Skip to main content

Transcription Factor-Mediated Gene Regulation in Archaea

  • Chapter
  • First Online:

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 32))

Abstract

Adequate gene regulation in response to environmental and/or metabolic changes is crucial for the fitness and survival of microorganisms. Transcription factors are important elements of microbial gene regulation. Intriguingly, although the archaeal basal transcription machinery is more similar to that seen in the eukaryotic domain of life, transcription factor-mediated gene regulation largely follows the bacterial paradigm. This chapter deals with structural and functional characteristics of archaeal transcription factors. Although one-component and two-component systems are both present in the archaeal domain of life, one-component systems dominate. Different aspects of transcription factor functioning are discussed, including mechanisms of DNA binding, regulatory mechanisms and sensing and signal transduction mechanisms. Archaeal transcription factors primarily interact with DNA using a winged helix-turn-helix DNA binding motif. Transcriptional repression is achieved through a variety of promoter occlusion mechanisms like those seen in bacteria. In contrast, activation mechanisms vary from those found in bacteria and involve recruitment of the general transcription factors TATA binding protein and transcription factor B to the promoter. A variety of environmental signals are sensed through ligand binding or redox-sensing. The body of literature covering studies of archaeal transcription regulation has expanded significantly over the past 15 years. However, there is still much to be learned from future studies particularly in the area of signal transduction as well as gene regulatory networks in archaea.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abella M, Rodríguez S, Paytubi S et al (2007) The Sulfolobus solfataricus radA paralogue sso0777 is DNA damage inducible and positively regulated by the Sta1 protein. Nucleic Acids Res 35:6788–6797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad MUD, Waege I, Hausner W et al (2015) Structural insights into nonspecific binding of DNA by TrmBL2, an archaeal chromatin protein. J Mol Biol 427:3216–3229

    Article  PubMed  CAS  Google Scholar 

  • Allen MA, Lauro FM, Williams TJ et al (2009) The genome sequence of the psychrophilic archaeon, Methanococcoides burtonii: the role of genome evolution in cold adaptation. ISME J 3:1012–1035

    Article  CAS  PubMed  Google Scholar 

  • Aparicio O, Geisberg JV, Struhl K (2004) Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo. Curr Protoc Cell Biol Chap 17:Unit 17.7

    Google Scholar 

  • Aravind L, Koonin EV (1999) DNA-binding proteins and evolution of transcription regulation in the archaea. Nucleic Acids Res 27:4658–4670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aravind L, Anantharaman V, Balaji S et al (2005) The many faces of the helix-turn-helix domain: transcription regulation and beyond. FEMS Microbiol Rev 29:231–262

    Article  CAS  PubMed  Google Scholar 

  • Ashby MK (2006) Distribution, structure and diversity of “bacterial” genes encoding two-component proteins in the Euryarchaeota. Archaea 2:11–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auguet J-C, Barberan A, Casamayor EO (2010) Global ecological patterns in uncultured archaea. ISME J 4:182–190

    Article  PubMed  Google Scholar 

  • Ayala JC, Wang H, Silva AJ, Benitez JA (2015) Repression by H-NS of genes required for the biosynthesis of the Vibrio cholerae biofilm matrix is modulated by the second messenger cyclic diguanylic acid. Mol Microbiol 97:630–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker-Austin C, Dopson M, Wexler M et al (2007) Extreme arsenic resistance by the acidophilic archaeon “Ferroplasma acidarmanus” Fer1. Extremophiles 11:425–434

    Article  CAS  PubMed  Google Scholar 

  • Baliga NS, Goo YA, Ng WV et al (2000) Is gene expression in Halobacterium NRC-1 regulated by multiple TBP and TFB transcription factors? Mol Microbiol 36:1184–1185

    Article  CAS  PubMed  Google Scholar 

  • Baumann P, Qureshi SA, Jackson SP (1995) Transcription: new insights from studies on archaea. Trends Genet 11:279–283

    Article  CAS  PubMed  Google Scholar 

  • Bell SD, Jackson SP (1998) Transcription and translation in archaea: a mosaic of eukaryal and bacterial features. Trends Microbiol 6:222–228

    Article  CAS  PubMed  Google Scholar 

  • Bell SD, Jackson SP (2000) Mechanism of autoregulation by an archaeal transcriptional repressor. J Biol Chem 275:31624–31629

    Article  CAS  PubMed  Google Scholar 

  • Bell SD, Jackson SP (2001) Mechanism and regulation of transcription in archaea. Curr Opin Microbiol 4:208–213

    Article  CAS  PubMed  Google Scholar 

  • Bell SD, Jaxel C, Nadal M et al (1998) Temperature, template topology, and factor requirements of archaeal transcription. Proc Natl Acad Sci USA 95:15218–15222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell SD, Cairns SS, Robson RL, Jackson SP (1999a) Transcriptional regulation of an archaeal operon in vivo and in vitro. Mol Cell 4:971–982

    Article  CAS  PubMed  Google Scholar 

  • Bell SD, Kosa PL, Sigler PB, Jackson SP (1999b) Orientation of the transcription preinitiation complex in archaea. Proc Natl Acad Sci USA 96:13662–13667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell SD, Brinkman AB, van der Oost J, Jackson SP (2001) The archaeal TFIIEalpha homologue facilitates transcription initiation by enhancing TATA-box recognition. EMBO Rep 2:133–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonneau R, Facciotti MT, Reiss DJ et al (2007) A predictive model for transcriptional control of physiology in a free living cell. Cell 131:1354–1365

    Article  CAS  PubMed  Google Scholar 

  • Brinkman AB, Dahlke I, Tuininga JE et al (2000) An Lrp-like transcriptional regulator from the archaeon Pyrococcus furiosus is negatively autoregulated. J Biol Chem 275:38160–38169

    Article  CAS  PubMed  Google Scholar 

  • Brinkman AB, Ettema TJG, de Vos WM, van der Oost J (2003) The Lrp family of transcriptional regulators. Mol Microbiol 48:287–294

    Article  CAS  PubMed  Google Scholar 

  • Brouns SJJ, Walther J, Snijders APL et al (2006) Identification of the missing links in prokaryotic pentose oxidation pathways: evidence for enzyme recruitment. J Biol Chem 281:27378–27388

    Article  CAS  PubMed  Google Scholar 

  • Busenlehner LS, Pennella MA, Giedroc DP (2003) The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiol Rev 27:131–143

    Article  CAS  PubMed  Google Scholar 

  • Castelle CJ, Wrighton KC, Thomas BC et al (2015) Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr Biol 25:690–701

    Article  CAS  PubMed  Google Scholar 

  • Chaban B, Ng SYM, Jarrell KF (2006) Archaeal habitats--from the extreme to the ordinary. Can J Microbiol 52:73–116

    Article  CAS  PubMed  Google Scholar 

  • Charoensawan V, Wilson D, Teichmann SA (2010) Genomic repertoires of DNA-binding transcription factors across the tree of life. Nucleic Acids Res 38:7364–7377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Chen L-R, Zhou XE et al (2004) The hyperthermophile protein Sso10a is a dimer of winged helix DNA-binding domains linked by an antiparallel coiled coil rod. J Mol Biol 341:73–91

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Yu H, Li L et al (2012) The genome and transcriptome of a newly described psychrophilic archaeon, Methanolobus psychrophilus R15, reveal its cold adaptive characteristics. Environ Microbiol Rep 4:633–641

    CAS  PubMed  Google Scholar 

  • Chivers PT, Tahirov TH (2005) Structure of Pyrococcus horikoshii NikR: nickel sensing and implications for the regulation of DNA recognition. J Mol Biol 348:597–607

    Article  CAS  PubMed  Google Scholar 

  • Chothia C (1984) Principles that determine the structure of proteins. Annu Rev Biochem 53:537–572

    Article  CAS  PubMed  Google Scholar 

  • Cline SW, Doolittle WF (1987) Efficient transfection of the archaebacterium Halobacterium halobium. J Bacteriol 169:1341–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen SP, Hächler H, Levy SB (1993) Genetic and functional analysis of the multiple antibiotic resistance (mar) locus in Escherichia coli. J Bacteriol 175:1484–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coker JA, DasSarma S (2007) Genetic and transcriptomic analysis of transcription factor genes in the model halophilic archaeon: coordinate action of TbpD and TfbA. BMC Genet 8:61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coulson RMR, Touboul N, Ouzounis CA (2007) Lineage-specific partitions in archaeal transcription. Archaea 2:117–125

    Article  CAS  PubMed  Google Scholar 

  • Darcy TJ, Hausner W, Awery DE et al (1999) Methanobacterium thermoautotrophicum RNA polymerase and transcription in vitro. J Bacteriol 181:4424–4429

    CAS  PubMed  PubMed Central  Google Scholar 

  • DeLong EF, Pace NR (2001) Environmental diversity of bacteria and archaea. Syst Biol 50:470–478

    Article  CAS  PubMed  Google Scholar 

  • Di Fiore A, Fiorentino G, Vitale RM et al (2009) Structural analysis of BldR from Sulfolobus solfataricus provides insights into the molecular basis of transcriptional activation in archaea by MarR family proteins. J Mol Biol 388:559–569

    Article  PubMed  CAS  Google Scholar 

  • Diruggiero J, Dunn D, Maeder DL et al (2000) Evidence of recent lateral gene transfer among hyperthermophilic archaea. Mol Microbiol 38:684–693

    Article  CAS  PubMed  Google Scholar 

  • Efremov AK, Qu Y, Maruyama H et al (2015) Transcriptional repressor TrmBL2 from Thermococcus kodakarensis forms filamentous nucleoprotein structures and competes with histones for DNA binding in a salt- and DNA supercoiling-dependent manner. J Biol Chem 290:15770–15784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enoru-Eta J, Gigot D, Thia-Toong TL et al (2000) Purification and characterization of Sa-lrp, a DNA-binding protein from the extreme thermoacidophilic archaeon Sulfolobus acidocaldarius homologous to the bacterial global transcriptional regulator Lrp. J Bacteriol 182:3661–3672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esser D, Pham KT, Reimann J et al (2012) Change of carbon source causes dramatic effects in the phospho-proteome of the archaeon Sulfolobus solfataricus. J Proteome Res 11:4823–4833

    Article  CAS  PubMed  Google Scholar 

  • Esser D, Hoffmann L, Pham TK et al (2016) Protein phosphorylation and its role in archaeal signal transduction. FEMS Microbiol Rev 40:625–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Facciotti MT, Reiss DJ, Pan M et al (2007) General transcription factor specified global gene regulation in archaea. Proc Natl Acad Sci USA 104:4630–4635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiorentino G, Cannio R, Rossi M, Bartolucci S (2003) Transcriptional regulation of the gene encoding an alcohol dehydrogenase in the archaeon Sulfolobus solfataricus involves multiple factors and control elements. J Bacteriol 185:3926–3934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiorentino G, Ronca R, Cannio R et al (2007) MarR-like transcriptional regulator involved in detoxification of aromatic compounds in Sulfolobus solfataricus. J Bacteriol 189:7351–7360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiorentino G, Del Giudice I, Bartolucci S et al (2011) Identification and physicochemical characterization of BldR2 from Sulfolobus solfataricus, a novel archaeal member of the MarR transcription factor family. Biochemistry 50:6607–6621

    Article  CAS  PubMed  Google Scholar 

  • Forterre P, Bergerat A, López-García P (1996) The unique DNA topology and DNA topoisomerases of hyperthermophilic archaea. FEMS Microbiol Rev 18:237–248

    Article  CAS  PubMed  Google Scholar 

  • Franzmann PD, Springer N, Ludwig W, Rohde M (1992) A methanogenic archaeon from ace lake, antarctica: Methanococcoides burtonii sp. nov. Syst Appl Microbiol 15:573–581

    Article  Google Scholar 

  • Galas DJ, Schmitz A (1978) DNAse footprinting: a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res 5:3157–3170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garner MM, Revzin A (1981) A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res 9:3047–3060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geiduschek EP, Ouhammouch M (2005) Archaeal transcription and its regulators. Mol Microbiol 56:1397–1407

    Article  CAS  PubMed  Google Scholar 

  • Gernhardt P, Possot O, Foglino M et al (1990) Construction of an integration vector for use in the archaebacterium Methanococcus voltae and expression of a eubacterial resistance gene. Mol Gen Genet 221:273–279

    Article  CAS  PubMed  Google Scholar 

  • Gindner A, Hausner W, Thomm M (2014) The TrmB family: a versatile group of transcriptional regulators in archaea. Extremophiles 18:925–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gohl HP, Gröndahl B, Thomm M (1995) Promoter recognition in archaea is mediated by transcription factors: identification of transcription factor aTFB from Methanococcus thermolithotrophicus as archaeal TATA-binding protein. Nucleic Acids Res 23:3837–3841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomis-Rüth FX, Solá M, Acebo P et al (1998) The structure of plasmid-encoded transcriptional repressor CopG unliganded and bound to its operator. EMBO J 17:7404–7415

    Article  PubMed  PubMed Central  Google Scholar 

  • Grohmann D, Nagy J, Chakraborty A et al (2011) The initiation factor TFE and the elongation factor Spt4/5 compete for the RNAP clamp during transcription initiation and elongation. Mol Cell 43:263–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillière F, Danioux C, Jaubert C et al (2013) Solution structure of an archaeal DNA binding protein with an eukaryotic zinc finger fold. PLoS One 8:e52908

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanzelka BL, Darcy TJ, Reeve JN (2001) TFE, an archaeal transcription factor in Methanobacterium thermoautotrophicum related to eucaryal transcription factor TFIIE. J Bacteriol 183:1813–1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harami GM, Gyimesi M, Kovács M (2013) From keys to bulldozers: expanding roles for winged helix domains in nucleic-acid-binding proteins. Trends Biochem Sci 38:364–371

    Article  CAS  PubMed  Google Scholar 

  • Harteis S, Schneider S (2014) Making the bend: DNA tertiary structure and protein-DNA interactions. Int J Mol Sci 15:12335–12363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hatfield GW, Benham CJ (2002) DNA topology-mediated control of global gene expression in Escherichia coli. Annu Rev Genet 36:175–203

    Article  CAS  PubMed  Google Scholar 

  • Haurat MF, Figueiredo AS, Hoffmann L et al (2016) ArnS, a kinase involved in starvation-induced archaellum expression. Mol Microbiol 103:181–194

    Article  PubMed  CAS  Google Scholar 

  • Hausner W, Thomm M (2001) Events during initiation of archaeal transcription: open complex formation and DNA-protein interactions. J Bacteriol 183:3025–3031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hausner W, Wettach J, Hethke C, Thomm M (1996) Two transcription factors related with the eucaryal transcription factors TATA-binding protein and transcription factor IIB direct promoter recognition by an archaeal RNA polymerase. J Biol Chem 271:30144–30148

    Article  CAS  PubMed  Google Scholar 

  • Heinicke I, Muller J, Pittelkow M, Klein A (2004) Mutational analysis of genes encoding chromatin proteins in the archaeon Methanococcus voltae indicates their involvement in the regulation of gene expression. Mol Genet Genomics 272:76–87

    Article  CAS  PubMed  Google Scholar 

  • Hillion M, Antelmann H (2015) Thiol-based redox switches in prokaryotes. Biol Chem 396:415–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hüdepohl U, Reiter WD, Zillig W (1990) In vitro transcription of two rRNA genes of the archaebacterium Sulfolobus sp. B12 indicates a factor requirement for specific initiation. Proc Natl Acad Sci USA 87:5851–5855

    Article  PubMed  PubMed Central  Google Scholar 

  • Isom CE, Turner JL, Lessner DJ, Karr EA (2013) Redox-sensitive DNA binding by homodimeric Methanosarcina acetivorans MsvR is modulated by cysteine residues. BMC Microbiol 13:163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itou H, Yao M, Watanabe N, Tanaka I (2008) Crystal structure of the PH1932 protein, a unique archaeal ArsR type winged-HTH transcription factor from Pyrococcus horikoshii OT3. Proteins 70:1631–1634

    Article  CAS  PubMed  Google Scholar 

  • Iyer LM, Aravind L (2012) Insights from the architecture of the bacterial transcription apparatus. J Struct Biol 179:299–319

    Article  CAS  PubMed  Google Scholar 

  • Jun S-H, Reichlen MJ, Tajiri M, Murakami KS (2011) Archaeal RNA polymerase and transcription regulation. Crit Rev Biochem Mol Biol 46:27–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanai T, Akerboom J, Takedomi S et al (2007) A global transcriptional regulator in Thermococcus kodakaraensis controls the expression levels of both glycolytic and gluconeogenic enzyme-encoding genes. J Biol Chem 282:33659–33670

    Article  CAS  PubMed  Google Scholar 

  • Karr EA (2010) The methanogen-specific transcription factor MsvR regulates the fpaA-rlp-rub oxidative stress operon adjacent to msvR in Methanothermobacter thermautotrophicus. J Bacteriol 192:5914–5922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karr EA, Ng JM, Belchik SM et al (2006) Biodiversity of methanogenic and other archaea in the permanently frozen Lake Fryxell, Antarctica. Appl Environ Microbiol 72:1663–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karr EA, Sandman K, Lurz R, Reeve JN (2008) TrpY regulation of trpB2 transcription in Methanothermobacter thermautotrophicus. J Bacteriol 190:2637–2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato S, Kosaka T, Watanabe K (2008) Comparative transcriptome analysis of responses of Methanothermobacter thermautotrophicus to different environmental stimuli. Environ Microbiol 10:893–905

    Article  CAS  PubMed  Google Scholar 

  • Kawashima T, Aramaki H, Oyamada T et al (2008) Transcription regulation by feast/famine regulatory proteins, FFRPs, in archaea and eubacteria. Biol Pharm Bull 31:173–186

    Article  CAS  PubMed  Google Scholar 

  • Keese AM, Schut GJ, Ouhammouch M et al (2010) Genome-wide identification of targets for the archaeal heat shock regulator phr by cell-free transcription of genomic DNA. J Bacteriol 192:1292–1298

    Article  CAS  PubMed  Google Scholar 

  • Kessler A, Sezonov G, Guijarro JI et al (2006) A novel archaeal regulatory protein, Sta1, activates transcription from viral promoters. Nucleic Acids Res 34:4837–4845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim EA, Blair DF (2015) Function of the histone-like protein H-NS in motility of Escherichia coli: multiple regulatory roles rather than direct action at the flagellar motor. J Bacteriol 197:3110–3120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M, Park S, Lee S-J (2016) Global transcriptional regulator TrmB family members in prokaryotes. J Microbiol 54:639–645

    Article  CAS  PubMed  Google Scholar 

  • Koike H, Ishijima SA, Clowney L, Suzuki M (2004) The archaeal feast/famine regulatory protein: potential roles of its assembly forms for regulating transcription. Proc Natl Acad Sci USA 101:2840–2845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koretke KK, Lupas AN, Warren PV et al (2000) Evolution of two-component signal transduction. Mol Biol Evol 17:1956–1970

    Article  CAS  PubMed  Google Scholar 

  • Krug M, Lee S-J, Diederichs K et al (2006) Crystal structure of the sugar binding domain of the archaeal transcriptional regulator TrmB. J Biol Chem 281:10976–10982

    Article  CAS  PubMed  Google Scholar 

  • Krug M, Lee S-J, Boos W et al (2013) The three-dimensional structure of TrmB, a transcriptional regulator of dual function in the hyperthermophilic archaeon Pyrococcus furiosus in complex with sucrose. Protein Sci 22:800–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krüger K, Hermann T, Armbruster V, Pfeifer F (1998) The transcriptional activator GvpE for the halobacterial gas vesicle genes resembles a basic region leucine-zipper regulatory protein. J Mol Biol 279:761–771

    Article  PubMed  Google Scholar 

  • Kumarevel T, Nakano N, Ponnuraj K et al (2008a) Crystal structure of glutamine receptor protein from Sulfolobus tokodaii strain 7 in complex with its effector L-glutamine: implications of effector binding in molecular association and DNA binding. Nucleic Acids Res 36:4808–4820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumarevel T, Sakamoto K, Gopinath SCB et al (2008b) Crystal structure of an archaeal specific DNA-binding protein (Ape10b2) from Aeropyrum pernix K1. Proteins 71:1156–1162

    Article  CAS  PubMed  Google Scholar 

  • Kumarevel T, Tanaka T, Umehara T, Yokoyama S (2009) ST1710-DNA complex crystal structure reveals the DNA binding mechanism of the MarR family of regulators. Nucleic Acids Res 37:4723–4735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunin V, Goldovsky L, Darzentas N, Ouzounis CA (2005) The net of life: reconstructing the microbial phylogenetic network. Genome Res 15:954–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyrpides NC, Ouzounis CA (1999) Transcription in archaea. Proc Natl Acad Sci USA 96:8545–8550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lassak K, Peeters E, Wróbel S, Albers S-V (2013) The one-component system ArnR: a membrane-bound activator of the crenarchaeal archaellum. Mol Microbiol 88:125–139

    Article  CAS  PubMed  Google Scholar 

  • Lee S-J, Engelmann A, Horlacher R et al (2003) TrmB, a sugar-specific transcriptional regulator of the trehalose/maltose ABC transporter from the hyperthermophilic archaeon Thermococcus litoralis. J Biol Chem 278:983–990

    Article  CAS  PubMed  Google Scholar 

  • Lee S-J, Moulakakis C, Koning SM et al (2005) TrmB, a sugar sensing regulator of ABC transporter genes in Pyrococcus furiosus exhibits dual promoter specificity and is controlled by different inducers. Mol Microbiol 57:1797–1807

    Article  CAS  PubMed  Google Scholar 

  • Lee S-J, Surma M, Seitz S et al (2007a) Characterization of the TrmB-like protein, PF0124, a TGM-recognizing global transcriptional regulator of the hyperthermophilic archaeon Pyrococcus furiosus. Mol Microbiol 65:305–318

    Article  CAS  PubMed  Google Scholar 

  • Lee S-J, Surma M, Seitz S et al (2007b) Differential signal transduction via TrmB, a sugar sensing transcriptional repressor of Pyrococcus furiosus. Mol Microbiol 64:1499–1505

    Article  CAS  PubMed  Google Scholar 

  • Lee S-J, Surma M, Hausner W et al (2008) The role of TrmB and TrmB-like transcriptional regulators for sugar transport and metabolism in the hyperthermophilic archaeon Pyrococcus furiosus. Arch Microbiol 190:247–256

    Article  CAS  PubMed  Google Scholar 

  • Leigh JA, Albers S-V, Atomi H, Allers T (2011) Model organisms for genetics in the domain archaea: methanogens, halophiles, Thermococcales and Sulfolobales. FEMS Microbiol Rev 35:577–608

    Article  CAS  PubMed  Google Scholar 

  • Leonard PM, Smits SH, Sedelnikova SE et al (2001) Crystal structure of the Lrp-like transcriptional regulator from the archaeon Pyrococcus furiosus. EMBO J 20:990–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Zheng X, Guo X et al (2014) Characterization of an archaeal two-component system that regulates methanogenesis in Methanosaeta harundinacea. PLoS One 9:e95502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lipscomb GL, Keese AM, Cowart DM et al (2009) SurR: a transcriptional activator and repressor controlling hydrogen and elemental sulphur metabolism in Pyrococcus furiosus. Mol Microbiol 71:332–349

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Guo L, Guo R et al (2009) The Sac10b homolog in Methanococcus maripaludis binds DNA at specific sites. J Bacteriol 191:2315–2329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Orell A, Maes D et al (2014) BarR, an Lrp-type transcription factor in Sulfolobus acidocaldarius, regulates an aminotransferase gene in a β-alanine responsive manner. Mol Microbiol 92:625–639

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Wang K, Lindås A-C, Peeters E (2016) The genome-scale DNA-binding profile of BarR, a β-alanine responsive transcription factor in the archaeon Sulfolobus acidocaldarius. BMC Genomics 17:569

    Article  PubMed  PubMed Central  Google Scholar 

  • López-García P, Forterre P (1999) Control of DNA topology during thermal stress in hyperthermophilic archaea: DNA topoisomerase levels, activities and induced thermotolerance during heat and cold shock in Sulfolobus. Mol Microbiol 33:766–777

    Article  PubMed  Google Scholar 

  • Macquarrie KL, Fong AP, Morse RH, Tapscott SJ (2011) Genome-wide transcription factor binding: beyond direct target regulation. Trends Genet 27:141–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Núñez MA, Poot-Hernandez AC, Rodríguez-Vázquez K, Pérez-Rueda E (2013) Increments and duplication events of enzymes and transcription factors influence metabolic and regulatory diversity in prokaryotes. PLoS One 8:e69707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maruyama H, Shin M, Oda T et al (2011) Histone and TK0471/TrmBL2 form a novel heterogeneous genome architecture in the hyperthermophilic archaeon Thermococcus kodakarensis. Mol Biol Cell 22:386–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matteau D, Rodrigue S (2015) Precise identification of DNA-binding proteins genomic location by exonuclease coupled chromatin immunoprecipitation (ChIP-exo). Methods Mol Biol 1334:173–193

    Article  CAS  PubMed  Google Scholar 

  • Metcalf WW, Zhang JK, Apolinario E et al (1997) A genetic system for Archaea of the genus Methanosarcina: liposome-mediated transformation and construction of shuttle vectors. Proc Natl Acad Sci USA 94:2626–2631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Micorescu M, Grunberg S, Franke A et al (2007) Archaeal transcription: function of an alternative transcription factor B from Pyrococcus furiosus. J Bacteriol 190:157–167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Minezaki Y, Homma K, Nishikawa K (2005) Genome-wide survey of transcription factors in prokaryotes reveals many bacteria-specific families not found in archaea. DNA Res 12:269–280

    Article  CAS  PubMed  Google Scholar 

  • Miyazono K-I, Tsujimura M, Kawarabayasi Y, Tanokura M (2007) Crystal structure of an archaeal homologue of multidrug resistance repressor protein, EmrR, from hyperthermophilic archaea Sulfolobus tokodaii strain 7. Proteins 67:1138–1146

    Article  CAS  PubMed  Google Scholar 

  • Molitor B, Stassen M, Modi A et al (2013) A heme-based redox sensor in the methanogenic archaeon Methanosarcina acetivorans. J Biol Chem 288:18458–18472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadal M, Mirambeau G, Forterre P et al (1986) Positively supercoiled DNA in a virus-like particle of an archaebacterium. Nature 321:256–258

    Article  CAS  Google Scholar 

  • Najnin T, Siddiqui KS, Taha et al (2016) Characterization of a temperature-responsive two component regulatory system from the Antarctic archaeon, Methanococcoides burtonii. Sci Rep 6:24278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Napoli A, van der Oost J, Sensen CW et al (1999) An Lrp-like protein of the hyperthermophilic archaeon Sulfolobus solfataricus which binds to its own promoter. J Bacteriol 181:1474–1480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Napoli A, Kvaratskelia M, White MF et al (2001) A novel member of the bacterial-archaeal regulator family is a nonspecific DNA-binding protein and induces positive supercoiling. J Biol Chem 276:10745–10752

    Article  CAS  PubMed  Google Scholar 

  • Nelson-Sathi S, Sousa FL, Roettger M et al (2014) Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature 517:77–80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nguyen Duc T, van Oeffelen L, Song N et al (2013) The genome-wide binding profile of the Sulfolobus solfataricus transcription factor Ss-LrpB shows binding events beyond direct transcription regulation. BMC Genomics 14:828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ochs SM, Thumann S, Richau R et al (2012) Activation of archaeal transcription mediated by recruitment of transcription factor B. J Biol Chem 287:18863–18871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada U, Sakai N, Yao M et al (2006) Structural analysis of the transcriptional regulator homolog protein from Pyrococcus horikoshii OT3. Proteins 63:1084–1086

    Article  CAS  PubMed  Google Scholar 

  • Okamura H, Yokoyama K, Koike H et al (2007) A structural code for discriminating between transcription signals revealed by the feast/famine regulatory protein DM1 in complex with ligands. Structure 15:1325–1338

    Article  CAS  PubMed  Google Scholar 

  • Orell A, Peeters E, Vassen V et al (2013) Lrs14 transcriptional regulators influence biofilm formation and cell motility of Crenarchaea. ISME J 7:1886–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouhammouch M, Geiduschek EP (2001) A thermostable platform for transcriptional regulation: the DNA-binding properties of two Lrp homologs from the hyperthermophilic archaeon Methanococcus jannaschii. EMBO J 20:146–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouhammouch M, Dewhurst RE, Hausner W et al (2003) Activation of archaeal transcription by recruitment of the TATA-binding protein. Proc Natl Acad Sci USA 100:5097–5102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouhammouch M, Langham GE, Hausner W et al (2005) Promoter architecture and response to a positive regulator of archaeal transcription. Mol Microbiol 56:625–637

    Article  CAS  PubMed  Google Scholar 

  • Paget MSB, Buttner MJ (2003) Thiol-based regulatory switches. Annu Rev Genet 37:91–121

    Article  CAS  PubMed  Google Scholar 

  • Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10:669–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paytubi S, White MF (2009) The crenarchaeal DNA damage-inducible transcription factor B paralogue TFB3 is a general activator of transcription. Mol Microbiol 72:1487–1499

    Article  CAS  PubMed  Google Scholar 

  • Peck RF, DasSarma S, Krebs MP (2000) Homologous gene knockout in the archaeon Halobacterium salinarum with ura3 as a counterselectable marker. Mol Microbiol 35:667–676

    Article  CAS  PubMed  Google Scholar 

  • Peeters E, Charlier D (2010) The Lrp family of transcription regulators in archaea. Archaea 2010:750457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peeters E, Thia-Toong T-L, Gigot D et al (2004) Ss-LrpB, a novel Lrp-like regulator of Sulfolobus solfataricus P2, binds cooperatively to three conserved targets in its own control region. Mol Microbiol 54:321–336

    Article  CAS  PubMed  Google Scholar 

  • Peeters E, Willaert R, Maes D, Charlier D (2006) Ss-LrpB from Sulfolobus solfataricus condenses about 100 base pairs of its own operator DNA into globular nucleoprotein complexes. J Biol Chem 281:11721–11728

    Article  CAS  PubMed  Google Scholar 

  • Peeters E, Wartel C, Maes D, Charlier D (2007) Analysis of the DNA-binding sequence specificity of the archaeal transcriptional regulator Ss-LrpB from Sulfolobus solfataricus by systematic mutagenesis and high resolution contact probing. Nucleic Acids Res 35:623–633

    Article  CAS  PubMed  Google Scholar 

  • Peeters E, Albers S-V, Vassart A et al (2009) Ss-LrpB, a transcriptional regulator from Sulfolobus solfataricus, regulates a gene cluster with a pyruvate ferredoxin oxidoreductase-encoding operon and permease genes. Mol Microbiol 71:972–988

    Article  CAS  PubMed  Google Scholar 

  • Peeters E, Peixeiro N, Sezonov G (2013a) Cis-regulatory logic in archaeal transcription. Biochem Soc Trans 41:326–331

    Article  CAS  PubMed  Google Scholar 

  • Peeters E, van Oeffelen L, Nadal M et al (2013b) A thermodynamic model of the cooperative interaction between the archaeal transcription factor Ss-LrpB and its tripartite operator DNA. Gene 524:330–340

    Article  CAS  PubMed  Google Scholar 

  • Peeters E, Driessen RPC, Werner F, Dame RT (2015) The interplay between nucleoid organization and transcription in archaeal genomes. Nat Rev Microbiol 13:333–341

    Article  CAS  PubMed  Google Scholar 

  • Peixeiro N, Keller J, Collinet B et al (2012) Structure and function of AvtR, a novel transcriptional regulator from a hyperthermophilic archaeal lipothrixvirus. J Virol 87:124–136

    Article  PubMed  CAS  Google Scholar 

  • Peng N, Xia Q, Chen Z et al (2009) An upstream activation element exerting differential transcriptional activation on an archaeal promoter. Mol Microbiol 74:928–939

    Article  CAS  PubMed  Google Scholar 

  • Peng N, Ao X, Liang YX, She Q (2011) Archaeal promoter architecture and mechanism of gene activation. Biochem Soc Trans 39:99–103

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Rueda E, Collado-Vides J (2001) Common history at the origin of the position-function correlation in transcriptional regulators in archaea and bacteria. J Mol Evol 53:172–179

    Article  PubMed  Google Scholar 

  • Pérez-Rueda E, Janga SC (2010) Identification and genomic analysis of transcription factors in archaeal genomes exemplifies their functional architecture and evolutionary origin. Mol Biol Evol 27:1449–1459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Plaisier CL, Lo F-Y, Ashworth J et al (2014) Evolution of context dependent regulation by expansion of feast/famine regulatory proteins. BMC Syst Biol 8:1–14

    Article  Google Scholar 

  • Reichelt R, Gindner A, Thomm M, Hausner W (2016) Genome-wide binding analysis of the transcriptional regulator TrmBL1 in Pyrococcus furiosus. BMC Genomics 17:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reichlen MJ, Vepachedu VR, Murakami KS, Ferry JG (2012) MreA functions in the global regulation of methanogenic pathways in Methanosarcina acetivorans. MBio 3:e00189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reigstad LJ, Jorgensen SL, Schleper C (2010) Diversity and abundance of Korarchaeota in terrestrial hot springs of Iceland and Kamchatka. ISME J 4:346–356

    Article  CAS  PubMed  Google Scholar 

  • Reimann J, Lassak K, Khadouma S et al (2012) Regulation of archaella expression by the FHA and von Willebrand domain-containing proteins ArnA and ArnB in Sulfolobus acidocaldarius. Mol Microbiol 86:24–36

    Article  CAS  PubMed  Google Scholar 

  • Reimann J, Esser D, Orell A et al (2013) Archaeal signal transduction: impact of protein phosphatase deletions on cell size, motility and energy metabolism in Sulfolobus acidocaldarius. Mol Cell Proteomics 12:3908–3923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiter WD, Hüdepohl U, Zillig W (1990) Mutational analysis of an archaebacterial promoter: essential role of a TATA box for transcription efficiency and start-site selection in vitro. Proc Natl Acad Sci USA 87:9509–9513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riley TR, Slattery M, Abe N et al (2014) SELEX-seq: a method for characterizing the complete repertoire of binding site preferences for transcription factor complexes. Methods Mol Biol 1196:255–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson G, Hirst M, Bainbridge M et al (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4:651–657

    Article  CAS  PubMed  Google Scholar 

  • Rohlin L, Trent JD, Salmon K et al (2005) Heat shock response of Archaeoglobus fulgidus. J Bacteriol 187:6046–6057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohs R, Jin X, West SM et al (2010) Origins of specificity in protein-DNA recognition. Annu Rev Biochem 79:233–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowlands T, Baumann P, Jackson SP (1994) The TATA-binding protein: a general transcription factor in eukaryotes and archaebacteria. Science 264:1326–1329

    Article  CAS  PubMed  Google Scholar 

  • Rudrappa D, Yao AI, White D et al (2015) Identification of an archaeal mercury regulon by chromatin immunoprecipitation. Microbiology 161:2423–2433

    Article  CAS  PubMed  Google Scholar 

  • Santangelo TJ, Cubonová L, James CL, Reeve JN (2007) TFB1 or TFB2 is sufficient for Thermococcus kodakaraensis viability and for basal transcription in vitro. J Mol Biol 367:344–357

    Article  CAS  PubMed  Google Scholar 

  • Saridakis V, Shahinas D, Xu X, Christendat D (2008) Structural insight on the mechanism of regulation of the MarR family of proteins: high-resolution crystal structure of a transcriptional repressor from Methanobacterium thermoautotrophicum. J Mol Biol 377:655–667

    Article  CAS  PubMed  Google Scholar 

  • Schelert J, Dixit V, Hoang V et al (2004) Occurrence and characterization of mercury resistance in the hyperthermophilic archaeon Sulfolobus solfataricus by use of gene disruption. J Bacteriol 186:427–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schelert J, Drozda M, Dixit V et al (2006) Regulation of mercury resistance in the crenarchaeote Sulfolobus solfataricus. J Bacteriol 188:7141–7150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid AK, Reiss DJ, Pan M et al (2009) A single transcription factor regulates evolutionarily diverse but functionally linked metabolic pathways in response to nutrient availability. Mol Syst Biol 5:282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmid AK, Pan M, Sharma K, Baliga NS (2011) Two transcription factors are necessary for iron homeostasis in a salt-dwelling archaeon. Nucleic Acids Res 39:2519–2533

    Article  CAS  PubMed  Google Scholar 

  • Schwaiger R, Schwarz C, Furtwangler K et al (2010) Transcriptional control by two leucine-responsive regulatory proteins in Halobacterium salinarum R1. BMC Mol Biol 11:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seedorf H, Dreisbach A, Hedderich R et al (2004) F420H2 oxidase (FprA) from Methanobrevibacter arboriphilus, a coenzyme F420-dependent enzyme involved in O2 detoxification. Arch Microbiol 182:126–137

    Article  CAS  PubMed  Google Scholar 

  • Seedorf H, Hagemeier CH, Shima S et al (2007) Structure of coenzyme F420H2 oxidase (FprA), a di-iron flavoprotein from methanogenic Archaea catalyzing the reduction of O2 to H2O. FEBS J 274:1588–1599

    Article  CAS  PubMed  Google Scholar 

  • Seeman NC, Rosenberg JM, Rich A (1976) Sequence-specific recognition of double helical nucleic acids by proteins. Proc Natl Acad Sci USA 73:804–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma K, Gillum N, Boyd JL, Schmid AK (2012) The RosR transcription factor is required for gene expression dynamics in response to extreme oxidative stress in a hypersaline-adapted archaeon. BMC Genomics 13:351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheehan R, McCarver AC, Isom CE et al (2015) The Methanosarcina acetivorans thioredoxin system activates DNA binding of the redox-sensitive transcriptional regulator MsvR. J Ind Microbiol Biotechnol 42:965–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinkai A, Sekine S-I, Urushibata A et al (2007) The putative DNA-binding protein Sto12a from the thermoacidophilic archaeon Sulfolobus tokodaii contains intrachain and interchain disulfide bonds. J Mol Biol 372:1293–1304

    Article  CAS  PubMed  Google Scholar 

  • Slattery M, Riley T, Liu P et al (2011) Cofactor binding evokes latent differences in DNA binding specificity between hox proteins. Cell 147:1270–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song N, Nguyen Duc T, van Oeffelen L et al (2013) Expanded target and cofactor repertoire for the transcriptional activator LysM from Sulfolobus. Nucleic Acids Res 41:2932–2949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki M, Brenner SE, Gerstein M, Yagi N (1995) DNA recognition code of transcription factors. Protein Eng 8:319–328

    Article  CAS  PubMed  Google Scholar 

  • Tachdjian S, Kelly RM (2006) Dynamic metabolic adjustments and genome plasticity are implicated in the heat shock response of the extremely thermoacidophilic archaeon Sulfolobus solfataricus. J Bacteriol 188:4553–4559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teske A, Sørensen KB (2008) Uncultured archaea in deep marine subsurface sediments: have we caught them all? ISME J 2:3–18

    Article  CAS  PubMed  Google Scholar 

  • Todone F, Brick P, Werner F et al (2001) Structure of an archaeal homolog of the eukaryotic RNA polymerase II RPB4/RPB7 complex. Mol Cell 8:1137–1143

    Article  CAS  PubMed  Google Scholar 

  • Tonner PD, Pittman AMC, Gulli JG et al (2015) A regulatory hierarchy controls the dynamic transcriptional response to extreme oxidative stress in archaea. PLoS Genet 11:e1004912

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  PubMed  Google Scholar 

  • Tumbula DL, Whitman WB (1999) Genetics of Methanococcus: possibilities for functional genomics in archaea. Mol Microbiol 33:1–7

    Article  CAS  PubMed  Google Scholar 

  • van de Werken HJG, Verhees CH, Akerboom J et al (2006) Identification of a glycolytic regulon in the archaea Pyrococcus and Thermococcus. FEMS Microbiol Lett 260:69–76

    Article  PubMed  CAS  Google Scholar 

  • van Oeffelen L, Peeters E, Nguyen Le Minh P, Charlier D (2014) The “densitometric image analysis software” and its application to determine stepwise equilibrium constants from electrophoretic mobility shift assays. PLoS One 9:e85146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vassart A, van Wolferen M, Orell A et al (2013) Sa-Lrp from Sulfolobus acidocaldarius is a versatile, glutamine-responsive, and architectural transcriptional regulator. MicrobiologyOpen 2:75–93

    Article  CAS  PubMed  Google Scholar 

  • Vierke G, Engelmann A, Hebbeln C, Thomm M (2003) A novel archaeal transcriptional regulator of heat shock response. J Biol Chem 278:18–26

    Article  CAS  PubMed  Google Scholar 

  • Visweswariah SS, Busby SJW (2015) Evolution of bacterial transcription factors: how proteins take on new tasks, but do not always stop doing the old ones. Trends Microbiol 23:463–467

    Article  CAS  PubMed  Google Scholar 

  • Wagner M, van Wolferen W et al (2012) Versatile genetic tool box for the crenarchaeote Sulfolobus acidocaldarius. Front Microbiol 3:214

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagner M, Wagner A, Ma X et al (2014) Investigation of the malE promoter and MalR, a positive regulator of the maltose regulon, for an improved expression system in Sulfolobus acidocaldarius. Appl Environ Microbiol 80:1072–1081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walker JE, Santangelo TJ (2015) Analyses of in vivo interactions between transcription factors and the archaeal RNA polymerase. Methods 86:73–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Kennedy SP, Fasiludeen S et al (2004) Arsenic resistance in Halobacterium sp. strain NRC-1 examined by using an improved gene knockout system. J Bacteriol 186:3187–3194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Lee H-S, Sugar FJ et al (2007) PF0610, a novel winged helix-turn-helix variant possessing a rubredoxin-like Zn ribbon motif from the hyperthermophilic archaeon, Pyrococcus furiosus. Biochemistry 46:752–761

    Article  CAS  PubMed  Google Scholar 

  • Werner F, Weinzierl ROJ (2005) Direct modulation of RNA polymerase core functions by basal transcription factors. Mol Cell Biol 25:8344–8355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner F, Eloranta JJ, Weinzierl RO (2000) Archaeal RNA polymerase subunits F and P are bona fide homologs of eukaryotic RPB4 and RPB12. Nucleic Acids Res 28:4299–4305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wierer S, Daldrop P, Ud Din Ahmad M et al (2016) TrmBL2 from Pyrococcus furiosus interacts both with double-stranded and single-stranded DNA. PLoS One 11:e0156098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilbanks EG, Larsen DJ, Neches RY et al (2012) A workflow for genome-wide mapping of archaeal transcription factors with ChIP-seq. Nucleic Acids Res 40:e74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya. Proc Natl Acad Sci USA 87:4576–4579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wouters MA, Fan SW, Haworth NL (2010) Disulfides as redox switches: from molecular mechanisms to functional significance. Antioxid Redox Signal 12:53–91

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Wang S, Bai J et al (2008) ArchaeaTF: an integrated database of putative transcription factors in archaea. Genomics 91:102–107

    Article  CAS  PubMed  Google Scholar 

  • Wuichet K, Cantwell BJ, Zhulin IB (2010) Evolution and phyletic distribution of two-component signal transduction systems. Curr Opin Microbiol 13:219–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada M, Ishijima SA, Suzuki M (2009) Interactions between the archaeal transcription repressor FL11 and its coregulators lysine and arginine. Proteins 74:520–525

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Lipscomb GL, Keese AM et al (2010) SurR regulates hydrogen production in Pyrococcus furiosus by a sulfur-dependent redox switch. Mol Microbiol 77:1111–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoyama K, Ihara M, Ebihara S, Suzuki M (2006a) A SELEX study of the DNA-binding specificity of archaeal FFRPs: 2. FL4 (pot1613368). Proc Jpn Acad Ser B 82:1–12

    Google Scholar 

  • Yokoyama K, Ishijima SA, Clowney L et al (2006b) Feast/famine regulatory proteins (FFRPs): Escherichia coli Lrp, AsnC and related archaeal transcription factors. FEMS Microbiol Rev 30:89–108

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama K, Ishijima SA, Koike H et al (2007) Feast/famine regulation by transcription factor FL11 for the survival of the hyperthermophilic archaeon Pyrococcus OT3. Structure 15:1542–1554

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama K, Nogami H, Kabasawa M et al (2009) The DNA-recognition mode shared by archaeal feast/famine-regulatory proteins revealed by the DNA-binding specificities of TvFL3, FL10, FL11 and Ss-LrpB. Nucleic Acids Res 37:4407–4419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu L, Fang J, Wei Y (2009) Characterization of the ligand and DNA binding properties of a putative archaeal regulator ST1710. Biochemistry 48:2099–2108

    Article  CAS  PubMed  Google Scholar 

  • Zheng M, Storz G (2000) Redox sensing by prokaryotic transcription factors. Biochem Pharmacol 59:1–6

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eveline Peeters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karr, E.A., Isom, C.E., Trinh, V., Peeters, E. (2017). Transcription Factor-Mediated Gene Regulation in Archaea . In: Clouet-d'Orval, B. (eds) RNA Metabolism and Gene Expression in Archaea. Nucleic Acids and Molecular Biology, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-319-65795-0_2

Download citation

Publish with us

Policies and ethics