Skip to main content

Synthesis and Characterisation of Magnetic Nanoparticles in Medicine

  • Chapter
  • First Online:
Book cover Micro and Nanomanufacturing Volume II

Abstract

The idea of using magnetic nanomaterials in biomedical applications has been studied since last decades. Magnetic nanomaterials have been found as a promising candidate in biological applications. This chapter presented the diverse approach to engineer the nanoparticles for targeted applications. Superparamagnetic iron oxide nanoparticle (SPION) cores of 10–25 nm were synthesised using co-precipitation method iron (II) and iron (III) salts in alkaline medium. The superparamagnetic behaviour is an ideal solid support for the hyperthermia ablation and magnetic field-triggered stimuli for drug release. These cores were further coated with mesoporous silica rendering them versatile materials, which can enhance the stability, drug-loading capacity and its release in controllable manner. Moreover, their promising applications as magnetic field-triggered hyperthermia ablation and magnetic field-triggered controlled-release drug delivery combining both thermos-chemotherapy system.

These materials were characterised using a variety of techniques such as Zetasizer, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDAX), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) analysis, transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM) and magnetic field-induced hyperthermia. The diameter of spherical superparamagnetic iron oxide nanoparticles was measured to be from 10 to 255 nm. Crystalline magnetite (Fe3O4) structures were confirmed by powder XRD. These magnetite nanocrystals were further modified with a biocompatible silica shell. Brunauer-Emmett-Teller (BET) analysis revealed a mesoporous shell structure. VSM of core-shell composite materials depicted superparamagnetic nature; hence, these materials have the ability to heat over the exposure to an applied external magnetic field for hyperthermia ablation.

Anticancer drug (doxorubicin, DOX) loading and release profile of bare spherical and silica-coated spheres were studied for potential therapeutic application. Exposure to AC magnetic field (200 G, 406 kHz), the SPION materials generated hyperthermia in a time-dependent manner reaching 50 °C in 3 min. Magnetic field-triggered drug release was seen only in spherical core-shell nanocomposites with 6X higher compared at 37 °C without exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bruce IJ, Taylor J, Todd M, Davies MJ, Borioni E, Sangregorio C, Sen T (2004) Synthesis, characterisation and application of silica-magnetite nanocomposites. J Magn Magn Mater 284:145–160

    Article  Google Scholar 

  2. Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63(1–2):24–46

    Article  Google Scholar 

  3. Sen T, Bruce IJ (2009) Mesoporous silica–magnetite Nanocomposites: fabrication, characterisation and applications in biosciences. Microporous Mesoporous Mater 120(3):246–251

    Article  Google Scholar 

  4. Sen T, Sheppard SJ, Mercer T, Eizadi-sharifabad M, Mahmoudi M, Elhissi A (2012) Simple one-pot fabrication of ultra-stable core-shell superparamagnetic nanoparticles for potential application in drug delivery. RSC Adv 2(12):5221

    Article  Google Scholar 

  5. Kirschvink JL, Kobayashi-Kirschvink A, Diaz-Ricci JC, Kirschvink SJ (1992) Magnetite in human tissues: a mechanism for the biological effects of weak ELF magnetic fields. Bioelectromagnetics 13(S1):101–113

    Article  Google Scholar 

  6. Hergt R, Andra W, d’Ambly CG, Hilger I, Kaiser WA, Richter U, Schmidt H-G (1998) Physical limits of hyperthermia using magnetite fine particles. IEEE Trans Magn 34(5):3745–3754

    Article  Google Scholar 

  7. Santhosh PB, Ulrih NP (2013) Multifunctional superparamagnetic iron oxide nanoparticles: promising tools in cancer theranostics. Cancer Lett 336(1):8–17

    Article  Google Scholar 

  8. Maity D, Kale SN, Kaul-Ghanekar R, Xue J-M, Ding J (2009) Studies of magnetite nanoparticles synthesized by thermal decomposition of iron (III) acetylacetonate in tri (ethylene glycol). J Magn Magn Mater 321(19):3093–3098

    Article  Google Scholar 

  9. Amara D, Felner I, Nowik I, Margel S (2009) Synthesis and characterization of Fe and Fe 3 O 4 nanoparticles by thermal decomposition of triiron dodecacarbonyl. Colloids Surf A Physicochem Eng Asp 339(1):106–110

    Article  Google Scholar 

  10. Laurent S, Henoumont C, Stanicki D, Boutry S, Lipani E, Belaid S, Muller RN, Vander Elst L (2017) Superparamagnetic iron oxide nanoparticles. In: MRI contrast agents. Springer, Singapore, pp 55–109

    Chapter  Google Scholar 

  11. Cai H, An X, Cui J, Li J, Wen S, Li K, Shen M, Zheng L, Zhang G, Shi X (2013) Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications. ACS Appl Mater Interfaces 5(5):1722–1731

    Article  Google Scholar 

  12. Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M, Gazeau F, Manna L, Pellegrino T (2012) Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6(4):3080–3091

    Article  Google Scholar 

  13. Nordmeyer D, Stumpf P, Gröger D, Hofmann A, Enders S, Riese SB, Dernedde J, Taupitz M, Rauch U, Haag R (2014) Iron oxide nanoparticles stabilized with dendritic polyglycerols as selective MRI contrast agents. Nanoscale 6(16):9646–9654

    Article  Google Scholar 

  14. Rajabi F, Kakeshpour T, Saidi MR (2013) Supported iron oxide nanoparticles: recoverable and efficient catalyst for oxidative SS coupling of Thiols to disulfides. Catal Commun 40:13–17

    Article  Google Scholar 

  15. Sakulkhu U, Mahmoudi M, Maurizi L, Salaklang J, Hofmann H (2014) Protein corona composition of superparamagnetic iron oxide nanoparticles with various physico-chemical properties and coatings. Sci Rep 4:5020

    Article  Google Scholar 

  16. Yan X, Zhu P, Li J (2010) Self-assembly and application of diphenylalanine-based nanostructures. Chem Soc Rev 39(6):1877

    Article  Google Scholar 

  17. Sharifabad ME, Hodgson B, Jellite M, Mercer T, Sen T (2014) Enzyme immobilised novel core-shell superparamagnetic nanocomposites for enantioselective formation of 4-(R)-hydroxycyclopent-2-en-1-(S)-acetate. Chem Commun 50(76):11185–11187

    Article  Google Scholar 

  18. Sen T, Sebastianelli A, Bruce IJ (2006) Mesoporous silica−magnetite nanocomposite: fabrication and applications in magnetic bioseparations. J Am Chem Soc 128(22):7130–7131

    Article  Google Scholar 

  19. Holzwarth U, Gibson N (2011) The Scherrer equation versus the’Debye-Scherrer equation. Nat Nanotechnol 6(9):534

    Article  Google Scholar 

  20. Monshi A, Foroughi MR, Monshi MR (2012) Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J Nano Sci Eng 2(03):154

    Article  Google Scholar 

  21. Burton AW, Ong K, Rea T, Chan IY (2009) On the estimation of average crystallite size of zeolites from the Scherrer equation: a critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous Mesoporous Mater 117(1):75–90

    Article  Google Scholar 

  22. El Mendili Y, Bardeau J-F, Randrianantoandro N, Greneche J-M, Grasset F (2016) Structural behavior of laser-irradiated γ-Fe2O3 nanocrystals dispersed in porous silica matrix : γ-Fe2O3 to α-Fe2O3 phase transition and formation of ε-Fe2O3. Sci Technol Adv Mater 17(1):597–609

    Article  Google Scholar 

  23. Simeonidis K, Martinez-Boubeta C, Balcells L, Monty C, Stavropoulos G, Mitrakas M, Matsakidou A, Vourlias G, Angelakeris M (2013) Fe-based nanoparticles as tunable magnetic particle hyperthermia agents. J Appl Phys 114(10):103904

    Article  Google Scholar 

  24. Jiles D (2015) Introduction to magnetism and magnetic materials. CRC Press

    Google Scholar 

  25. Harris LA (2002) Polymer stabilized magnetite nanoparticles and poly (propylene oxide) modified styrene-dimethacrylate networks.

    Google Scholar 

  26. Brown WF Jr (1963) Thermal fluctuations of a single-domain particle. Phys Rev 130(5):1677

    Article  Google Scholar 

  27. Graczyk H, Bryan LC, Lewinski N, Suarez G, Coullerez G, Bowen P, Riediker M (2015) Physicochemical characterization of nebulized superparamagnetic iron oxide nanoparticles (SPIONs). J Aerosol Med Pulm Drug Deliv 28(1):43–51

    Article  Google Scholar 

  28. Ling D, Lee N, Hyeon T (2015) Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc Chem Res 48(5):1276–1285

    Article  Google Scholar 

  29. Karimzadeh I, Aghazadeh M, Ganjali MR, Norouzi P, Shirvani-Arani S, Doroudi T, Kolivand PH, Marashi SA, Gharailou D (2016) A novel method for preparation of bare and poly (vinylpyrrolidone) coated superparamagnetic iron oxide nanoparticles for biomedical applications. Mater Lett 179:5–8

    Article  Google Scholar 

  30. Kandasamy G, Surendran S, Chakrabarty A, Kale SN, Maity D (2016) Facile synthesis of novel hydrophilic and carboxyl-amine functionalized superparamagnetic iron oxide nanoparticles for biomedical applications. RSC Adv 6(102):99948–99959

    Article  Google Scholar 

  31. Feng B, Hong RY, Wang L, Guo L, Li HZ, Ding J, Zheng Y, Wei DG (2008) Synthesis of Fe 3 O 4/APTES/PEG diacid functionalized magnetic nanoparticles for MR imaging. Colloids Surf A Physicochem Eng Asp 328(1):52–59

    Article  Google Scholar 

  32. Banaei A, Vojoudi H, Karimi S, Bahar S, Pourbasheer E (2015) Synthesis and characterization of new modified silica coated magnetite nanoparticles with bisaldehyde as selective adsorbents of Ag(i) from aqueous samples. RSC Adv 5(101):83304–83313

    Article  Google Scholar 

  33. Greene D, Serrano-Garcia R, Govan J, Gun’ko YK (2014) Synthesis characterization and photocatalytic studies of cobalt ferrite-silica-titania nanocomposites. Nanomaterials 4(2):331–343

    Article  Google Scholar 

  34. Qu L, Tie S (2009) Mesoporous silica-coated superparamagnetic magnetite functionalized with CuO and its application as a desulfurizer. Microporous Mesoporous Mater 117(1):402–405

    Article  Google Scholar 

  35. Chatterjee J, Haik Y, Chen C-J (2003) Size dependent magnetic properties of iron oxide nanoparticles. J Magn Magn Mater 257(1):113–118

    Article  Google Scholar 

  36. Maaz K, Duan JL, Karim S, Chen YH, Zhai PF, Xu LJ, Yao HJ, Liu J (2016) Fabrication and size dependent magnetic studies of Ni X Mn 1− X Fe 2 O 4 (X= 0.2) cubic nanoplates. J Alloys Compd 684:656–662

    Article  Google Scholar 

  37. Knežević NŽ, Lin VS-Y (2013) A magnetic mesoporous silica nanoparticle-based drug delivery system for photosensitive cooperative treatment of cancer with a mesopore-capping agent and mesopore-loaded drug. Nanoscale 5(4):1544–1551

    Article  Google Scholar 

  38. Wang YD, Zhang S, Ma CL, Li HD (2007) Synthesis and room temperature photoluminescence of ZnO/CTAB ordered layered nanocomposite with flake-like architecture. JOL 126(2):661–664

    Google Scholar 

  39. Bordbar AK, Rastegari AA, Amiri R, Ranjbakhsh E, Abbasi M, Khosropour AR (2014) Characterization of modified magnetite nanoparticles for albumin immobilization. Biotechnol Res Int 2014:705068

    Article  Google Scholar 

  40. Nikam DS, Jadhav SV, Khot VM, Phadatare MR, Pawar SH (2014) Study of AC magnetic heating characteristics of co 0.5 Zn 0.5 Fe 2 O 4 nanoparticles for magnetic hyperthermia therapy. J Magn Magn Mater 349:208–213

    Article  Google Scholar 

  41. Majeed J, Pradhan L, Ningthoujam RS, Vatsa RK, Bahadur D, Tyagi AK (2014) Enhanced specific absorption rate in silanol functionalized Fe 3 O 4 CORE–shell nanoparticles: study of Fe leaching in Fe 3 O 4 and hyperthermia in L929 and HeLa cells. Colloids Surf B Biointerfaces 122:396–403

    Article  Google Scholar 

  42. Cihoric N, Tsikkinis A, van Rhoon G, Crezee H, Aebersold DM, Bodis S, Beck M, Nadobny J, Budach V, Wust P (2015) Hyperthermia-related clinical trials on cancer treatment within the ClinicalTrials. Gov registry. Int J Hyperthermia 31(6):609–614

    Article  Google Scholar 

  43. Kampinga HH (2006) Cell biological effects of hyperthermia alone or combined with radiation or drugs: a short introduction to newcomers in the field. Int J Hyperthermia 22(3):191–196

    Article  Google Scholar 

  44. Lepock JR (2004) Role of nuclear protein denaturation and aggregation in thermal radiosensitization. Int J Hyperthermia 20(2):115–130

    Article  Google Scholar 

  45. Nishita M, Inoue S, Tsuda M, Tateda C, Miyashita T (1998) Nuclear translocation and increased expression of Bax and disturbance in cell cycle progression without prominent apoptosis induced by hyperthermia. Exp Cell Res 244(1):357–366

    Article  Google Scholar 

  46. Kampinga HH, Dikomey E (2001) Hyperthermic radiosensitization: mode of action and clinical relevance. Int J Radiat Biol 77(4):399–408

    Article  Google Scholar 

  47. Shen R-N, Lu L, Young P, Shidnia H, Hornback NB, Broxmeyer HE (1994) Influence of elevated temperature on natural killer cell activity, lymphokine-activated killer cell activity and lectin-dependent cytotoxicity of human umbilical cord blood and adult blood cells. Int J Radiat Oncol Biol Phys 29(4):821–826

    Article  Google Scholar 

  48. Burd R, Dziedzic TS, Xu Y, Caligiuri MA, Subjeck JR, Repasky EA (1998) Tumor cell apoptosis, lymphocyte recruitment and tumor vascular changes are induced by low temperature, long duration (fever-like) whole body hyperthermia. J Cell Physiol 177(1):137–147

    Article  Google Scholar 

  49. Pettigrew RT, Galt JM, Ludgate CM, Smith AN (1974) Clinical effects of whole-body hyperthermia in advanced malignancy. Br Med J 4(5946):679–682

    Article  Google Scholar 

  50. Paulides MM, Stauffer PR, Neufeld E, Maccarini PF, Kyriakou A, Canters RAM, Diederich CJ, Bakker JF, Van Rhoon GC (2013) Simulation techniques in hyperthermia treatment planning. Int J Hyperthermia 29(4):346–357

    Article  Google Scholar 

  51. Varon J, Acosta P (2008) Therapeutic hypothermia: past, present, and future. Chest J 133(5):1267–1274

    Article  Google Scholar 

  52. Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49(23):6449–6465

    Google Scholar 

  53. Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, Schlag PM (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3(8):487–497

    Article  Google Scholar 

  54. Lele PP (1990) Electronically-controlled variable focus ultrasound hyperthermia system.

    Google Scholar 

  55. Jordan A, Scholz R, Wust P, Fähling H, Felix R (1999) Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater 201(1):413–419

    Article  Google Scholar 

  56. Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14(14):2161–2175

    Article  Google Scholar 

  57. Ang KL, Venkatraman S, Ramanujan RV (2007) Magnetic PNIPA hydrogels for hyperthermia applications in cancer therapy. Mater Sci Eng C 27(3):347–351

    Article  Google Scholar 

  58. INL (2017) International Iberian Nanotechnology.

    Google Scholar 

  59. Hahn GM (1974) Metabolic aspects of the role of hyperthermia in mammalian cell inactivation and their possible relevance to cancer treatment. Cancer Res 34(11):3117–3123

    Google Scholar 

  60. Quinto CA, Mohindra P, Tong S, Bao G (2015) Multifunctional superparamagnetic iron oxide nanoparticles for combined chemotherapy and hyperthermia cancer treatment. Nanoscale 7(29):12728–12736

    Article  Google Scholar 

  61. Shevtsov M, Multhoff G (2016) Recent developments of magnetic nanoparticles for theranostics of brain tumor. Curr Drug Metab 17(8):737–744

    Article  Google Scholar 

  62. Cavaliere R, Giogatto BC, Giovanella BC (1967) Selective heat sensitivity of cancer cells. Cancer 20(9):1351–1381

    Article  Google Scholar 

  63. Sellins KS, Cohen JJ (1991) Hyperthermia induces apoptosis in thymocytes. Radiat Res 126(1):88–95

    Article  Google Scholar 

  64. Paolini A, Guarch CP, Ramos-López D, Lapuente J, Lascialfari A, Guari Y, Larionova J, Long J, Nano R (2016) Rhamnose-coated superparamagnetic iron-oxide nanoparticles: an evaluation of their in vitro cytotoxicity, genotoxicity and carcinogenicity. J Appl Toxicol 36(4):510–520

    Article  Google Scholar 

  65. Wong RSL, Kapp LN, Krishnaswamy G, Dewey WC (1993) Critical steps for induction of chromosomal aberrations in CHO cells heated in S phase. Radiat Res 133(1):52–59

    Article  Google Scholar 

  66. Stahl H, Wust P, Maier-Hauff K, Seebass M, Mischel M, Gremmler M, Golde G, Löffel J, Felix R (1995) The use of an early postoperative interstitial-hyperthermia combination therapy in malignant gliomas. Strahlentherapie und Onkol. Organ der Dtsch. Rontgengesellschaft...[et al] 171(9):510–524

    Google Scholar 

  67. Sneed PK, Stauffer PR, McDermott MW, Diederich CJ, Lamborn KR, Prados MD, Chang S, Weaver KA, Spry L, Malec MK (1998) Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost±hyperthermia for glioblastoma multiforme. Int J Radiat Oncol Biol Phys 40(2):287–295

    Article  Google Scholar 

  68. Mitsumori M, Hiraoka M, Okuno Y, Nishimura Y, Li YP, Fujishiro S, Nagata Y, Abe M, Koishi M, Sano T (1996) A phase I and II clinical trial of a newly developed ultrasound hyperthermia system with an improved planar transducer. Int J Radiat Oncol Biol Phys 36(5):1169–1175

    Article  Google Scholar 

  69. Wismeth C, Dudel C, Pascher C, Ramm P, Pietsch T, Hirschmann B, Reinert C, Proescholdt M, Rümmele P, Schuierer G (2010) Transcranial electro-hyperthermia combined with alkylating chemotherapy in patients with relapsed high-grade gliomas: phase I clinical results. J Neurooncol 98(3):395–405

    Article  Google Scholar 

  70. Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB (1957) Selective inductive heating of lymph nodes. Ann Surg 146(4):596

    Article  Google Scholar 

  71. Hoopes PJ, Petryk AA, Misra A, Kastner EJ, Pearce JA, Ryan TP (2015) Utility and translatability of mathematical modeling, cell culture and small and large animal models in magnetic nanoparticle hyperthermia cancer treatment research. SPIE BiOS, International Society for Optics and Photodermatol, p. 932604

    Google Scholar 

  72. Thiesen B, Jordan A (2008) Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperthermia 24(6):467–474

    Article  Google Scholar 

  73. Attaluri A, Kandala SK, Wabler M, Zhou H, Cornejo C, Armour M, Hedayati M, Zhang Y, DeWeese TL, Herman C (2015) Magnetic nanoparticle hyperthermia enhances radiation therapy: a study in mouse models of human prostate cancer. Int J Hyperthermia 31(4):359–374

    Article  Google Scholar 

  74. Kashevsky BE, Kashevsky SB, Korenkov VS, Istomin YP, Terpinskaya TI, Ulashchik VS (2015) Magnetic hyperthermia with hard-magnetic nanoparticles. J Magn Magn Mater 380:335–340

    Article  Google Scholar 

  75. Tang Y, Flesch RCC, Jin T (2017) A method for increasing the homogeneity of the temperature distribution during magnetic fluid hyperthermia with a Fe-Cr-Nb-B alloy in the presence of blood vessels. J Magn Magn Mater 432:330–335

    Article  Google Scholar 

  76. Hervault A, Thanh NTK (2014) Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale 6(20):11553–11573

    Article  Google Scholar 

  77. Jordan A, Scholz R, Wust P, Fähling H, Krause J, Wlodarczyk W, Sander B, Vogl T, Felix R (1997) Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo. Int J Hyperthermia 13(6):587–605

    Article  Google Scholar 

  78. Schmid G (2011) Nanoparticles: from theory to application. Wiley, Somerset

    Google Scholar 

  79. Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103(2):317–324

    Article  Google Scholar 

  80. Frimpong RA, Dou J, Pechan M, Hilt JZ (2010) Enhancing remote controlled heating characteristics in hydrophilic magnetite nanoparticles via facile co-precipitation. J Magn Magn Mater 322(3):326–331

    Article  Google Scholar 

  81. Ghosh R, Pradhan L, Devi YP, Meena SS, Tewari R, Kumar A, Sharma S, Gajbhiye NS, Vatsa RK, Pandey BN, Ningthoujam RS (2011) Induction heating studies of Fe3O4 magnetic nanoparticles capped with oleic acid and polyethylene glycol for hyperthermia. J Mater Chem 21(35):13388–13398

    Article  Google Scholar 

  82. Ma M, Wu Y, Zhou J, Sun Y, Zhang Y, Gu N (2004) Size dependence of specific power absorption of Fe 3 O 4 particles in AC magnetic field. J Magn Magn Mater 268(1):33–39

    Article  Google Scholar 

  83. Zhang L-Y, Gu H-C, Wang X-M (2007) Magnetite ferrofluid with high specific absorption rate for application in hyperthermia. J Magn Magn Mater 311(1):228–233

    Article  Google Scholar 

  84. Müller R, Hergt R, Zeisberger M, Gawalek W (2005) Preparation of magnetic nanoparticles with large specific loss power for heating applications. J Magn Magn Mater 289:13–16

    Article  Google Scholar 

  85. Behdadfar B, Kermanpur A, Sadeghi-Aliabadi H, del Puerto Morales M, Mozaffari M (2012) Synthesis of high intrinsic loss power aqueous ferrofluids of iron oxide nanoparticles by citric acid-assisted hydrothermal-reduction route. J Solid State Chem 187:20–26

    Article  Google Scholar 

  86. Surendra MK, Dutta R, Ramachandra Rao MS (2014) Realization of highest specific absorption rate near superparamagnetic limit of CoFe 2 O 4 colloids for magnetic hyperthermia applications. Mater Res Express 1(2):26107

    Article  Google Scholar 

  87. Thorat ND, Khot VM, Salunkhe AB, Prasad AI, Ningthoujam RS, Pawar SH (2013) Surface functionalized LSMO nanoparticles with improved colloidal stability for hyperthermia applications. J Phys D Appl Phys 46(10):105003

    Article  Google Scholar 

  88. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36(13):R167

    Article  Google Scholar 

  89. Huang S, Wang S-Y, Gupta A, Borca-Tasciuc D-A, Salon SJ (2012) On the measurement technique for specific absorption rate of nanoparticles in an alternating electromagnetic field. Meas Sci Technol 23(3):35701

    Article  Google Scholar 

  90. Bi H, Ma S, Li Q, Han X (2016) Magnetically triggered drug release from biocompatible microcapsules for potential cancer therapeutics. J Mater Chem B 4(19):3269–3277

    Article  Google Scholar 

  91. Sanson C, Diou O, Thevenot J, Ibarboure E, Soum A, Brûlet A, Miraux S, Thiaudière E, Tan S, Brisson A (2011) Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy. ACS Nano 5(2):1122–1140

    Article  Google Scholar 

  92. Thévenot J, Oliveira H, Sandre O, Lecommandoux S (2013) Magnetic responsive polymer composite materials. Chem Soc Rev 42(17):7099–7116

    Article  Google Scholar 

  93. Saint-Cricq P, Deshayes S, Zink JI, Kasko AM (2015) Magnetic field activated drug delivery using thermodegradable Azo-functionalised PEG-coated core–shell mesoporous silica nanoparticles. Nanoscale 7(31):13168–13172

    Article  Google Scholar 

  94. Oliveira H, Pérez-Andrés E, Thevenot J, Sandre O, Berra E, Lecommandoux S (2013) Magnetic field triggered drug release from polymersomes for cancer therapeutics. J Control Release 169(3):165–170

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Majid, A., Ahmed, W., Patil-Sen, Y., Sen, T. (2018). Synthesis and Characterisation of Magnetic Nanoparticles in Medicine. In: Jackson, M., Ahmed, W. (eds) Micro and Nanomanufacturing Volume II. Springer, Cham. https://doi.org/10.1007/978-3-319-67132-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67132-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67130-7

  • Online ISBN: 978-3-319-67132-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics