Skip to main content

Carbon Nanotube (CNT)

  • Chapter
  • First Online:
Carbon

Abstract

Everything when miniaturized to the sub-100 nanometer scale, has new properties, regardless of what it is said Chad Mirkin, Professor of Chemistry (and materials science, engineering, medicine, biomedical engineering, and chemical and biological engineering) at Northwestern University, Chicago, IL. Indeed, nanoscale materials are used from sunscreen to chemical catalysis to antibacterial agents from the mundane to life-saving. Researchers are developing nanoscale assays to screen cancer, and detect infections and genes [1–8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Gerber, H.P. Lang, How the doors to the nanoworld opened. Nat. Technol. 1(1), 3–5 (2006)

    Google Scholar 

  2. R.A. Vega, C.K.F. Shen, D. Maspoch, J.G. Robach, R.A. Lamb, C.A. Mirkin, Monitoring single cell infectivity from virus-particle nanoarrays fabricated by parallel dip-pen nanolithography. Small 3, 1482 (2007)

    Article  Google Scholar 

  3. I. Bulbaugh, V. Blog, Engineered virus builds carbon nanotubes, Real Clear Sci. (2011)

    Google Scholar 

  4. Y.J. Lee et al., Fabricating genetically engineered high Poer lithium ion batteries using mutiple virus genes. Science 324(5930), 1050 (2009)

    Google Scholar 

  5. X. Dang et al., Researchers harness viruses to build solar cells. Nat. Technol. 6, 377 (2007)

    Google Scholar 

  6. J. Xiao, X. Pan, S. Guo, P. Ran, X. Bao, Towards fundamentals of confined catalysis in carbon nanotubes. J. Am. Chem. Soc. 137(1), 477 (2015)

    Article  Google Scholar 

  7. D. K. Yee, C. Georgia (eds.), Nanobiomaterials: Developments and Applications (CRC Press, Boca Raton, 2013)

    Google Scholar 

  8. S. Kang, M. Pinault, L.D. Pfefferle, M. Elimelech, Single walled VCarbonnanotubes exhibit strong antimicrobial activity. Langmuir 23, 8670 (2007)

    Article  Google Scholar 

  9. M.S. Islam, Nanoscale materials and devices for future communication networks. IEEE Comm. Mag. 48(96), 112 (2010)

    Article  Google Scholar 

  10. J. Liu, Y. Lu, A calorimetric lead biosensor using DNA zyme directed assembly of gold nano particles. J. Am. Chem. Soc. 125, 6642 (2003)

    Article  Google Scholar 

  11. S. Das et al., Designs for ultra-tiny special purpose nanoelectronic circuits. IEEE Trans. On Circuits and Syst. 54(11), 2528 (2007)

    Article  Google Scholar 

  12. R. Boyle, 7 amazing ways nanotechnology is changing the world, Science, (2012)

    Google Scholar 

  13. G.L. Hornyak, H.F. Tibals, J. Dutta, J.J. Moore, Introduction to Nanoscience and Nanotechnology (CRC Press, Boca Raton, 2008)

    Google Scholar 

  14. C. Binns, Introduction to Nanoscience and Nanotechnology (Wiley, Oxford, 2010)

    Book  Google Scholar 

  15. M.C. Roco, Nanotechnology’s future. Sci. Am. 295(2), 21 (2006.) and also The future of national nanotechnology initiative, NSF, Nov. 7, (2003) and OECD Information Technology Outlook Ch-7, p-264 (2004)

    Article  Google Scholar 

  16. M.C. Roco, National Nanotechnology Initiative – Past, Present, Future, in Handbook on Nanoscience Engineering and Technology, 2nd edn. (Taylor and Francis, Oxford, 2007), pp. 3.1–3.26

    Google Scholar 

  17. J.M. Bonard, H. Kind, T. Stockli, L.O. Nilsson, Field emission from carbon nanotubes: the first five years. Solid State Electron. 45, 893 (2001)

    Article  Google Scholar 

  18. M. Daenen, R.D. de Fouw, B. Hamers, P.G.A. Janssen, K. SSchouteden, M.A.J. Veld, The Wondrous World of Carbon Nanotubes. A Review of Current Carbon Nanotube Technologies (Endhoven University of Technology, Eindhoven, 2003), p. 93

    Google Scholar 

  19. T.W. Odom, J.L. Huang, C.M. Lieber, Single walled carbon nanotubes: from fundamental studies to new device concepts. Ann. N. Y. Acad. Sci. 960, 203 (2002)

    Article  Google Scholar 

  20. E.G. Rakov, Chemistry of carbon nanotubes, in Carbon Nanomaterials ed. by Y. Gogotsi (CRC Press, Boca Raton, 2006), p. 78

    Google Scholar 

  21. E.N. Ganesh, Single walled and multiple walled carbon nanotubes structure, synthesis, and applications. Int. J. Innov. Technol. Explorating Eng. (IJITEE) 2(4), 34 (2013)

    Google Scholar 

  22. T.W. Odom, H. Jin-Lin, P. Kim, C.M. Lieber, Atomic structure and electronic properties single walled carbon nanotubes. Nature 391, 62 (1998)

    Article  Google Scholar 

  23. R. Matel et al., Ambipolar electrical transport in semiconducting single wall carbon nanotubes. Phys. Rev. Lett. 87, 256805 (2001)

    Article  Google Scholar 

  24. R.J. Chen et al., Molecular photodesorption from single walled carbon nanotubes. Appl. Phys. Lett. 79, 2258 (2001)

    Article  Google Scholar 

  25. Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, H. Dai, Growth of single walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J. Phys. Chem. B 105, 11424 (2001)

    Article  Google Scholar 

  26. J. Kong, H.T. Soh, A. Cassell, C.F. Quate, H. Dai, Synthesis of single walled carbon nanotubes on patterned silicon wafers. Nature 395, 878 (1998)

    Article  Google Scholar 

  27. M.S. Dresselhaus, G. Dresseihaus, R. Saito, Physics of carbon nanotubes. Carbon 33(7), 883 (1995)

    Article  Google Scholar 

  28. M.S. Dresselhaus et al., Nanowires and nanotubes. Mater. Sci. Eng. C 23, 129 (2003)

    Article  Google Scholar 

  29. T. Brown, H. Lemay, B. Bursten, Chemistry, The Central Science, 8th edn. (Prantice Hall, Upper Saddle River, 2002)

    Google Scholar 

  30. R. Saito, G. Dresselhaus, M. Dresselhaus, Electronic structure of double-layer graphene tubes. J. Appl. Phys. 73(2), 494 (1993)

    Article  Google Scholar 

  31. H. Frohlich, Theory of superconductivity state.1. The ground state at the absolute zero temperature. Phys. Ther. Rev. 79, 845 (1952)

    MATH  Google Scholar 

  32. J. Bardeen, N. Cooper, J.R. Schrieffer, Theory of superconductivity. Phys. Ther. Rev. 108(5), 1175 (1957.) and also W. Shi, et al., superconductivity in bundles of double wall carbon nanotubes, Nature Sci. Repts., -2 Article No. 625, (2012), and M. Ferrier, Appl. Phys. D, 43, 374003 (2010)

    MATH  MathSciNet  Google Scholar 

  33. J.P. Issi et al., Electronic properties of carbon nanotubes: experimental results. Carbon 33, 941 (1995)

    Article  Google Scholar 

  34. L. Langer et al., Electrical resistance of a carbon nanotube bundle. J. Mat. Res. 9(4), 927 (1994)

    Article  Google Scholar 

  35. S. Iijima, Helical microtubes of graphite carbon. Nature 56, 354 (1991)

    Google Scholar 

  36. W. Kratschmer, L.D. Lamb, F. Fostiropoulos, D. Huffman, Solid C60 in the form of carbon. Nature 354, 347 (1990)

    Google Scholar 

  37. S. Iijima, T. Ichihaschi, Single shell carbon nanotubes, of 1 nm diameter. Nature 603, 363 (1993)

    Google Scholar 

  38. D.S. Bethune et al., Cobalt crystallized growth of carbon nanotubes with single atomic layer walls. Nature 605, 304 (1993)

    Google Scholar 

  39. C. Journet et al., Large scale production of single-walled carbon nanotubes by electric arc technique. Nature 388, 756 (1997)

    Article  Google Scholar 

  40. Z. Shi et al., Mass production of single-walled carbon nanotubes by arc discharge method. Carbon 37, 1449 (1999)

    Article  Google Scholar 

  41. A.V. Krestinin et al., Perspectives of single-walled carbon nanotube production in arc discharge process. Euras. Chem. Tech. J. 5, 7 (2003)

    Article  Google Scholar 

  42. M. Yadasaka, T. Komatsu, T. Ichihashi, S. Lijima, Single wall carbon nanotube formation by laser ablation using double targets of carbon and metal. Chem. Phys. Lett. 278, 102 (1997)

    Article  Google Scholar 

  43. D.T. Colbert, R.E. Smalley, Past, present, and future of fullerene nanotubes: Bucky tubes in Perspective of Fullerene Nanotechnoloegy, ed. by E. Osawa (Kluwer, Dordrecht, 2002), pp. 3–10

    Google Scholar 

  44. W.K. Maser, A.M. Benito, M.T. Martinez, Production of carbon nanotubes: the light approach, by focused solar radiation. Carbon 40, 1685 (2002)

    Article  Google Scholar 

  45. D. Laplaze et al., Carbon nanotubes: the solar approach. Carbon 36, 685 (1998)

    Article  Google Scholar 

  46. M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes Synthesis, Structure, Properties, and Applications (Springer, Berlin, 2000), p. 23

    Google Scholar 

  47. T.W. Ebbesen, Seamless cylindrical shells of graphite carbon have novel and electronic properties that suggest new high strength, fibers, submicroscopic test tubes, and perhaps semiconductor materials. Phys. Today 49, 26 (1996)

    Article  Google Scholar 

  48. T.W. Ebbesen, P.M. Ajayan, Large scale synthesis of carbon nanotubes. Nature 358, 220 (1992)

    Article  Google Scholar 

  49. D.T. Colbert, J. Zhan, S.M. Mcclure, P. Nikolaev, Z. Chen, J.H. Hafner, D.W. Owens, P.G. Kotula, C.B. Carter, J.H. Weaver, A.G. Rinzler, R.E. Smalley, Growth and sintering of fullerene nanotubes. Science 266, 1218 (1994)

    Article  Google Scholar 

  50. S. Iijima, T. Ichihashi, Single shell carbon nanotubes, of 1 nm diameter. Nature 363, 603 (1993)

    Article  Google Scholar 

  51. D.S. Bethune, C.H. Kiang, M.S. Devries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Cobalt catalyzed growth of carbon nanotubes with single atomic layer. Nature 363, 605–607 (1993)

    Article  Google Scholar 

  52. Y. Ando, S. Iijima, Preparation of carbon nanotubes by arc-discharge evaporation. Jpn. J. Appl. Phys., Part 2 32, 107 (1993)

    Article  Google Scholar 

  53. Y. Ando, Preparation of carbon nanotubes. Fuller. Sci. Technol. 2, 173–180 (1994)

    Article  Google Scholar 

  54. M. Wang, X.L. Zhao, M. Ohkohchi, Y. Ando, Carbon nanotube grown on the surface of cathode depositing by arch discharge. Fuller. Sci. Technol. 4, 1027 (1996)

    Article  Google Scholar 

  55. Y. Ando, X. Zhao, M. Ohkohchi, Production of petal like graphite sheets by hydrogen arc-discharge. Carbon 35, 153 (1997)

    Article  Google Scholar 

  56. X. Zhao, M. Ohkohchi, M. Wang, S. Iijima, T. Ichihashi, Y. Ando, Preparation of high grade carbon nanotubesby hydrogen discharge. Carbon 35, 775 (1997)

    Article  Google Scholar 

  57. X.K. Wang, X.W. Lin, V.P. Dravid, J.B. Ketterson, R.P.H. Chang, Carbon nanotube synthesized in a hydrogen arc-discharge. Appl. Phys. Lett. 66, 2430 (1995)

    Article  Google Scholar 

  58. Y. Ando, X.L. Zhao, M. Ohkohchi, Song of purified carbonnanotubes. Jpn. J. Appl. Phys., Part 2 37, 61 (1998)

    Article  Google Scholar 

  59. Y. Tai, K. Inukai, T. Osaki, M. Tazawa, J. Murakami, S. Tanemura, Y. Ando, Identification of compounds produced through contact arc vaporization of graphite under CH4 ambience. Chem. Phys. Lett. 224, 118 (1994)

    Article  Google Scholar 

  60. Y. Jiang et al., Influence of NH3 atmosphere on the growth and structure of carbon nanotubes synthesized by arc-discharge method. Inorg. Mater. 45, 1237 (2009)

    Article  Google Scholar 

  61. N. Parkansky et al., Single pulse arc production of carbon nanotubes in ambient air. J. Phys. D. Appl. Phys. 37(19), 2715 (2004)

    Article  Google Scholar 

  62. J. Prasek et al., Methods of carbon nanotubes synthesis—Review. J. Mater. Chem. 21, 15872 (2011.) Royal Soc. Chem Pub

    Article  Google Scholar 

  63. T.K. Gupta, Copper Connect Technology (Springer, NY, 2009)

    Google Scholar 

  64. D. Dokin, M.K. Zuraw, Principles of Chemical Vapor Deposition (Kluwer, Norwell, 2003)

    Book  Google Scholar 

  65. H.O. Pierson, Hand Book of Chemical Vapor Deposition, 2nd edn. (Elsevier, Amsterdam, 1991)

    Google Scholar 

  66. M. Hitchman, K. Jensen, Chemical Vapor Deposition (Elsevier, Amsterdam, 1993)

    Google Scholar 

  67. E. Flahaut, C. Laurent, A. Peigney, Catalytic CVD synthesis of double and tripple walled carbon nanotubes by the control of the catalyst preparation. Carbon 43, 375 (2005)

    Article  Google Scholar 

  68. X. Xiang, L. Zhang, H.I. Hima, F. Li, D.G. Evans, Co-based catalysts from co/Fe/al layered double hydroxides for the preparation of carbon nanotubes. Appl.Clay Sci. 42, 405 (2009.) and also K. Hata et al., Water assisted highly efficient synthesis of impurity free sinle walled carbon nanotube synthesis, Science 306(5700), 1362 (2004)

    Article  Google Scholar 

  69. S.C. Lyu, B.C. Liu, C.J. Lee, H.K. Kang, C.W. Wang, C.Y. Park, High quality double walled carbon nanotubes produced by catalytic decomposition of benzene. Chem. Mater. 15, 3951 (2003)

    Article  Google Scholar 

  70. S.M. Kim, L. Ganglof, Growth of carbon nanotubes (CNTs) on metallic by diffusion plasma enhanced chemical vapor deposition. Phys. E (Amsterdam, Neth.) 41, 1763 (2009)

    Article  Google Scholar 

  71. H. Wang, J.J. Moore, Different growth mechanisms of vertical carbon nanotubes by r-f or dc plasma enhanced chemical vapor deposition. J. Vac. Sci. Technol., B: Nanometer Struct. Process. Meas. Phenom. 28, 1081 (2010)

    Article  Google Scholar 

  72. M. Chhowala et al., Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J. Appl. Phys. 90, 5308 (2001)

    Article  Google Scholar 

  73. Y. Hayashi, T. Negishi, S. Nishino, Growth of well aligned carbon nanotubes on nickel by hot filament assisted dc plasma chemical vapor deposition. J. Vac. Sci. Technol. A 19, 1796 (2001)

    Article  Google Scholar 

  74. Y. Kojima et al., Growth of high quality carbon nanotubes by grid-inserted plasma enhanced chemical vapor deposition for field emitters. Jp. J. Appl. Phys. 44, 2600 (2005)

    Article  Google Scholar 

  75. G. Sato, T. Kato, W. Oohara, R. Hatakeyama, Production and application of reactive plasmas using helicon wave discharge in very low magnetic field. Thin Solid Films 506, 550 (2006)

    Article  Google Scholar 

  76. T. Hirao et al., Formation of vertically aligned carbon nanotubes by dual-RF-plasma chemical vapor deposition. Jp. J. Appl. Phys. 40, 1631 (2001)

    Article  Google Scholar 

  77. J.D. Ferguson, G. Arikan, D.S. Dale, A.R. Woll, J.D. Brock, Measurements of surface diffusivity and coarsening during pulse laser deposition. Phys. Rev. Lett. 103(25), 256103 (2009)

    Article  Google Scholar 

  78. D.B. Chrisey, G.K. Hubler, Pulse Laser Deposition of Thin Films (Wiley, NY, 1994)

    Google Scholar 

  79. T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett. 243, 49 (1995)

    Article  Google Scholar 

  80. F. Bonaccorso, C. Bongiorno, B. Fazio, P.G. Gucciardi, et al., Pulsed laser deposition of multi-walled carbon nanotubes thin films. Appl. Sci. Surf. 254, 1260 (2007)

    Article  Google Scholar 

  81. L.L. Lebel, B. Aissa, M.A. El Khakani, D. Therriault, Preparation and mechanical characterization of laser ablated single-walled carbon nanotubes/polyurethane nanocomposite microbeams. Compos. Sci. Technol. 70, 518 (2010)

    Article  Google Scholar 

  82. J.P. Gore, A. Sane, Flame synthesis of carbon nanotubes, in Carbon Nanotubes—Synthesis, Characterization, Application, ed. by S. Yellampalli (INTECH, Indianapolis, 2011)

    Google Scholar 

  83. R.L. Vander Wall, L.J. Hall, G.M. Berger, Optimization of flame synthesis for carbon nanotubes using supported catalyst. J. Phys. Chem. B 106(51), 13122–13132 (2002)

    Article  Google Scholar 

  84. P. Gopinath, J. Gore, Chemical kinetic considearations for post flame symthesis of carbon nanotubes in pre-mixed flames using a support catalyst. Combust. Flame 151(3), 542–550 (2007)

    Article  Google Scholar 

  85. I. Khatri et al., Synthesis and characterization of carbon nanotubes via ultrasonic spray pyrolysis method on zeolite. Thin Solid Films 518(23), 6756 (2010)

    Article  Google Scholar 

  86. I. Khatri et al., Synthesis of single walled carbon nanotubes by ultrasonic spray pyrolysis method. Diam. Relat. Mater. 18, 319 (2009)

    Article  Google Scholar 

  87. G. Kucukayan et al., An experimental and theoretical examination of the effect of sulfur on the pyrotically grown carbon nanotubes from sucrose based solid state precursors. Carbon 49, 508 (2011)

    Article  Google Scholar 

  88. J.P. Camarena et al., Molecular assembly of multiwall carbon nanotubes with amino crown ether: Synthesis and characterization. J. Nanosci. Nanotechnol. 11, 5539 (2011)

    Article  Google Scholar 

  89. Y.H. Kuang, K.Z. Li, H.J. Li, Z.W. Xu, Y.J. Wang, A solid state hybrid method to Synthsize straight carbon nanotubes by pyrolysis of two metal Phthalocyamines. Chinese J. Inorg. Chem. 26(6), 951 (2009)

    Google Scholar 

  90. J. Prasek et al., Chemical vapor depositions of carbon nanotubes synthesis, Chapter-7, in Applications of Carbon Nanotubes ed. by A.K. Mishra (Nova, Hauppauge, 2013)

    Google Scholar 

  91. P. Nikolaev et al., Gas phase catalytic growth of single walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313, 91 (1999)

    Article  Google Scholar 

  92. M. Kumar, Y. Ando, Gigas growth of carbon nanotubes. Def. Sci. J. 58, 496 (2008)

    Article  Google Scholar 

  93. M. Endo, T. Hayashi, Y.A. Kim, M. Terrones, M.S. Dresselhaus, Applications of carbon nanotubes in the twenty first century. Phil. Trans. R. Soc. Lon. A 352, 2223 (2004)

    Article  Google Scholar 

  94. H. Cheng, C. Liu, Y.Y. Fan, F. Li, H.T. Cong, L.L. He, M. Liu, Synthesis and hydrogen storage of carbon nano fibers and single-walled carbon nanotubes. Appl. Phys. Lett. 72, 3282 (1998)

    Article  Google Scholar 

  95. J. Haruyama, I. Takesue, N. Kobayashi, et al., Superconductivity in early end-bonded multiwalled carbon nanotubes. Phys. Rev. Lett. 5, 96 (2006)

    Google Scholar 

  96. M. Tinkam, Introduction to Superconductivty (McGraw Hill, 1996)

    Google Scholar 

  97. E. Yasuda et al., Carbon Alloys: Novel Concept to Develop Carbon Science and Technology (Elsevier, NY, 2003)

    Google Scholar 

  98. W. Shi et al., Superconductivity in bundles of double-walled carbon nanotubes, nature nanotubes. Sci. Rep. 2, 625 (2012)

    Article  Google Scholar 

  99. P.F. Sullivan, G. Seidel, Staedy state ac-temperature calorimetry. Phys. Ther. Rev. 173, 679 (1968)

    Google Scholar 

  100. Y. Wang, C. Senatore, V. Abacherli, D. Uglietti, R. Flukiger, Specific heat of Nb3Sn wires. Supercond. Sci. Technol. 19, 263 (2006)

    Article  Google Scholar 

  101. P.L. McEuen, M.S. Fuhrer, H. Park, Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 1, 78 (2002)

    Article  Google Scholar 

  102. J. Haruyama, Superconductivity in carbon nanotubes, Chapter-33, in Carbon Nanotubes, ed. by J.M. Marulanda (Rijeka, 2010)

    Google Scholar 

  103. I. Takesue, J. Haruyama, N. Kobayashi, S. Chiashi, S. Maruyama, T. Sugai, H. Shinohara, Superconductivity in entirely end-bonded multi-walled carbon nanotubes. Phys. Rev. Lett. 96, 057001 (2006)

    Article  Google Scholar 

  104. R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60, 1579 (1992)

    Article  Google Scholar 

  105. H. Katura et al., Optical properties of single walled carbon nanotubes. Synth. Met. 108, 2555 (1999)

    Article  Google Scholar 

  106. M. Bachilo et al., Structure-assigned optical spectra of single walled carbon nanotubes. Science 298, 2361 (2002)

    Article  Google Scholar 

  107. S. Botti, R. Ciardi, L. de Dominics, L.S. Asilyan, R. Fantoni, T. Marolo, DFWM measurements of third order succeptibility of single-wall carbon nanotubes grown without catalyst. Chem. Phys. Lett. 378, 117 (2003)

    Article  Google Scholar 

  108. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imerial College Press, London, 1998)

    Book  MATH  Google Scholar 

  109. Y-C. Chen, Raman spectroscopy studies on Single-Walled Carbon Nanotubes (SWNTs) and SWNT/Ag Nanostructure, Ph.D. Thesis, The University of Manchester, Engineering and Physical Science, London, (2008)

    Google Scholar 

  110. B. Bendjemll, Electronic and optical properties of the excess purified SWCNTs produced by HIPCO. J. Nanoelectron. mater. 2, 173 (2009)

    Google Scholar 

  111. H. Kataura et al., Optical properties of single-wall carbon nanotube. Synth. Met. 103, 2555 (1999)

    Article  Google Scholar 

  112. M.S. Bell et al., Carbon nanotube deposition br plasma enhanced CVD. Pure Appl. Chem. 76(6), 1117 (2006)

    Google Scholar 

  113. L. Zhang et al., Four-probe charge transport measurements on individual vertically aligned carbon nano-fibers. Appl. Phys. Lett. 84, 3972 (2004)

    Article  Google Scholar 

  114. E.J.H. Lee, L. Zhi, M. Burghard, K. Mullen, K. Kern, Electrical properties and photoconductivity of stacked graphene carbon nanotubes. Adv. Mater. 22, 1854 (2010)

    Article  Google Scholar 

  115. T.K. Gupta, Effect of temperature on electrical conduction of carbon-black filled polyimide. IEEE Trans. On Comp. Hybrids. Manuf. Technol. 12, 696 (1989)

    Article  Google Scholar 

  116. N.F. Mott, Conduction in non-crystalline materials. Phil. Mag. 19, 835 (1969)

    Article  Google Scholar 

  117. R.J. Chen et al., Molecular desorption from single-walled carbon nanotubes. J. Appl. Phys. Lett. 79, 2258 (2001)

    Article  Google Scholar 

  118. Q. Zhao, Z. Gan, Q. Zhuang, Electrochemical sensors based on carbon nanotubes. Electroanalysis 14, 1609 (2002)

    Article  Google Scholar 

  119. M. Musameh, J. Wang, A. Merkoci, Y. Lin, Low potential stable NADH detection at carbon nanotube modified carbon electrodes. Electrochem. Commun. 4, 743 (2002)

    Article  Google Scholar 

  120. J.J. Goodling et al., Protein electrochemistry using aligned carbon nanotube arrays. J. Am. Chem. Soc. 125, 9006 (2003)

    Article  Google Scholar 

  121. X. Yu, D. Chattopadhyay, F. Papadimitrakopoulos, J.F. Rusling, Peroxidase activity of enzymes bound to the ends of single-wall carbonnano tube forest electrodes. Electrochem. Commun. 5, 408 (2003)

    Article  Google Scholar 

  122. J. Wang, Carbon nanotube based electrochemical biosensors: a review. Electroanalysis 17(1), 7 (2005)

    Article  Google Scholar 

  123. F. Patolsky, Y. Weizmann, I. Willner, Long range electrical contacting of redox enzymes by SWCNT connectors. Angew. Chem. Int. Ed. 43, 2113 (2004)

    Article  Google Scholar 

  124. V. Ambegaokar, B.L. Harpin, J.S. Langer, Hopping conductivity in disordered systems. Phys. Ther. Rev. B4, 2612 (1971)

    Google Scholar 

  125. J. Li et al., Carbon nanotubes sensors for gas and organic vapor detection. Nano Lett. 3(7), 929 (2003)

    Article  Google Scholar 

  126. Y. Wang, T.W. Yeow, A review of carbon nanotubes-based sensors, J. Sens. 2009, 24, article ID 493904, (2009)

    Google Scholar 

  127. T. Someya, J. Small, P. Kim, J.C. Nuckkolls, J.T. Yardley, Alcohol vapor sensors based on single-walled carbon nanotube field effect transistors. Nano Lett. 3(7), 877 (2003)

    Article  Google Scholar 

  128. J. Cong et al., Nanotube molecular wires as chemical sensors. Science 287, 5453 (2000)

    Google Scholar 

  129. S.M. Khamis, R.A. Jones, A.T.C. Johnson, G. Preti, J. Kwak, A. Gelperin, DNA-decorated carbon nanotube (DNA-NT) -based FETs as ultrasensitive chemical sensors: discrimination of homologues, structural isomers, and optical isomers. AIP Adv. 2(2), 022110 (2012)

    Article  Google Scholar 

  130. A. Star et al., Label-free detection of DNA hybridization using carbon nanotube network field effect transistors. Proc. Natl. Acad. Sci. 103(4), 921 (2005)

    Article  Google Scholar 

  131. A.A. Bhirde et al., Targeted killing cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 3(2), 307 (2009)

    Article  Google Scholar 

  132. N.W.S. Kam et al., Carbon nanotubes as multifunctional biological transporters and near infrared agents for selective cancer destruction. Nat. Acad. Sci. 102(33), 11600 (2005)

    Article  Google Scholar 

  133. B. Zhao et al., A bone mimic based on the self-assembly of hydroxyapatite on chemically functional single-walled carbon nanotubes. Chem. Mater. 17, 3235 (2005)

    Article  Google Scholar 

  134. M. Endo et al., Lithium secondary battery using vapor G carbon fibers as negative electrode and analysis of electrode mechanism by TEM observation. Trans. IEEJ pn.A. 115, 349 (1995)

    Google Scholar 

  135. K. Takasumi et al., A modification in the preparation process of a carbon whisker for anode performance of lithium rechargable batteries. J. Power Sources 54, 425 (1999)

    Google Scholar 

  136. P.J. Britto et al., Improved charge transfer at carbon nanotube electrodes. Adv. Mater. 11, 154 (1999)

    Article  Google Scholar 

  137. L. Childress, R. Hanson, Diamond NV centers for quantum computing and quantum networks. MRS Bul. 38, 134 (2013)

    Article  Google Scholar 

  138. H. Liu et al., Large scale single chirality separation of single wall carbon nanotubes by simple gel chromatography. Nat. Commun. 2, 309 (2011)

    Article  Google Scholar 

  139. R. Rao et al., In situ evidence for chirality dependent growth rates of individual carbon nanotubes. Nat. Mater. 11, 213 (2012)

    Article  Google Scholar 

  140. F. Feng et al., Templated symthesis of single-walled carbon nanotubes. ACC Chem. Res. 49(4), 606 (2016)

    Article  Google Scholar 

  141. J. Zaumseil, Single-walled carbon nanotube networks for flexible and printed electronics. Semicond. Sci. Technol. 30(7), 074001 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Gupta, T. (2018). Carbon Nanotube (CNT). In: Carbon. Springer, Cham. https://doi.org/10.1007/978-3-319-66405-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66405-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66404-0

  • Online ISBN: 978-3-319-66405-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics