Skip to main content

Abstract

Additive manufacturing processes, initially only reserved for the manufacturing of prototypes, now allow the manufacturing of high-value functional products with a wide range of materials. These processes can considerably change the process chain organization and therefore are growing interest in both academics and industrials. Despite these developments in this field, many problems remain on current digital chain that uses old format such as STL and G-code. A solution to challenge this issue is the development of a new digital chain based on the STEP-NC standard (Standard for the Exchange of Product Model Data compliant Numerical Control). This paper intends to propose a methodology for the integration of additive manufacturing to a new STEP-NC model. In order to illustrate this model’s possibilities a STEP-NC Platform for Advanced Additive Manufacturing is presented. Finally the integration of this platform in a multi-process context and satisfying Industry 4.0 requirements is highlighted as perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ISO 17296-1: Additive manufacturing - General principles - Part 1: Terminology (2015)

    Google Scholar 

  2. Wohlers, T.T., Caffrey, T., Campbell, R.I.: Wohlers report 2016: 3D printing and additive manufacturing state of the industry: annual worldwide progress report (2016)

    Google Scholar 

  3. ISO 6983-1: Numerical control of machines—Program format and definition of address words—Part1: Data format for positioning, line motion and contouring control systems (1982)

    Google Scholar 

  4. Mies, D., Marsden, W., Warde, S.: Overview of additive manufacturing informatics: “a digital thread”. Integr. Mater. Manuf. Innov. 5 (2016). doi:10.1186/s40192-016-0050-7

  5. Lu, Y., Xu, X.: A semantic web-based framework for service composition in a cloud manufacturing environment. J. Manuf. Syst. 42, 69–81 (2017). doi:10.1016/j.jmsy.2016.11.004

    Article  Google Scholar 

  6. Pei, E., Ressin, M.: Investigating the Impact of CAD Data Transfer Standards for 3DP-RDM. Brunel University London, UK (2016)

    Google Scholar 

  7. Esmaeilian, B., Behdad, S., Wang, B.: The evolution and future of manufacturing: a review. J. Manuf. Syst. 39, 79–100 (2016). doi:10.1016/j.jmsy.2016.03.001

    Article  Google Scholar 

  8. ISO 14649-1: Industrial automation systems and integration - Physical device control - Data model for computerized numerical controllers - Part 1: Overview and fundamental principles (2003)

    Google Scholar 

  9. ISO 10303-238: Industrial automation systems and integration - Product data representation and exchange - Part 238: Application protocol: Application interpreted model for computerized numerical controllers (2007)

    Google Scholar 

  10. Bonnard, R., Mognol, P., Hascoët, J.-Y.: A new digital chain for additive manufacturing processes. Virtual Phys. Prototyp. 5, 75–88 (2010). doi:10.1080/17452751003696916

    Article  Google Scholar 

  11. Lipman, R., McFarlane, J.: Exploring model-based engineering concepts for additive manufacturing. In: Proceedings of the 26th Solid Freeform Fabrication Symposium, pp. 385–400, Austin (Texas) (2015)

    Google Scholar 

  12. Cha, J.-M., Suh, S.-H., Hascoet, J.-Y., Stroud, I.: A roadmap for implementing new manufacturing technology based on STEP-NC. J. Intell. Manuf. 27, 959–973 (2016). doi:10.1007/s10845-014-0927-2

    Article  Google Scholar 

  13. Bonnard, R., Hascoet, J.-Y.: Additive Manufacturing Digital Thread: State of the Art and Perspectives (2017)

    Google Scholar 

  14. Xiao, J., Anwer, N., Durupt, A., Le Duigou, J., Eynard, B.: Information exchange standards for design, tolerancing and additive manufacturing: a research review. Int. J. Interact. Des. Manuf. IJIDeM (2017). doi:10.1007/s12008-017-0401-4

  15. Bohn, J.H.: File format requirements for the rapid prototyping technologies of tomorrow, pp. 878–883. University of Hong Kong, Hong Kong (1997)

    Google Scholar 

  16. Stroud, I., Xirouchakis, P.C.: STL and extensions. Adv. Eng. Softw. 31, 83–95 (2000)

    Article  Google Scholar 

  17. Bonnard, R., Mognol, P., Hascoët, J.Y.: Rapid prototyping project description in STEP-NC model. In: Proceedings of the 6th CIRP International Seminar on Intelligent Computation in Manufacturing Engineering, pp. 357–362, Naples, Italy (2008)

    Google Scholar 

  18. XML Technology (2015). https://www.w3.org/standards/xml/. Accessed 23 Nov 2016

  19. Hiller, J.D., Lipson, H.: STL 2.0: a proposal for a universal multi-material additive manufacturing file format. In: Solid Freeform Fabrication Symposium, pp. 5–9. Citeseer, Austin, TX, August 2009

    Google Scholar 

  20. ISO/ASTM 52915: Specification for Additive Manufacturing File Format (AMF) Version 1.2 (2016). https://www.iso.org/obp/ui/#iso:std:iso-astm:52915:ed-2:v1:en. Accessed 23 Nov 2016

  21. 3MF Consortium: 3MF (2016). http://www.3mf.io/. Accessed 23 Nov 2016

  22. Pratt, M.J.: Introduction to ISO 10303—the STEP standard for product data exchange. J. Comput. Inf. Sci. Eng. 1, 102 (2001). doi:10.1115/1.1354995

    Article  Google Scholar 

  23. Xu, X.W., Wang, H., Mao, J., Newman, S.T., Kramer, T.R., Proctor, F.M., Michaloski, J.L.: STEP-compliant NC research: the search for intelligent CAD/CAPP/CAM/CNC integration. Int. J. Prod. Res. 43, 3703–3743 (2005). doi:10.1080/00207540500137530

    Article  Google Scholar 

  24. ISO 10303-219: Industrial automation systems and integration - Product data representation and exchange - Part 219: Application protocol: Dimensional inspection information exchange (2007)

    Google Scholar 

  25. ISO 14649-16: Industrial automation systems and integration - Physical device control - Data model for computerized numerical controllers - Part 16: data for touch probing based inspection (2004)

    Google Scholar 

  26. Danjou, C., Le Duigou, J., Eynard, B.: Manufacturing knowledge management based on STEP-NC standard: a closed-loop manufacturing approach. Int. J. Comput. Integr. Manuf. 1–15 (2016). doi:10.1080/0951192X.2016.1268718

  27. Bonnard, R., Hascoët, J.-Y., Mognol, P., Zancul, E., Alvares, A.: Hierarchical Object-Oriented Model (HOOM) for Additive Manufacturing Digital Thread (2017)

    Google Scholar 

  28. ISO 14649-17: Industrial automation systems and integration - Physical device control - Data model for Computerized Numerical Controllers - Part 17: Process data for additive manufacturing processes (2016)

    Google Scholar 

  29. Suh, S.H., Lee, B.E., Chung, D.H., Cheon, S.U.: Architecture and implementation of a shop-floor programming system for STEP-compliant CNC. Comput.-Aided Des. 35, 1069–1083 (2003). doi:10.1016/S0010-4485(02)00179-3

    Article  Google Scholar 

  30. Xu, X.W.: Realization of STEP-NC enabled machining. Robot. Comput.-Integr. Manuf. 22, 144–153 (2006). doi:10.1016/j.rcim.2005.02.009

    Article  Google Scholar 

  31. Rauch, M., Laguionie, R., Hascoet, J.-Y., Suh, S.-H.: An advanced STEP-NC controller for intelligent machining processes. Robot. Comput.-Integr. Manuf. 28, 375–384 (2012). doi:10.1016/j.rcim.2011.11.001

    Article  Google Scholar 

  32. Laguionie, R., Rauch, M., Hascoet, J.Y.: A multi-process manufacturing approach based on STEP-NC data model. In: Bernard, A. (ed.) Global Product Development, pp. 253–263. Springer, Heidelberg (2011)

    Google Scholar 

  33. ISO 10303-203: Industrial automation systems and integration - Product data representation and exchange - Part 203: Application protocol: configuration controlled 3D designs of mechanical parts and assemblies (2011)

    Google Scholar 

  34. Paviot, T.: PythonOCC, 3D CAD/CAE/PLM development framework for the Python programming language, PythonOCC – 3D CAD Python (2016). http://www.pythonocc.org/. Accessed 19 Jan 2017

  35. Torvalds, L.: LinuxCNC (2017). http://linuxcnc.org/. Accessed 16 Feb 2017

  36. Kerbrat, O., Mognol, P., Hascoët, J.-Y.: A new DFM approach to combine machining and additive manufacturing. Comput. Ind. 62, 684–692 (2011)

    Article  Google Scholar 

  37. Newman, S.T., Zhu, Z., Dhokia, V., Shokrani, A.: Process planning for additive and subtractive manufacturing technologies. CIRP Ann. - Manuf. Technol. 64, 467–470 (2015). doi:10.1016/j.cirp.2015.04.109

    Article  Google Scholar 

  38. MTConnect (2015). http://www.mtconnect.org/. Accessed 15 Mar 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renan Bonnard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Bonnard, R. (2018). An Advanced STEP-NC Platform for Additive Manufacturing. In: Meboldt, M., Klahn, C. (eds) Industrializing Additive Manufacturing - Proceedings of Additive Manufacturing in Products and Applications - AMPA2017. AMPA 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-66866-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66866-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66865-9

  • Online ISBN: 978-3-319-66866-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics