  126. Repka T, Chiorean EG, Gay J, Herwig KE, Kohl VK, Yee D, Miller JS. Trastuzumab and interleukin-2 in HER2-positive metastatic breast cancer: a pilot study. Clin Cancer Res. 2003;9(7):2440–6.

    CAS  PubMed  Google Scholar 

  127. Alvarez RD, Sill MW, Davidson SA, Muller CY, Bender DP, DeBernardo RL, Behbakht K, Huh WK. A phase II trial of intraperitoneal EGEN-001, an IL-12 plasmid formulated with PEG-PEI-cholesterol lipopolymer in the treatment of persistent or recurrent epithelial ovarian, fallopian tube or primary peritoneal cancer: a gynecologic oncology group study. Gynecol Oncol. 2014;133(3):433–8. https://doi.org/10.1016/j.ygyno.2014.03.571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Vollmer J, Weeratna RD, Jurk M, Samulowitz U, McCluskie MJ, Payette P, Davis HL, Schetter C, Krieg AM. Oligodeoxynucleotides lacking CpG dinucleotides mediate toll-like receptor 9 dependent T helper type 2 biased immune stimulation. Immunology. 2004;113(2):212–23. https://doi.org/10.1111/j.1365-2567.2004.01962.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zoglmeier C, Bauer H, Norenberg D, Wedekind G, Bittner P, Sandholzer N, Rapp M, Anz D, Endres S, Bourquin C. CpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing mice. Clin Cancer Res. 2011;17(7):1765–75. https://doi.org/10.1158/1078-0432.CCR-10-2672.

    Article  CAS  PubMed  Google Scholar 

  130. Jahrsdorfer B, Weiner GJ. CpG oligodeoxynucleotides as immunotherapy in cancer. Update Cancer Ther. 2008;3(1):27–32. https://doi.org/10.1016/j.uct.2007.11.003.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Tsavaris N, Kosmas C, Vadiaka M, Kanelopoulos P, Boulamatsis D. Immune changes in patients with advanced breast cancer undergoing chemotherapy with taxanes. Br J Cancer. 2002;87(1):21–7. https://doi.org/10.1038/sj.bjc.6600347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Young MR, Lathers DM. Combination docetaxel plus vitamin D(3) as an immune therapy in animals bearing squamous cell carcinomas. Otolaryngol Head Neck Surg. 2005;133(4):611–8. https://doi.org/10.1016/j.otohns.2005.05.658.

    Article  PubMed  Google Scholar 

  133. Kodumudi KN, Woan K, Gilvary DL, Sahakian E, Wei S, Djeu JY. A novel chemoimmunomodulating property of docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers. Clin Cancer Res. 2010;16(18):4583–94. https://doi.org/10.1158/1078-0432.CCR-10-0733.

    Article  CAS  PubMed  Google Scholar 

  134. Michels T, Shurin GV, Naiditch H, Sevko A, Umansky V, Shurin MR. Paclitaxel promotes differentiation of myeloid-derived suppressor cells into dendritic cells in vitro in a TLR4-independent manner. J Immunotoxicol. 2012;9(3):292–300. https://doi.org/10.3109/1547691X.2011.642418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kodumudi KN, Weber A, Sarnaik AA, Pilon-Thomas S. Blockade of myeloid-derived suppressor cells after induction of lymphopenia improves adoptive T cell therapy in a murine model of melanoma. J Immunol. 2012;189(11):5147–54. https://doi.org/10.4049/jimmunol.1200274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Montero AJ, Diaz-Montero CM, Deutsch YE, Hurley J, Koniaris LG, Rumboldt T, Yasir S, Jorda M, Garret-Mayer E, Avisar E, Slingerland J, Silva O, Welsh C, Schuhwerk K, Seo P, Pegram MD, Gluck S. Phase 2 study of neoadjuvant treatment with NOV-002 in combination with doxorubicin and cyclophosphamide followed by docetaxel in patients with HER-2 negative clinical stage II-IIIc breast cancer. Breast Cancer Res Treat. 2012;132(1):215–23. https://doi.org/10.1007/s10549-011-1889-0.

    Article  CAS  PubMed  Google Scholar 

  137. Tian J, Ma J, Ma K, Guo H, Baidoo SE, Zhang Y, Yan J, Lu L, Xu H, Wang S. Beta-glucan enhances antitumor immune responses by regulating differentiation and function of monocytic myeloid-derived suppressor cells. Eur J Immunol. 2013;43(5):1220–30. https://doi.org/10.1002/eji.201242841.

    Article  CAS  PubMed  Google Scholar 

  138. Chan GC, Chan WK, Sze DM. The effects of beta-glucan on human immune and cancer cells. J Hematol Oncol. 2009;2:25. https://doi.org/10.1186/1756-8722-2-25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Inoue M, Tanaka Y, Sugita N, Yamasaki M, Yamanaka T, Minagawa J, Nakamuro K, Tani T, Okudaira Y, Karita T, et al. Improvement of long-term prognosis in patients with ovarian cancers by adjuvant sizofiran immunotherapy: a prospective randomized controlled study. Biotherapy. 1993;6(1):13–8.

    Article  CAS  PubMed  Google Scholar 

  140. Hayakawa K, Mitsuhashi N, Saito Y, Nakayama Y, Furuta M, Nakamoto S, Kawashima M, Niibe H. Effect of Krestin as adjuvant treatment following radical radiotherapy in non-small cell lung cancer patients. Cancer Detect Prev. 1997;21(1):71–7.

    CAS  PubMed  Google Scholar 

  141. Nakano H, Namatame K, Nemoto H, Motohashi H, Nishiyama K, Kumada K. A multi-institutional prospective study of lentinan in advanced gastric cancer patients with unresectable and recurrent diseases: effect on prolongation of survival and improvement of quality of life. Kanagawa Lentinan Research Group. Hepato-Gastroenterology. 1999;46(28):2662–8.

    CAS  PubMed  Google Scholar 

  142. Gao Y, Tang W, Dai X, Gao H, Chen G, Ye J, Chan E, Koh HL, Li X, Zhou S. Effects of water-soluble Ganoderma lucidum polysaccharides on the immune functions of patients with advanced lung cancer. J Med Food. 2005;8(2):159–68. https://doi.org/10.1089/jmf.2005.8.159.

    Article  CAS  PubMed  Google Scholar 

  143. Chen X, ZP H, Yang XX, Huang M, Gao Y, Tang W, Chan SY, Dai X, Ye J, Ho PC, Duan W, Yang HY, Zhu YZ, Zhou SF. Monitoring of immune responses to a herbal immuno-modulator in patients with advanced colorectal cancer. Int Immunopharmacol. 2006;6(3):499–508. https://doi.org/10.1016/j.intimp.2005.08.026.

    Article  CAS  PubMed  Google Scholar 

  144. Yang C, Robbins PD. The roles of tumor-derived exosomes in cancer pathogenesis. Clin Dev Immunol. 2011;2011:842849. https://doi.org/10.1155/2011/842849.

    PubMed  PubMed Central  Google Scholar 

  145. Xiang X, Poliakov A, Liu C, Liu Y, Deng ZB, Wang J, Cheng Z, Shah SV, Wang GJ, Zhang L, Grizzle WE, Mobley J, Zhang HG. Induction of myeloid-derived suppressor cells by tumor exosomes. Int J Cancer. 2009;124(11):2621–33. https://doi.org/10.1002/ijc.24249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin JP, Boireau W, Rouleau A, Simon B, Lanneau D, De Thonel A, Multhoff G, Hamman A, Martin F, Chauffert B, Solary E, Zitvogel L, Garrido C, Ryffel B, Borg C, Apetoh L, Rebe C, Ghiringhelli F. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest. 2010;120(2):457–71. https://doi.org/10.1172/JCI40483.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Estevez F, Carr A, Solorzano L, Valiente O, Mesa C, Barroso O, Sierra GV, Fernandez LE. Enhancement of the immune response to poorly immunogenic gangliosides after incorporation into very small size proteoliposomes (VSSP). Vaccine. 1999;18(1–2):190–7.

    Article  CAS  PubMed  Google Scholar 

  148. Mesa C, de Leon J, Fernandez LE. Very small size proteoliposomes derived from Neisseria meningitidis: an effective adjuvant for generation of CTL responses to peptide and protein antigens. Vaccine. 2006;24(14):2692–9. https://doi.org/10.1016/j.vaccine.2005.08.111.

    Article  CAS  PubMed  Google Scholar 

  149. Mesa C, de Leon J, Rigley K, Fernandez LE. Very small size proteoliposomes derived from Neisseria meningitidis: an effective adjuvant for Th1 induction and dendritic cell activation. Vaccine. 2004;22(23–24):3045–52. https://doi.org/10.1016/j.vaccine.2004.02.010.

    Article  CAS  PubMed  Google Scholar 

  150. Fernandez A, Mesa C, Marigo I, Dolcetti L, Clavell M, Oliver L, Fernandez LE, Bronte V. Inhibition of tumor-induced myeloid-derived suppressor cell function by a nanoparticulated adjuvant. J Immunol. 2011;186(1):264–74. https://doi.org/10.4049/jimmunol.1001465.

    Article  CAS  PubMed  Google Scholar 

  151. Fernandez A, Oliver L, Alvarez R, Hernandez A, Raymond J, Fernandez LE, Mesa C. Very small size proteoliposomes abrogate cross-presentation of tumor antigens by myeloid-derived suppressor cells and induce their differentiation to dendritic cells. J Immunother Cancer. 2014;2:5. https://doi.org/10.1186/2051-1426-2-5.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Ramirez BS, Pestana ES, Hidalgo GG, Garcia TH, Rodriguez RP, Ullrich A, Fernandez LE. Active antimetastatic immunotherapy in Lewis lung carcinoma with self EGFR extracellular domain protein in VSSP adjuvant. Int J Cancer. 2006;119(9):2190–9. https://doi.org/10.1002/ijc.22085.

    Article  PubMed  CAS  Google Scholar 

  153. Bequet-Romero M, Morera Y, Ayala-Avila M, Ancizar J, Soria Y, Blanco A, Suarez-Alba J, Gavilondo JV. CIGB-247: a VEGF-based therapeutic vaccine that reduces experimental and spontaneous lung metastasis of C57Bl/6 and BALB/c mouse tumors. Vaccine. 2012;30(10):1790–9. https://doi.org/10.1016/j.vaccine.2012.01.006.

    Article  CAS  PubMed  Google Scholar 

  154. Solares AM, Baladron I, Ramos T, Valenzuela C, Borbon Z, Fanjull S, Gonzalez L, Castillo D, Esmir J, Granadillo M, Batte A, Cintado A, Ale M, Fernandez de Cossio ME, Ferrer A, Torrens I, Lopez-Saura P. Safety and immunogenicity of a human papillomavirus peptide vaccine (CIGB-228) in women with high-grade cervical intraepithelial Neoplasia: first-in-human, proof-of-concept trial. ISRN Obstet Gynecol. 2011;2011:292951. https://doi.org/10.5402/2011/292951.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Aguilar FF, Barranco JJ, Fuentes EB, Aguilera LC, Saez YL, Santana MD, Vazquez EP, Baker RB, Acosta OR, Perez HG, Nieto GG. Very small size proteoliposomes (VSSP) and Montanide combination enhance the humoral immuno response in a GnRH based vaccine directed to prostate cancer. Vaccine. 2012;30(46):6595–9. https://doi.org/10.1016/j.vaccine.2012.08.020.

    Article  CAS  PubMed  Google Scholar 

  156. Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res. 2005;11(18):6713–21. https://doi.org/10.1158/1078-0432.CCR-05-0883.

    Article  CAS  PubMed  Google Scholar 

  157. Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M, Chevriaux A, Martin F, Apetoh L, Rebe C, Ghiringhelli F. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 2010;70(8):3052–61. https://doi.org/10.1158/0008-5472.CAN-09-3690.

    Article  CAS  PubMed  Google Scholar 

  158. Mundy-Bosse BL, Lesinski GB, Jaime-Ramirez AC, Benninger K, Khan M, Kuppusamy P, Guenterberg K, Kondadasula SV, Chaudhury AR, La Perle KM, Kreiner M, Young G, Guttridge DC, Carson WE 3rd. Myeloid-derived suppressor cell inhibition of the IFN response in tumor-bearing mice. Cancer Res. 2011;71(15):5101–10. https://doi.org/10.1158/0008-5472.CAN-10-2670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Le HK, Graham L, Cha E, Morales JK, Manjili MH, Bear HD. Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T cells from tumor-bearing mice. Int Immunopharmacol. 2009;9(7–8):900–9. https://doi.org/10.1016/j.intimp.2009.03.015.

    Article  CAS  PubMed  Google Scholar 

  160. Tongu M, Harashima N, Monma H, Inao T, Yamada T, Kawauchi H, Harada M. Metronomic chemotherapy with low-dose cyclophosphamide plus gemcitabine can induce anti-tumor T cell immunity in vivo. Cancer Immunol Immunother. 2013;62(2):383–91. https://doi.org/10.1007/s00262-012-1343-0.

    Article  CAS  PubMed  Google Scholar 

  161. Bunt SK, Mohr AM, Bailey JM, Grandgenett PM, Hollingsworth MA. Rosiglitazone and gemcitabine in combination reduces immune suppression and modulates T cell populations in pancreatic cancer. Cancer Immunol Immunother. 2013;62(2):225–36. https://doi.org/10.1007/s00262-012-1324-3.

    Article  CAS  PubMed  Google Scholar 

  162. Fridlender ZG, Sun J, Singhal S, Kapoor V, Cheng G, Suzuki E, Albelda SM. Chemotherapy delivered after viral immunogene therapy augments antitumor efficacy via multiple immune-mediated mechanisms. Mol Ther. 2010;18(11):1947–59. https://doi.org/10.1038/mt.2010.159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Tseng CW, Hung CF, Alvarez RD, Trimble C, Huh WK, Kim D, Chuang CM, Lin CT, Tsai YC, He L, Monie A, TC W. Pretreatment with cisplatin enhances E7-specific CD8+ T-cell-mediated antitumor immunity induced by DNA vaccination. Clin Cancer Res. 2008;14(10):3185–92. https://doi.org/10.1158/1078-0432.CCR-08-0037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bruchard M, Mignot G, Derangere V, Chalmin F, Chevriaux A, Vegran F, Boireau W, Simon B, Ryffel B, Connat JL, Kanellopoulos J, Martin F, Rebe C, Apetoh L, Ghiringhelli F. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat Med. 2013;19(1):57–64. https://doi.org/10.1038/nm.2999.

    Article  CAS  PubMed  Google Scholar 

  165. Rao A, Taylor JL, Chi-Sabins N, Kawabe M, Gooding WE, Storkus WJ. Combination therapy with HSP90 inhibitor 17-DMAG reconditions the tumor microenvironment to improve recruitment of therapeutic T cells. Cancer Res. 2012;72(13):3196–206. https://doi.org/10.1158/0008-5472.CAN-12-0538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ostrand-Rosenberg S, Sinha P, Chornoguz O, Ecker C. Regulating the suppressors: apoptosis and inflammation govern the survival of tumor-induced myeloid-derived suppressor cells (MDSC). Cancer Immunol Immunother. 2012;61(8):1319–25. https://doi.org/10.1007/s00262-012-1269-6.

    Article  CAS  PubMed  Google Scholar 

  167. Damle S, Martin R, Saleem S, Folgosa L, Zellner H, Nguyen K, Ryan J, Bear H, Irani AM, Conrad D. Mast cells and mast cell-derived IL-13 play an important role in MDSC activation, migration, and accumulation. (TUM4P. 925). J Immunol. 2014;192(1 Supplement):138.126.

    Google Scholar 

  168. Highfill SL, Rodriguez PC, Zhou Q, Goetz CA, Koehn BH, Veenstra R, Taylor PA, Panoskaltsis-Mortari A, Serody JS, Munn DH, Tolar J, Ochoa AC, Blazar BR. Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1-dependent mechanism that is up-regulated by interleukin-13. Blood. 2010;116(25):5738–47. https://doi.org/10.1182/blood-2010-06-287839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Nakashima H, Terabe M, Berzofsky JA, Husain SR, Puri RK. A novel combination immunotherapy for cancer by IL-13Ralpha2-targeted DNA vaccine and immunotoxin in murine tumor models. J Immunol. 2011;187(10):4935–46. https://doi.org/10.4049/jimmunol.1102095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sengupta S, Thaci B, Crawford AC, Sampath P. Interleukin-13 receptor alpha 2-targeted glioblastoma immunotherapy. Biomed Res Int. 2014;2014:8. https://doi.org/10.1155/2014/952128.

    Article  CAS  Google Scholar 

  171. Zheng Y, Xu M, Li X, Jia J, Fan K, Lai G. Cimetidine suppresses lung tumor growth in mice through proapoptosis of myeloid-derived suppressor cells. Mol Immunol. 2013;54(1):74–83. https://doi.org/10.1016/j.molimm.2012.10.035.

    Article  CAS  PubMed  Google Scholar 

  172. Yang XD, Ai W, Asfaha S, Bhagat G, Friedman RA, Jin G, Park H, Shykind B, Diacovo TG, Falus A, Wang TC. Histamine deficiency promotes inflammation-associated carcinogenesis through reduced myeloid maturation and accumulation of CD11b+Ly6G+ immature myeloid cells. Nat Med. 2011;17(1):87–95. https://doi.org/10.1038/nm.2278.

    Article  CAS  PubMed  Google Scholar 

  173. Perz JB, Ho AD. Histamine dihydrochloride for the treatment of acute myeloid leukemia, malignant melanoma and renal cell carcinoma. Future Oncol. 2008;4(2):169–77. https://doi.org/10.2217/14796694.4.2.169.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waseem Anani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anani, W., Shurin, M.R. (2017). Targeting Myeloid-Derived Suppressor Cells in Cancer. In: Kalinski, P. (eds) Tumor Immune Microenvironment in Cancer Progression and Cancer Therapy. Advances in Experimental Medicine and Biology, vol 1036. Springer, Cham. https://doi.org/10.1007/978-3-319-67577-0_8

Download citation

Publish with us

Policies and ethics