Skip to main content

Dynamics and Organization of Archaeal Tetraether Lipid Membranes

  • Chapter
  • First Online:
Membrane Organization and Dynamics

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 20))

Abstract

Archaeal bipolar tetraether lipids (BTLs) have distinct structural differences from the lipids isolated from bacteria and eukaryotes. Because of the presence of the unusual structural features, such as macrocyclic structures, cyclopentane rings, isoprenoid units, tetraether linkages, and a variety of polar head groups, archaeal BTL membranes possess physical properties distinctly different from those found in conventional diester lipid membranes. This chapter reviews the salient physical properties of archaeal BTL membranes as well as the membranes formed by synthetic BTLs, with the emphasis focused on membrane dynamics, stability, phase behaviors, and organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P. Mesophilic crenarchaeota: proposal for a third archaeal phylum, the thaumarchaeota. Nat Rev Microbiol. 2008;6:245–52.

    Article  PubMed  CAS  Google Scholar 

  2. Gliozzi A, Relini A, Chong PLG. Structure and permeability properties of biomimetic membranes of bolaform archaeal tetraether lipids. J Membr Sci. 2002;206:131–47.

    Article  CAS  Google Scholar 

  3. Knappy C, Barilla D, Chong J, Hodgson D, Morgan H, Suleman M, Tan C, Yao P, Keely B. Mono-, di- and tri-methylated homologues of isoprenoid tetraether lipid cores in archaea and environmental samples: mass spectrometric identification and significance. J Mass Spectrom. 2015;50:1420–32.

    Article  PubMed  CAS  Google Scholar 

  4. Lai D, Springstead JR, Monbouquette HG. Effect of growth temperature on ether lipid biochemistry in Archaeoglobus fulgidus. Extremophiles. 2008;12:271–8.

    Article  PubMed  CAS  Google Scholar 

  5. De Rosa M, Gambacorta A, Nicolaus B. A new type of cell membrane in thermophilic archaebacteria based on bipolar ether lipids. J Membr Sci. 1983;16:287–94.

    Article  Google Scholar 

  6. De Rosa M, Gambacorta A, Nicolaus B, Chappe B, Albrecht P. Isoprenoid ethers: backbone of complex lipids of the archaebacterium Sulfolobus solfataricus. Biochim Biophys Acta. 1983;753:249–56.

    Article  Google Scholar 

  7. Shimada H, Nemoto N, Shida Y, Oshima T, Yamagishi A. Effects of pH and temperature on the composition of polar lipids in Thermoplasma acidophilum HO-62. J Bacteriol. 2008;190:5404–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Jeworrek C, Evers F, Erlkamp M, Grobelny S, Tolan M, Chong PLG, Winter R. Structure and phase behavior of archaeal lipid monolayers. Langmuir. 2011;27:13113–21.

    Article  PubMed  CAS  Google Scholar 

  9. Shimada H, Shida Y, Nemoto N, Oshima T, Yamagishi A. Complete polar lipid composition of Thermoplasma acidophilum HO-62 determined by high-performance liquid chromatography with evaporative light-scattering detection. J Bacteriol. 2002;184:556–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Lo SL, Chang EL. Purification and characterization of a liposomal-forming tetraether lipid fraction. Biochem Biophys Res Commun. 1990;167:238–43.

    Article  PubMed  CAS  Google Scholar 

  11. Kates M. Archaebacterial lipids: structure, biosynthesis and function. In: Danson MJ, Hough DW, Lunt GG, editors. The archaebacteria: biochemistry and biotechnology. London: Portland Press; 1992. p. 51–72.

    Google Scholar 

  12. Sugai A, Sakuma R, Fukuda I, Kurosawa N, Itoh YH, Kon K, Ando S, Itoh T. The structure of the core polyol of the ether lipids from Sulfolobus acidocaldarius. Lipids. 1995;30:339–44.

    Article  PubMed  CAS  Google Scholar 

  13. Koga Y, Morii H. Recent advances in structural research on ether lipids from archaea including comparative and physiological aspects. Biosci Biotechnol Biochem. 2005;69:2019–34.

    Article  PubMed  CAS  Google Scholar 

  14. Chong PLG. Archaebacterial bipolar tetraether lipids: physico-chemical and membrane properties. Chem Phys Lipids. 2010;163:253–65.

    Article  PubMed  CAS  Google Scholar 

  15. Chong PLG, Ayesa U, Daswani VP, Hur EC. On physical properties of tetraether lipid membranes: effects of cyclopentane rings. Archaea. 2012;2012:138439.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Schouten S, Hopmans EC, Sinninghe-Damste JS. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Org Geochem. 2013;54:19–61.

    Article  CAS  Google Scholar 

  17. Arakawa K, Eguchi T, Kakinuma K. An olefin metathesis approach to 36- and 72-membered archaeal macrocyclic membrane lipids. J Org Chem. 1998;63:4741–5.

    Article  CAS  Google Scholar 

  18. Eguchi T, Ibaragi K, Kakinuma K. Total synthesis of archaeal 72-membered macrocyclic tetraether lipids. J Org Chem. 1998;63:2689–98.

    Article  PubMed  CAS  Google Scholar 

  19. Koyanagi T, Leriche G, Onofrei D, Holland GP, Mayer M, Yang J. Cyclohexane rings reduce membrane permeability to small ions in archaea-inspired tetraether lipids. Angew Chem Int Ed. 2016;55:1890–3.

    Article  CAS  Google Scholar 

  20. Raguse B, Culshaw PN, Prashar JK, Raval K. The synthesis of archaebacterial lipid analogues. Tetrahedron Lett. 2000;41:2971–4.

    Article  CAS  Google Scholar 

  21. Patwardhan AP, Thompson DH. Efficient synthesis of 40- and 48-membered tetraether macrocyclic bisphosphocholines. Org Lett. 1999;1:241–4.

    Article  PubMed  CAS  Google Scholar 

  22. Brard M, Laine C, Rethore G, Laurent I, Neveu C, Lemiegre L, Benvegnu T. Synthesis of archaeal bipolar lipid analogues: a way to versatile drug/gene delivery systems. J Org Chem. 2007;72:8267–79.

    Article  PubMed  CAS  Google Scholar 

  23. Bagatolli LA, Gratton E, Khan TK, Chong PLG. Two-photon fluorescence microscopy studies of bipolar tetraether giant liposomes from thermoacidophilic archaebacteria Sulfolobus acidocaldarius. Biophys J. 2000;79:416–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Schuster B, Weigert S, Pum D, Sara M, Sleytr UB. New method for generating tetraether lipid membranes on porous supports. Langmuir. 2003;19:2392–7.

    Article  CAS  Google Scholar 

  25. Gliozzi A, Paoli G, Rolandi R, De Rosa M, Gambacorta A. Structure and transport properties of artificial bipolar lipid membranes. Bioelectrochem Bioenerg. 1982;9:591–601.

    Article  CAS  Google Scholar 

  26. Stern J, Freisleben H, Janku S, Ring K. Black lipid membranes of tetraether lipids from Thermoplasma acidophilum. Biochim Biophys Acta. 1992;1128:227–36.

    Article  PubMed  CAS  Google Scholar 

  27. Ren X, Liu K, Zhang Q, Noh HM, Kumbur EC, Yuan WW, Zhou JG, Chong PLG. Design, fabrication and characterization of archaeal tetraether free-standing planar membranes in a PDMS- and PCB-based fluidic platform. ACS Appl Mater Interfaces. 2014;6:12618–28.

    Article  PubMed  CAS  Google Scholar 

  28. Elferink MG, de Wit JG, Demel R, Driessen AJ, Konings WN. Functional reconstitution of membrane proteins in monolayer liposomes from bipolar lipids of Sulfolobus acidocaldarius. J Biol Chem. 1992;267:1375–81.

    PubMed  CAS  Google Scholar 

  29. Chong PLG, Zein M, Khan TK, Winter R. Structure and conformation of bipolar tetraether lipid membranes derived from thermoacidophilic archaeon Sulfolobus acidocaldarius as revealed by small-angle X-ray scattering and high pressure FT-IR spectroscopy. J Phys Chem. 2003;107:8694–700.

    Article  CAS  Google Scholar 

  30. Brown DA, Venegas B, Cooke PH, English V, Chong PLG. Bipolar tetraether archaeosomes exhibit unusual stability against autoclaving as studied by dynamic light scattering and electron microscopy. Chem Phys Lipids. 2009;159:95–103.

    Article  PubMed  CAS  Google Scholar 

  31. Kanichay R, Boni LT, Cooke PH, Khan TK, Chong PLG. Calcium-induced aggregation of archaeal bipolar tetraether liposomes derived from thermoacidophilic archaeon Sulfolobus acidocaldarius. Archaea. 2003;1:175–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Relini A, Cassinadri D, Fan Q, Gulik A, Mirghani Z, De Rosa M, Gliozzi A. Effect of physical constraints on the mechanisms of membrane fusion: bolaform lipid vesicles as model systems. Biophys J. 1996;71:1789–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Relini A, Cassinadri D, Mirghani Z, Brandt O, Gambacorta A, Trincone A, De Rosa M, Gliozzi A. Calcium-induced interaction and fusion of archaeobacterial lipid vesicles: a fluorescence study. Biochim Biophys Acta. 1994;1194:17–24.

    Article  PubMed  CAS  Google Scholar 

  34. Komatsu H, Chong PLG. Low permeability of liposomal membranes composed of bipolar tetraether lipids from thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Biochemistry. 1998;37:107–15.

    Article  PubMed  CAS  Google Scholar 

  35. Bonanno A, Andrews A, Ayesa U, Ramirez S, Chong PLG. PLFE as a liposomal stabilizing agent: a shear stress study. Biophys J. 2016;110:242a.

    Article  Google Scholar 

  36. Fafaj A, Lam J, Taylor L, Chong PLG. Unusual stability of archaeal tetraether liposomes against surfactants. Biophys J. 2011;100:329a.

    Article  Google Scholar 

  37. Jensen SM, Christensen CJ, Petersen JM, Treusch AH, Brandl M. Liposomes containing lipids from Sulfolobus islandicus withstand intestinal bile salts: an approach for oral drug delivery? Int J Pharm. 2015;493:63–9.

    Article  PubMed  CAS  Google Scholar 

  38. Mahmoud G, Jedelska J, Strehlow B, Bakowsky U. Bipolar tetraether lipids derived from thermoacidophilic archaeon Sulfolobus acidocaldarius for membrane stabilization of chlorin e6 based liposomes for photodynamic therapy. Eur J Pharm Biopharm. 2015;95:88–98.

    Article  PubMed  CAS  Google Scholar 

  39. Parmentier J, Thewes B, Gropp F, Fricker G. Oral peptide delivery by tetraether lipid liposomes. Int J Pharm. 2011;415:150–7.

    Article  PubMed  CAS  Google Scholar 

  40. Shinoda W, Shinoda K, Baba T, Mikami M. Molecular dynamics study of bipolar tetraether lipid membranes. Biophys J. 2005;89:3195–202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Ren X, Kumbur EC, Zhou JG, Noh HM, Chong PLG. Stability of free-standing tetraether planar membranes in microchips. J Membr Sci. 2017;540:27–34.

    Google Scholar 

  42. Gabriel JL, Chong PLG. Molecular modeling of archaebacterial bipolar tetraether lipid membranes. Chem Phys Lipids. 2000;105:193–200.

    Article  PubMed  CAS  Google Scholar 

  43. Arakawa K, Eguchi T, Kakinuma K. 36-membered macrocyclic diether lipid is advantageous for archaea to thrive under the extreme thermal environments. Bull Chem Soc Jpn. 2001;74:347–56.

    Article  CAS  Google Scholar 

  44. Dobro MJ, Samson RY, Yu Z, McCullough J, Ding HJ, Chong PLG, Bell SD, Jensen GJ. Electron cryotomography of ESCRT assemblies and dividing Sulfolobus cells suggests that spiraling filaments are involved in membrane scission. Mol Biol Cell. 2013;24:2319–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Samson RY, Obita T, Hodgson B, Shaw MK, Chong PLG, Williams RL, Bell SD. Molecular and structural basis of ESCRT-III recruitment to membranes during archaeal cell division. Mol Cell. 2011;41:186–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Chong PLG, Ravindra R, Khurana M, English V, Winter R. Pressure perturbation and differential scanning calorimetric studies of bipolar tetraether liposomes derived from the thermoacidophilic archaeon Sulfolobus acidocaldarius. Biophys J. 2005;89:1841–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Gulik A, Luzzati V, De Rosa M, Gambacorta A. Structure and polymorphism of bipolar isopranyl ether lipids from archaebacterial. J Mol Biol. 1985;182:131–49.

    Article  PubMed  CAS  Google Scholar 

  48. Gulik A, Luzzati V, De Rosa M, Gambacorta A. Tetraether lipid components from a thermoacidophilic archaebacterium. Chemical structure and physical polymorphism. J Mol Biol. 1988;201:429–35.

    Article  PubMed  CAS  Google Scholar 

  49. Gliozzi A, Paoli G, DeRosa M, Gambacorta A. Effect of isoprenoid cyclization on the transition temperature of lipids in thermophilic archaebacteria. Biochim Biophys Acta. 1983;735:234–42.

    Article  CAS  Google Scholar 

  50. Uda I, Sugai A, Itoh YH, Itoh T. Variation in molecular species of polar lipids from Thermoplasma acidophilum depends on growth temperature. Lipids. 2001;36:103–5.

    Article  PubMed  CAS  Google Scholar 

  51. De Rosa M, Esposito E, Gambacorta A, Nicholaus B, Bu'lock JD. Effects of temperature on ether lipid composition of Caldariella acidophila. Phytochemistry. 1980;19:827–31.

    Article  Google Scholar 

  52. Zhai Y, Chong PLG, Taylor LJ, Erlkamp M, Grobelny S, Czeslik C, Watkins E, Winter R. Physical properties of archaeal tetraether lipid membranes as revealed by differential scanning and pressure perturbation calorimetry, molecular acoustics, and neutron reflectometry: effects of pressure and cell growth temperature. Langmuir. 2012;28:5211–7.

    Article  PubMed  CAS  Google Scholar 

  53. Jacquemet A, Meriadec C, Lemiegre L, Artzner F, Benvegnu T. Stereochemical effect revealed in self-assemblies based on archaeal lipid analogues bearing a central five-membered carbocycle: a SAXS study. Langmuir. 2012;28:7591–7.

    Article  PubMed  CAS  Google Scholar 

  54. Chugunov AO, Volynsky PE, Krylov NA, Boldyrev IA, Efremov RG. Liquid but durable: molecular dynamics simulations explain the unique properties of archaeal-like membranes. Sci Rep. 2014;4:7462. https://doi.org/10.1038/srep07462.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Jarrell HC, Zukotynski KA, Sprott GD. Lateral diffusion of the total polar lipids from Thermoplasma acidophilum in multilamellar liposomes. Biochim Biophys Acta. 1998;1369:259–66.

    Article  PubMed  CAS  Google Scholar 

  56. Kao YL, Chang EL, Chong PLG. Unusual pressure dependence of the lateral motion of pyrene-labeled phosphatidylcholine in bipolar lipid vesicles. Biochem Biophys Res Commun. 1992;188:1241–6.

    Article  PubMed  CAS  Google Scholar 

  57. Chong PLG, Sulc M, Winter R. Compressibilities and volume fluctuations of archaeal tetraether liposomes. Biophys J. 2010;99:3319–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Almeida PF, Vaz WL, Thompson TE. Lateral diffusion and percolation in two-phase, two-component lipid bilayers. Topology of the solid-phase domains in-plane and across the lipid bilayer. Biochemistry. 1992;31:7198–210.

    Article  PubMed  CAS  Google Scholar 

  59. Bagatolli LA. LAURDAN fluorescence properties in membranes: a journey from the fluorometer to the microscope, in Fluorescent methods to study biological membranes, book editors: Y. Mely and G. Duportail; series editor: M. Hof, Springer series on fluorescence, 13th ed., New York, NY: Springer; 2013, p. 3–36.

    Google Scholar 

  60. Chattopadhyay A, Rawat SS, Kelkar DA, Ray S, Chakrabarti B. Organization and dynamics of tryptophan residues in erythroid spectrin: novel structural features of denatured spectrin revealed by the wavelength selective fluorescence approach. Protein Sci. 2003;12:2389–403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Demchenko AP. Site-selective red-edge effects. Methods Enzymol. 2008;450:59–78.

    Article  PubMed  CAS  Google Scholar 

  62. Laney A. Spectroscopic characterization of bipolar tetraether lipids derived from thermoacidophilic archaeal membranes. PhD Thesis, Temple University-Philadelphia, PA; 2002.

    Google Scholar 

  63. Vilalta I, Gliozzi A, Prats M. Interfacial air/water proton conduction from long distances by sulfolobus solfataricus archaeal bolaform lipids. Eur J Biochem. 1996;240:181–5.

    Article  PubMed  CAS  Google Scholar 

  64. Khan TK, Chong PLG. Studies of archaebacterial bipolar tetraether liposomes by perylene fluorescence. Biophys J. 2000;78:1390–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Chong PLG, Van der Meer BW, Thompson TE. The effects of pressure and cholesterol on rotational motions of perylene in lipid bilayers. Biochim Biophys Acta. 1985;813:253–65.

    Article  PubMed  CAS  Google Scholar 

  66. Bernsdorff C, Wolf A, Winter R, Gratton E. Effect of hydrostatic pressure on water penetration and rotational dynamics in phospholipid-cholesterol bilayers. Biophys J. 1997;72:1264–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Ayesa U. Characterization of thermosensitive hybrid archaeosomes, and DPA-Cy3[22,22]/POPC liposomes and in vitro evaluation of their potential usefulness in targeted delivery and controlled release. PhD Thesis-Temple University School of Medicine, Philadelphia, PA; 2016.

    Google Scholar 

  68. Parasassi T, De Stasio G, Ravagnan G, Rusch RM, Gratton E. Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Biophys J. 1991;60:179–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Chakraborty H, Haldar S, Chong PLG, Kombrabail M, Krishnamoorthy G, Chattopadhyay A. Depth-dependent organization and dynamics of archaeal and eukaryotic membranes: development of membrane anisotropy gradient with natural evolution. Langmuir. 2015;31:11591–7.

    Article  PubMed  CAS  Google Scholar 

  70. Nagle JF, Zhang R, Tristram-Nagle S, Sun WS, Petrache HI, Suter RM. X-ray structure determination of fully hydrated La phase dipalmitoylphosphatidylcholine bilayers. Biophys J. 1996;70:1419–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Bartucci R, Gambacorta A, Gliozzi A, Marsh D, Sportelli L. Bipolar tetraether lipids: chain flexibility and membrane polarity gradients from spin-label electron spin resonance. Biochemistry. 2005;44:15017–23.

    Article  PubMed  CAS  Google Scholar 

  72. Chang EL. Unusual thermal stability of liposomes made from bipolar tetraether lipids. Biochem Biophys Res Commun. 1994;202:673–9.

    Article  PubMed  CAS  Google Scholar 

  73. Mathai JC, Sprott GD, Zeidel ML. Molecular mechanisms of water and solute transport across archaebacterial lipid membranes. J Biol Chem. 2001;276:27266–71.

    Article  PubMed  CAS  Google Scholar 

  74. Falck E, Patra M, Karttunen M, Hyvonen MT, Vattulainen I. Impact of cholesterol on voids in phospholipid membranes. J Chem Phys. 2004;121:12676–89.

    Article  PubMed  CAS  Google Scholar 

  75. Schroeder TBH, Leriche G, Koyanagi T, Johnson MA, Haengel KN, Eggenberger OM, Wang CL, Kim YH, Diraviyam K, Sept D, Yang J, Mayer M. Effects of lipid tethering in extremophile-inspired membranes on H+/OH− flux at room temperature. Biophys J. 2016;110:2430–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Luzatti V, Gulik A. Structure and polymorphism of tetraether lipids from Sulfolobus solfataricus: II. Conjectures regarding biological significance. Syst Appl Microbiol. 1986;7:262–5.

    Article  Google Scholar 

  77. Cario A, Grossi V, Schaeffer P, Oger PM. Membrane homeoviscous adaptation in the piezo-hyperthermophilic archaeon Thermococcus barophilus. Front Microbiol. 2015;6:1152. https://doi.org/10.3389/fmicb.2015.01152.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Patel GB, Sprott GD. Archaeobacterial ether lipid liposomes (archaeosomes) as novel vaccine and drug delivery systems. Crit Rev Biotechnol. 1999;19:317–57.

    Article  PubMed  CAS  Google Scholar 

  79. Whitfield DM, Eichler EE, Sprott GD. Synthesis of archaeal glycolipid adjuvants-what is the optimum number of sugars? Carbohydr Res. 2008;343:2349–60.

    Article  PubMed  CAS  Google Scholar 

  80. Benvegnu T, Rethore G, Brard M, Richter W, Plusquellec D. Archaeosomes based on novel synthetic tetraether-type lipids for the development of oral delivery systems. Chem Commun (Camb). 2005;44:5536–8.

    Article  CAS  Google Scholar 

  81. Patel GB, Agnew BJ, Deschatelets L, Fleming LP, Sprott GD. In vitro assessment of archaeosome stability for developing oral delivery systems. Int J Pharm. 2000;194:39–49.

    Article  PubMed  CAS  Google Scholar 

  82. Febo-Ayala W, Morera-Felix SL, Hrycyna CA, Thompson DH. Functional reconstitution of the integral membrane enzyme, isoprenylcysteine carboxyl methyltransferase, in synthetic bolalipid membrane vesicles. Biochemistry. 2006;45:14683–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Elferink MGL, Bosma T, Lolkema JS, Gleiszner M, Driessen AJM, Konings WN. Thermostability of respiratory terminal oxidases in the lipid environment. Biochim Biophys Acta. 1995;1230:31–7.

    Article  PubMed  Google Scholar 

  84. Elferink MGL, De Wit JG, Driessen AJ, Konings WN. Energy-transducing properties of primary proton pumps reconstituted into archaeal bipolar lipid vesicles. Eur J Biochem. 1993;214:917–25.

    Article  PubMed  CAS  Google Scholar 

  85. Freisleben HJ, Zwicker K, Jezek P, John G, Bettin-Bogutzki A, Ring K, Nawroth T. Reconstitution of bacteriorhodopsin and ATP synthase from Micrococcus luteus into liposomes of the purified main tetraether lipid from Thermoplasma acidophilum: proton conductance and light-driven ATP synthesis. Chem Phys Lipids. 1995;78:137–47.

    Article  PubMed  CAS  Google Scholar 

  86. In't Veld G, Elferink MGL, Driessen AJ, Konings WN. Reconstitution of the leucine transport system of Lactococcus lactis into liposomes composed of membrane-spanning lipids from Sulfolobus acidocaldarius. Biochemistry. 1992;31:12493–9.

    Google Scholar 

  87. Jacquemet A, Barbeau J, Lemiègre L, Benvegnu T. Archaeal tetraether bipolar lipids: structures, functions and applications. Biochimie. 2009;91:711–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank the support from NSF and ARO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parkson Lee-Gau Chong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chong, P.LG., Bonanno, A., Ayesa, U. (2017). Dynamics and Organization of Archaeal Tetraether Lipid Membranes. In: Chattopadhyay, A. (eds) Membrane Organization and Dynamics . Springer Series in Biophysics, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-66601-3_2

Download citation

Publish with us

Policies and ethics