Skip to main content

Results and Discussions

  • Chapter
  • First Online:
Nanocomposite-Based Electronic Tongue

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 259))

  • 455 Accesses

Abstract

This chapter indicates that the vertically aligned MWCNTs were successfully synthesized on a silicon substrate via the CVD method with different morphological properties. The crystallinity of synthesized MWCNTs was also optimized using statistical analysis to control the growth condition and defect amount of CNTs. In line with the previous chapter, the optimized MWCNT was used to obtain the MWCNT/GL matrix to improve the direct electron transfer processes between GOx and modified GCE through hydrophobic-hydrophobic interactions in forming stable dispersions of MWCNTs. The GCE modified by GOx/MWCNTs/Gl was used for glucose detection approaches based on the electrochemical method. Furthermore, the GOx /MWCNTs/Gl/GCE was employed to fabricate an electronic tongue for sweetness diagnoses by recording frequency response of the glucose biosensor. The frequency results recorded by oscilloscope indicate that, by adding different glucose concentrations to electrochemical cells connected to the circuit, the output oscillation frequency changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kurenya, A.G., D.V. Gorodetskiy, V.E. Arkhipov, and A.V. Okotrub. 2013. Evaluation of the optimal carrier gas flow rate for the carbon nanotubes growth. Technical Physics Letters 39 (3): 258–261.

    Article  Google Scholar 

  2. Coville, Neil J., Sabelo D. Mhlanga, Edward N. Nxumalo, and Ahmed Shaikjee. 2011. A review of shaped carbon nanomaterials. South African Journal of Science 107 (3–4), 01–15.

    Google Scholar 

  3. Chenguang, Lu, and Jie Liu. 2006. Controlling the diameter of carbon nanotubes in chemical vapor deposition method by carbon feeding. The Journal of Physical Chemistry B 110 (41): 20254–20257.

    Article  Google Scholar 

  4. Lee, Cheol Jin, Seung Chul Lyu, Young Rae Cho, Jin Ho Lee, and Kyoung Ik Cho. 2001. Diameter-controlled growth of carbon nanotubes using thermal chemical vapor deposition. Chemical Physics Letters 341 (3), 245–249.

    Google Scholar 

  5. Kuo, Chien-Sheng, Allen Bai, Chien-Ming Huang, Yuan-Yao Li, Chi-Chang Hu, and Chien-Chong Chen. 2005. Diameter control of multiwalled carbon nanotubes using experimental strategies. Carbon 43 (13): 2760–2768.

    Article  Google Scholar 

  6. Morris, James E. 2008. Nanopackaging: Nanotechnologies and electronics packaging. Berlin: Springer.

    Google Scholar 

  7. DiLeo, Roberta A., Brian J. Landi, and Ryne P. Raffaelle. 2007. Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy. Journal of Applied Physics 101 (6), 064307; Vallés, Cristina, Manuel Pérez-Mendoza, Wolfgang K. Maser, M. Teresa Martinez, Laurent Alvarez, Jean-Louis Sauvajol, and Ana M. Benito. 2009. Effects of partial and total methane flows on the yield and structural characteristics of MWCNTs produced by CVD. Carbon 47 (4), 998–1004.

    Google Scholar 

  8. Kumar, Sunil, Sudip K. Pattanayek, and Gerald G. Pereira. 2014. Organization of polymer chains onto long, single-wall carbon nano-tubes: Effect of tube diameter and cooling method. The Journal of Chemical Physics 140 (2), 024904.

    Google Scholar 

  9. Aslan, N. 2008. Application of response surface methodology and central composite rotatable design for modeling and optimization of a multi-gravity separator for chromite concentration. Powder Technology 185 (1), 80–86.

    Google Scholar 

  10. Kastner, J., T. Pichler, H. Kuzmany, S. Curran, W. Blau, D.N. Weldon, M. Delamesiere, S. Draper, and H. Zandbergen. 1994. Resonance Raman and infrared spectroscopy of carbon nanotubes. Chemical Physics Letters 221 (1): 53–58.

    Article  Google Scholar 

  11. Lehman, John H., Mauricio Terrones, Elisabeth Mansfield, Katherine E. Hurst, and Vincent Meunier. 2011. Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49 (8), 2581–2602.

    Google Scholar 

  12. Andrews, R., D. Jacques, D. Qian, and E.C. Dickey. 2001. Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures. Carbon 39 (11): 1681–1687.

    Article  Google Scholar 

  13. Kang, Donghun, Noejung Park, Ju-hye Ko, Eunju Bae, and Wanjun Park. 2005. Oxygen-induced p-type doping of a long individual single-walled carbon nanotube. Nanotechnology 16 (8): 1048.

    Article  Google Scholar 

  14. Maschmann, Matthew R., Placidus B. Amama, Amit Goyal, Zafar Iqbal, Roy Gat, and Timothy S. Fisher. 2006. Parametric study of synthesis conditions in plasma-enhanced CVD of high-quality single-walled carbon nanotubes. Carbon 44 (1), 10–18.

    Google Scholar 

  15. Veziri, ChM, G. Pilatos, G.N. Karanikolos, A. Labropoulos, K. Kordatos, V. Kasselouri-Rigopoulou, and N.K. Kanellopoulos. 2008. Growth and optimization of carbon nanotubes in activated carbon by catalytic chemical vapor deposition. Microporous and Mesoporous Materials 110 (1): 41–50.

    Article  Google Scholar 

  16. Botello-Méndez, Andrés, Jessica Campos-Delgado, Aarón Morelos-Gómez, José M. Romo-Herrera, Ángel G. Rodríguez, Hugo Navarro, Miguel A. Vidal, Humberto Terrones, and Mauricio Terrones. 2008. Controlling the dimensions, reactivity and crystallinity of multiwalled carbon nanotubes using low ethanol concentrations. Chemical Physics Letters 453 (1), 55–61.

    Google Scholar 

  17. Bai, Xiaodong, Dan Li, Ye Wang, and Ji Liang. 2005. Effects of temperature and catalyst concentration on the growth of aligned carbon nanotubes. Tsinghua Science & Technology 10 (6): 729–735.

    Article  Google Scholar 

  18. Wepasnick, Kevin A., Billy A. Smith, Julie L. Bitter, and D. Howard Fairbrother. 2010. Chemical and structural characterization of carbon nanotube surfaces. Analytical and Bioanalytical Chemistry 396 (3), 1003–1014.

    Google Scholar 

  19. Meyyappan, Meyya, Lance Delzeit, Alan Cassell, and David Hash. 2003. Carbon nanotube growth by PECVD: A review. Plasma Sources Science and Technology 12 (2): 205.

    Article  Google Scholar 

  20. Tsai, Yu-Chen, Shih-Ci Li, and Jie-Ming Chen. 2005. Cast thin film biosensor design based on a nafion backbone, a multiwalled carbon nanotube conduit, and a glucose oxidase function. Langmuir 21 (8): 3653–3658.

    Article  Google Scholar 

  21. Yin, Yajing, Yafen Lü, Wu Ping, and Chenxin Cai. 2005. Direct electrochemistry of redox proteins and enzymes promoted by carbon nanotubes. Sensors 5 (4): 220–234.

    Article  Google Scholar 

  22. Tanemura, Masaki, K. Iwata, K. Takahashi, Y. Fujimoto, F. Okuyama, H. Sugie, and V. Filip. 2001. Growth of aligned carbon nanotubes by plasma-enhanced chemical vapor deposition: Optimization of growth parameters. Journal of Applied Physics 90 (3), 1529–1533.

    Google Scholar 

  23. Colomer, J.-F., C. Stephan, Serge Lefrant, Gustaaf Van Tendeloo, Isabelle Willems, Z. Konya, Antonio Fonseca, Ch. Laurent, and Janos B. Nagy. 2000. Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method. Chemical Physics Letters 317 (1), 83–89.

    Google Scholar 

  24. Singh, Charanjeet, Milo S.P. Shaffer, and Alan H. Windle. 2003. Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method. Carbon 41 (2), 359–368.

    Google Scholar 

  25. Moon, Jeong-Mi, Kay Hyeok An, Young Hee Lee, Young Soo Park, Dong Jae Bae, and Gyeong-Su Park. 2001. High-yield purification process of singlewalled carbon nanotubes. The Journal of Physical Chemistry B 105 (24), 5677–5681.

    Google Scholar 

  26. Park, Tae-Jin, Sarbajit Banerjee, Tirandai Hemraj-Benny, and Stanislaus S. Wong. 2006. Purification strategies and purity visualization techniques for single-walled carbon nanotubes. Journal of Materials Chemistry 16 (2), 141–154.

    Google Scholar 

  27. Hofmann, S., C. Ducati, J. Robertson, and B. Kleinsorge. 2003. Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Applied Physics Letters 83 (1): 135–137.

    Article  Google Scholar 

  28. Lee, Cheol Jin, Jeunghee Park, Yoon Huh, and Jeong Yong Lee. 2001. Temperature effect on the growth of carbon nanotubes using thermal chemical vapor deposition. Chemical Physics Letters 343 (1), 33–38.

    Google Scholar 

  29. Castro, C., M. Pinault, S. Coste-Leconte, D. Porterat, Nedjma Bendiab, C. Reynaud, and M. Mayne-L’Hermite. 2010. Dynamics of catalyst particle formation and multi-walled carbon nanotube growth in aerosol-assisted catalytic chemical vapor deposition. Carbon 48 (13), 3807–3816.

    Google Scholar 

  30. Hanna Varghese, Saino, Remya Nair, Baiju G Nair, T. Hanajiri, T. Maekawa, Y. Yoshida, and D. Sakthi Kumar. 2010. Sensors based on carbon nanotubes and their applications: A review. Current Nanoscience 6 (4), 331–346.

    Google Scholar 

  31. Eklund, P.C., J.M. Holden, and R.A. Jishi. 1995. Vibrational modes of carbon nanotubes; spectroscopy and theory. Carbon 33 (7): 959–972.

    Article  Google Scholar 

  32. Yuan, Dongning. 2008. Property control of single walled carbon nanotubes and their devices. ProQuest.

    Google Scholar 

  33. Zhang, Xianfeng, Anyuan Cao, Bingqing Wei, Yanhui Li, Jinquan Wei, Xu Cailu, and Wu Dehai. 2002. Rapid growth of well-aligned carbon nanotube arrays. Chemical Physics Letters 362 (3): 285–290.

    Article  Google Scholar 

  34. Xinman, Tu, Yingjie Zhao, Shenglian Luo, Xubiao Luo, and Li Feng. 2012. Direct electrochemical sensing of glucose using glucose oxidase immobilized on functionalized carbon nanotubes via a novel metal chelate-based affinity method. Microchimica Acta 177 (1–2): 159–166.

    Google Scholar 

  35. Guiseppi-Elie, Anthony, Chenghong Lei, and Ray H. Baughman. 2002. Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology 13 (5), 559.

    Google Scholar 

  36. Jenkins, Peter A., Susan Boland, Paul Kavanagh, and Dónal Leech. 2009. Evaluation of performance and stability of biocatalytic redox films constructed with different copper oxygenases and osmium-based redox polymers. Bioelectrochemistry 76 (1), 162–168 (2009).

    Google Scholar 

  37. Laviron, E. 1979. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 101 (1): 19–28.

    Article  Google Scholar 

  38. Liu, Ying, Mingkui Wang, Feng Zhao, Xu Zhiai, and Shaojun Dong. 2005. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosensors & Bioelectronics 21 (6): 984–988.

    Article  Google Scholar 

  39. Chaubey, Asha, and B.D. Malhotra. 2002. Mediated biosensors. Biosensors and Bioelectronics 17 (6), 441–456.

    Google Scholar 

  40. Kumar, Arun, Asha Chaubey, S.K. Grover, and B.D. Malhotra. 2001. Immobilization of cholesterol oxidase and potassium ferricyanide on dodecylbenzene sulfonate ion-doped polypyrrole film. Journal of Applied Polymer Science 82 (14), 3486–3491.

    Google Scholar 

  41. Chen, Kuan-Jung, Chia-Feng Lee, John Rick, Shih-Han Wang, Chung-Chiun Liu, and Bing-Joe Hwang. 2012. Fabrication and application of amperometric glucose biosensor based on a novel PtPd bimetallic nanoparticle decorated multi-walled carbon nanotube catalyst. Biosensors & Bioelectronics 33 (1): 75–81.

    Article  Google Scholar 

  42. Dias, L.G., António M Peres, Tânia P Barcelos, J. Sá Morais, and A.A.S.C. Machado. 2011. Semi-quantitative and quantitative analysis of soft drinks using an electronic tongue. Sensors and Actuators B: Chemical 154 (2), 111–118.

    Google Scholar 

  43. Deniz Yildirim, Burak Beşer, Elif Köksal, and Birol Çapa. 2008. Power Electronic Circuits Fall 2008, CRN: 11473.

    Google Scholar 

  44. Feng, Xueling, Kaihuan Zhang, Mark A Hempenius, and G. Julius Vancso. 2015. Organometallic polymers for electrode decoration in sensing applications. RSC Advances 5 (129), 106355–106376.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin TermehYousefi .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

TermehYousefi, A. (2018). Results and Discussions. In: Nanocomposite-Based Electronic Tongue. Springer Series in Materials Science, vol 259. Springer, Cham. https://doi.org/10.1007/978-3-319-66848-2_4

Download citation

Publish with us

Policies and ethics