Skip to main content

Extravascular Contrast Agents

  • Chapter
  • First Online:
Quantification of Contrast Kinetics in Clinical Imaging

Abstract

Extravascular contrast agents are characterized by the ability to pass across the vascular wall and distribute into tissue. Compared to intravascular contrast agents, they thus allow for additional assessment of permeability and leakage into the interstitial space. However, they also require more complex modeling, as the flow of contrast particles in and out of the tissue needs to be added in the description of the contrast transport kinetics. Extravascular contrast agents of clinical interest are typically extracellular; i.e., they do not cross the cell membrane. Although ultrasound nanobubbles able to cross the vascular endothelium are being developed, they are currently limited to the research setting. Therefore, this chapter focuses on extravascular extracellular contrast agent developed for DCE-MRI and DCE-CT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Lusic, M.W. Grinstaff, X-ray-computed tomography contrast agents. Chem. Rev 113, 1641–1666 (2012)

    Article  PubMed  CAS  Google Scholar 

  2. K.M. Hasebroock, N.J. Serkova, Toxicity of MRI and CT contrast agents. Expert Opin. Drug Metab. Toxicol 5, 403–416 (2009)

    Article  CAS  Google Scholar 

  3. FDA. Available: https://www.fda.gov/default.htm

  4. G. Brix, J. Griebel, F. Kiessling, F. Wenz, Tracer kinetic modelling of tumour angiogenesis based on dynamic contrast-enhanced CT and MRI measurements. Eur. J. Nucl. Med. Mol. Imaging 37, S30–S51 (2010)

    Article  Google Scholar 

  5. D.V. Hingorani, A.S. Bernstein, M.D. Pagel, A review of responsive MRI contrast agents: 2005–2014. Contrast Media Mol. Imaging 10, 245–265 (2015)

    Article  CAS  Google Scholar 

  6. G.V. Strijkers, W.J.M. Mulder, G.A.F. van Tilborg, K. Nicolay, MRI contrast agents: current status and future perspectives. Anti-Cancer Agent Me 7, 291–305 (2007)

    Article  CAS  PubMed  Google Scholar 

  7. J. Ramalho, R. Semelka, M. Ramalho, R. Nunes, M. AlObaidy, M. Castillo, Gadolinium-based contrast agent accumulation and toxicity: an update. Am. J. Neuroradiol 37, 1192–1198 (2016)

    Article  PubMed  Google Scholar 

  8. Y. Shen, F.L. Goerner, C. Snyder, J.N. Morelli, D. Hao, D. Hu et al., T1 relaxivities of gadolinium-based magnetic resonance contrast agents in human whole blood at 1.5, 3, and 7 T. Invest. Radiol 50, 330–338 (2015)

    Article  CAS  PubMed  Google Scholar 

  9. C. Burtea, S. Laurent, L. Vander Elst, R.N. Muller, in Contrast Agents: magnetic Resonance. Handbook Experimental Pharmacology: molecular Imaging I, vol. 185, (Springer, Berlin, 2008)

    Chapter  Google Scholar 

  10. I.S. Gribbestad, K.I. Gjesdal, G. Nilsen, S. Lundgren, M.H.B. Hjelstuen, A. Jackson, in An Introduction to Dynamic Contrast-Enhanced MRI in Oncology (2005), pp. 1–22

    Google Scholar 

  11. D.L. Buckley, G.J.M. Parker, in Measuring Contrast Agent Concentration in T1-Weighted Dynamic Contrast-Enhanced MRI, ed. by L.A.L. Baert, H.K. Sartor. Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Oncology (Springer, Berlin Heidelberg New York, 2003), pp. 69–79

    Google Scholar 

  12. S. Turco, H. Wijkstra, M. Mischi, Mathematical models of contrast transport kinetics for cancer diagnostic imaging: a review. IEEE Rev. Biomed. Eng 9, 121–147 (2016)

    Article  PubMed  Google Scholar 

  13. M.C. Schabel, D.L. Parker, Uncertainty and bias in contrast concentration measurements using spoiled gradient echo pulse sequences. Phys. Med. Biol 53, 2345 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  14. M. Mischi, S. Turco, C. Lavini, K. Kompatsiari, J.J.M.C.H. de la Rosette, M. Breeuwer et al., Magnetic resonance dispersion imaging for localization of angiogenesis and cancer growth. Invest. Radiol 49, 561–569 (2014)

    Article  CAS  PubMed  Google Scholar 

  15. I.L. Pykett, B.R. Rosen, F.S. Buonanno, T.J. Brady, Measurement of spin-lattice relaxation times in nuclear magnetic resonance imaging. Phys. Med. Biol 28, 723–729 (1983)

    Article  CAS  PubMed  Google Scholar 

  16. C. Lavini, M. Maas, DCE-MRI analysis package comprising pixel-by-pixel classification of time intensity curves shapes, permeability maps and Gd concentration calculation. Magn. Reson. Mater. Phys. Biol. Med 21, 486 (2008)

    Google Scholar 

  17. T.S. Koh, S. Bisdas, D.M. Koh, C.H. Thng, Fundamentals of tracer kinetics for dynamic contrast-enhanced MRI. J. Magn. Reson. Imaging 34, 1262–1276 (2011)

    Article  PubMed  Google Scholar 

  18. M.R. Orton, J.A. d’Arcy, S. Walker-Samuel, D.J. Hawkes, D. Atkinson, D.J. Collins et al., Computationally efficient vascular input function models for quantitative kinetic modelling using CT. Phys. Med. Biol. 53, 1225–1239 (2008)

    Article  PubMed  Google Scholar 

  19. P.S. Tofts, A.G. Kermode, Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn. Reson. Med 17, 357–367 (1991)

    Article  CAS  PubMed  Google Scholar 

  20. S.P. Sourbron, D.L. Buckley, Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability. Phys. Med. Biol 57, R1 (2012)

    Article  PubMed  Google Scholar 

  21. E.M. Renkin, Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am. J. Physiol 197, 1205–1210 (1959)

    Article  CAS  Google Scholar 

  22. M. Morales, R. Smith, On the theory of blood-tissue exchange of inert gases: VI. Validity of approximate uptake expressions. Bull. Math. Biophys. 10, 191–200, (1948) 1 Sep 1948

    Article  CAS  PubMed  Google Scholar 

  23. S.S. Kety, The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol. Rev 3, 1–41 (1951)

    Google Scholar 

  24. G. Brix, M.L. Bahner, U. Hoffmann, A. Horvath, W. Schreiber, Regional blood flow, capillary permeability, and compartmental volumes: measurement with dynamic CT—initial experience. Radiology 210, 269–276 (1999)

    Article  CAS  PubMed  Google Scholar 

  25. G. Brix, F. Kiessling, R. Lucht, S. Darai, K. Wasser, S. Delorme et al., Microcirculation and microvasculature in breast tumors: pharmacokinetic analysis of dynamic MR image series. Magn. Reson. Med 52, 420–429 (2004)

    Google Scholar 

  26. S.P. Sourbron, D.L. Buckley, On the scope and interpretation of the Tofts Models for DCE-MRI. Magn. Reson. Med 66, 735–745 (2011)

    Article  PubMed  Google Scholar 

  27. C.S. Patlak, R.G. Blasberg, Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J. Cereb. Blood Flow Metab 5, 584–590 (1985)

    Google Scholar 

  28. C. Pradel, N. Siauve, G. Bruneteau, O. Clement, C. De Bazelaire, F. Frouin et al., Reduced capillary perfusion and permeability in human tumour xenografts treated with the VEGF signalling inhibitor ZD4190: an in vivo assessment using dynamic MR imaging and macromolecular contrast media. Magn. Reson. Imaging 21, 845–851 (2003)

    Article  CAS  PubMed  Google Scholar 

  29. S. Sourbron, M. Ingrisch, A. Siefert, M. Reiser, K. Herrmann, Quantification of cerebral blood flow, cerebral blood volume, and blood–brain-barrier leakage with DCE-MRI. Magn. Reson. Med 62, 205–217 (2009)

    Google Scholar 

  30. C.S. Patlak, R.G. Blasberg, J.D. Fenstermacher, Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J. Cereb. Blood Flow Metab 3, 1–7 (1983)

    Article  CAS  Google Scholar 

  31. S. Gaddikeri, R. Gaddikeri, T. Tailor, Y. Anzai, Dynamic contrast-enhanced MR imaging in head and neck cancer: techniques and clinical applications. Am. J. Neuroradiol 37, 588–595 (2016)

    Article  PubMed  Google Scholar 

  32. J.P.B. O’Connor, A. Jackson, G.J.M. Parker, G.C. Jayson, DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br. J. Cancer 96, 189–195 (2007) 1 Sep 2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. J.P.B. O’Connor, A. Jackson, G.J.M. Parker, G.C. Jayson, CT biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br. J. Cancer 96, 189–195 (2007)

    Google Scholar 

  34. K. Miles, T.-Y. Lee, V. Goh, E. Klotz, C. Cuenod, S. Bisdas et al., Current status and guidelines for the assessment of tumour vascular support with dynamic contrast-enhanced computed tomography. Eur. Radiol 22, 1430–1441 (2012)

    Article  CAS  PubMed  Google Scholar 

  35. W. Sangren, C. Sheppard, A mathematical derivation of the exchange of a labeled substance between a liquid flowing in a vessel and an external compartment. Bull. Math. Biophys 15, 387–394 (1953)

    Article  CAS  Google Scholar 

  36. T.S. Koh, L.H. Cheong, Z. Hou, Y.C. Soh, A physiologic model of capillary-tissue exchange for dynamic contrast-enhanced imaging of tumor microcirculation. IEEE T Bio-Med Eng 50, 159–167 (2003)

    Article  CAS  PubMed  Google Scholar 

  37. S. Bisdas, M. Baghi, J. Wagenblast, T.J. Vogl, C.H. Thng, T.S. Koh, Gadolinium-enhanced echo-planar T2-weighted MRI of tumors in the extracranial head and neck: feasibility study and preliminary results using a distributed-parameter tracer kinetic analysis. J. Magn. Reson. Imaging 27, 963–969 (2008)

    Article  PubMed  Google Scholar 

  38. Y. Sawada, C.S. Patlak, R.G. Blasberg, Kinetic analysis of cerebrovascular transport based on indicator diffusion technique. Am. J. Physiol 256, H794–H812 (1989)

    Article  CAS  Google Scholar 

  39. J.A. Johnson, T.A. Wilson, A model for capillary exchange. Am. J. Physiol. Legacy Content 210(6), 1299–1303 (1966)

    Article  CAS  Google Scholar 

  40. G. Moran, F. Prato, Modeling tissue contrast agent concentration: a solution to the tissue homogeneity model using a simulated arterial input function. Magn. Reson. Med 45, 42–45 (2001)

    Article  CAS  PubMed  Google Scholar 

  41. A. Garpebring, N. Ostlund, M. Karlsson, A novel estimation method for physiological parameters in dynamic contrast-enhanced MRI: application of a distributed parameter model using fourier-domain calculations. IEEE Trans. Med. Imaging 28, 1375–1383 (2009)

    Article  PubMed  Google Scholar 

  42. K.S.S. Lawrence, T.-Y. Lee, An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: I. Theoretical derivation. J. Cereb. Blood Flow Metab 18, 1365–1377 (1998)

    Article  Google Scholar 

  43. C. Duan, J.F. Kallehauge, G.L. Bretthorst, K. Tanderup, J.J. Ackerman, J.R. Garbow, Are complex DCE-MRI models supported by clinical data? Magn. Reson. Med 77, 1329–1339 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  44. L.E. Kershaw, H.-L.M. Cheng, Temporal resolution and SNR requirements for accurate DCE-MRI data analysis using the AATH model. Magn. Reson. Med 64, 1772–1780 (2010)

    Article  PubMed  Google Scholar 

  45. Y. Cao, D. Li, Z. Shen, D. Normolle, Sensitivity of quantitative metrics derived from DCE-MRI and a pharmacokinetic model to image quality and acquisition parameters. Acad. Radiol 17, 468–478 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  46. R.G.P. Lopata, W.H. Backes, P.P.J. van den Bosch, N.A.W. van Riel, On the identifiability of pharmacokinetic parameters in dynamic contrast-enhanced imaging. Magn. Reson. Med 58, 425–429 (2007)

    Article  PubMed  Google Scholar 

  47. J.R. Ewing, H. Bagher-Ebadian, Model selection in measures of vascular parameters using dynamic contrast-enhanced MRI: experimental and clinical applications. NMR Biomed 26, 1028–1041 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  48. J.G. Korporaal, M. van Vulpen, C.A.T. van den Berg, U.A. van der Heide, Tracer kinetic model selection for dynamic contrast-enhanced computed tomography imaging of prostate cancer. Invest. Radiol 47, 41–48 (2012)

    Article  PubMed  Google Scholar 

  49. F. Calamante, D.G. Gadian, A. Connelly, Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn. Reson. Med 44, 466–473 (2000)

    Article  CAS  PubMed  Google Scholar 

  50. F. Calamante, P.J. Yim, J.R. Cebral, Estimation of bolus dispersion effects in perfusion MRI using image-based computational fluid dynamics. NeuroImage 19, 341–353 (2003)

    Article  PubMed  Google Scholar 

  51. M.P.J. Kuenen, M. Mischi, H. Wijkstra, Contrast-ultrasound diffusion imaging for localization of prostate cancer. IEEE Trans. Med. Imaging 30, 1493–1502 (2011)

    Article  PubMed  Google Scholar 

  52. S. Turco, A.J. Janssen, C. Lavini, J. Jean, H. Wijkstra, M. Mischi, Time-efficient estimation of the magnetic resonance dispersion model parameters for quantitative assessment of angiogenesis. Biomed. Sig. Process. Control 26, 23–33 (2016)

    Article  Google Scholar 

  53. C. Lavini, Simulating the effect of input errors on the accuracy of Tofts’ pharmacokinetic model parameters. Magn. Reson. Imaging 33, 222–235 (2015)

    Article  PubMed  Google Scholar 

  54. M.J. van Osch, J. van der Grond, C.J. Bakker, Partial volume effects on arterial input functions: shape and amplitude distortions and their correction. J. Magn. Reson. Imaging 22, 704–709 (2005)

    Article  PubMed  Google Scholar 

  55. G.J. Parker, C. Roberts, A. Macdonald, G.A. Buonaccorsi, S. Cheung, D.L. Buckley et al., Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn. Reson. Med 56, 993–1000 (2006)

    Article  PubMed  Google Scholar 

  56. A. Garpebring, R. Wirestam, N. Östlund, M. Karlsson, Effects of inflow and radiofrequency spoiling on the arterial input function in dynamic contrast-enhanced MRI: a combined phantom and simulation study. Mag. Reson. Med. 65, 1670–1679 (2011)

    Article  PubMed  Google Scholar 

  57. T.E. Yankeelov, J.J. Luci, M. Lepage, R. Li, L. Debusk, P.C. Lin et al., Quantitative pharmacokinetic analysis of DCE-MRI data without an arterial input function: a reference region model. Mag. Reson. Imaging 23, 519–529 (2005)

    Article  CAS  PubMed  Google Scholar 

  58. T.E. Yankeelov, J.J. Luci, M. Lepage, R. Li, L. Debusk, P.C. Lin et al., Quantitative pharmacokinetic analysis of CT data without an arterial input function: a reference region model. Magn. Reson. Imaging 23, 519–529 (2005)

    Google Scholar 

  59. C. Yang, G.S. Karczmar, M. Medved, W.M. Stadler, Estimating the arterial input function using two reference tissues in dynamic contrast-enhanced MRI studies: fundamental concepts and simulations. Magn. Reson. Med 52, 1110–1117 (2004)

    Article  PubMed  Google Scholar 

  60. X. Li, W. Huang, T.E. Yankeelov, A. Tudorica, W.D. Rooney, C.S. Springer, Shutter-speed analysis of contrast reagent bolus-tracking data: preliminary observations in benign and malignant breast disease. Magn. Reson. Med 53, 724–729 (2005)

    Article  PubMed  Google Scholar 

  61. R.G. Spencer, K.W. Fishbein, Measurement of spin–lattice relaxation times and concentrations in systems with chemical exchange using the one-pulse sequence: breakdown of the Ernst model for partial saturation in nuclear magnetic resonance spectroscopy. J. Magn. Reson 142, 120–135 (2000)

    Article  CAS  PubMed  Google Scholar 

  62. X. Li, W.D. Rooney, C.S. Springer, A unified magnetic resonance imaging pharmacokinetic theory: intravascular and extracellular contrast reagents. Magn. Reson. Med 54, 1351–1359 (2005)

    Article  CAS  PubMed  Google Scholar 

  63. S.J. Hectors, C. Besa, M. Wagner, G.H. Jajamovich, G.K. Haines, S. Lewis et al., DCE‐MRI of the prostate using shutter‐speed vs. Tofts model for tumor characterization and assessment of aggressiveness. J. Mag. Reson. Imaging (2017)

    Google Scholar 

  64. D.L. Buckley, L.E. Kershaw, G.J. Stanisz, Cellular-interstitial water exchange and its effect on the determination of contrast agent concentration in vivo: dynamic contrast-enhanced MRI of human internal obturator muscle. Magn. Reson. Med 60, 1011–1019 (2008)

    Article  PubMed  Google Scholar 

  65. H.B. Larsson, S. Rosenbaum, T. Fritz-Hansen, Quantification of the effect of water exchange in dynamic contrast MRI perfusion measurements in the brain and heart. Magn. Reson. Med 46, 272–281 (2001)

    Article  CAS  PubMed  Google Scholar 

  66. S.P. Lin, J.J. Brown, MR contrast agents: physical and pharmacologic basics. J. Magn. Reson. Imaging 25, 884–899 (2007)

    Article  PubMed  Google Scholar 

  67. M.A. Costa, S. Shoemaker, H. Futamatsu, C. Klassen, D.J. Angiolillo, M. Nguyen, et al., Quantitative magnetic resonance perfusion imaging detects anatomic and physiologic coronary artery disease as measured by coronary angiography and fractional flow reserve. J. Am. College Cardiol. 50(6), 514–522 (2007)

    Article  PubMed  Google Scholar 

  68. E. Nagel, H.B. Lehmkuhl, W. Bocksch, C. Klein, U. Vogel, E. Frantz et al., Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation 99, 763–770 (1999)

    Article  CAS  PubMed  Google Scholar 

  69. C. Jahnke, E. Nagel, R. Gebker, T. Kokocinski, S. Kelle, R. Manka et al., Prognostic value of cardiac magnetic resonance stress tests: adenosine stress perfusion and dobutamine stress wall motion imaging. Circulation 115, 1769–1776 (2007)

    Article  PubMed  Google Scholar 

  70. V. Rizzello, D. Poldermans, A.F. Schinkel, E. Biagini, E. Boersma, A. Elhendy et al., Long term prognostic value of myocardial viability and ischaemia during dobutamine stress echocardiography in patients with ischaemic cardiomyopathy undergoing coronary revascularisation. Heart 92, 239–244 (2006)

    Article  CAS  PubMed  Google Scholar 

  71. L.M. Zir, S.W. Miller, R.E. Dinsmore, J.P. Gilbert, J.W. Harthorne, Interobserver variability in coronary angiography. Circulation 53, 627–632 (1976)

    Article  CAS  PubMed  Google Scholar 

  72. D. Zhang, S. Lv, X. Song, F. Yuan, F. Xu, M. Zhang et al., Fractional flow reserve versus angiography for guiding percutaneous coronary intervention: a meta-analysis. Heart 101, 455–462 (2015)

    Article  PubMed  Google Scholar 

  73. N.H. Pijls, W.F. Fearon, P.A. Tonino, U. Siebert, F. Ikeno, B. Bornschein et al., Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (fractional flow reserve versus angiography for multivessel evaluation) study. J. Am. Coll. Cardiol 56, 177–184 (2010)

    Article  PubMed  Google Scholar 

  74. P.A. Tonino, B. De Bruyne, N.H. Pijls, U. Siebert, F. Ikeno, M. vant Veer et al., Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N. Engl. J. Med. 360, 213–224, (2009) 15 Jan

    Article  CAS  PubMed  Google Scholar 

  75. C. Berry, Fractional flow reserve, coronary flow reserve and the index of microvascular resistance in clinical practice. Radcliffe Cardiology. com, 1–6 (2014)

    Google Scholar 

  76. M. Abdelghani, H. Tateishi, Y. Miyazaki, R. Cavalcante, O.I. Soliman, J.G. Tijssen et al., Angiographic assessment of aortic regurgitation by video-densitometry in the setting of TAVI: Echocardiographic and clinical correlates. Catheter. Cardiovasc. Interv. (2017) 21 Jan

    Google Scholar 

  77. M. Abdelghani, H. Tateishi, Y. Miyazaki, R. Cavalcante, O.I.I. Soliman, J.G. Tijssen et al., Angiographic assessment of aortic regurgitation by video-densitometry in the setting of TAVI: echocardiographic and clinical correlates. Catheter. Cardiovasc. Interv. 90, 650–659 (2017)

    Article  PubMed  Google Scholar 

  78. M. Abdel-Wahab, M. Abdelghani, Y. Miyazaki, E.W. Holy, C. Merten, D. Zachow et al., A novel angiographic quantification of aortic regurgitation after TAVR provides an accurate estimation of regurgitation fraction derived from cardiac magnetic resonance imaging. JACC Cardiovasc. Interv 11, 287–297 (2018)

    PubMed  Google Scholar 

  79. Y. Miyazaki, M. Abdelghani, E.S. de Boer, J.P. Aben, M. van Sloun, T. Suchecki et al., A novel synchronised diastolic injection method to reduce contrast volume during aortography for aortic regurgitation assessment: in vitro experiment of a transcatheter heart valve model. EuroIntervention 13, 1288–1295 (2017)

    Article  PubMed  Google Scholar 

  80. A.P. DeFilippis, R. Young, M.J. Blaha, Calibration and discrimination among multiple cardiovascular risk scores in a modern multiethnic cohort. Ann. Intern. Med 163, 68–69 (2015)

    Article  PubMed  Google Scholar 

  81. A.P. DeFilippis, R. Young, C.J. Carrubba, J.W. McEvoy, M.J. Budoff, R.S. Blumenthal et al., An analysis of calibration and discrimination among multiple cardiovascular risk scores in a modern multiethnic cohort. Ann. Intern. Med 162, 266–275 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  82. C.M. Cook, R. Petraco, M.J. Shun-Shin, Y. Ahmad, S. Nijjer, R. Al-Lamee et al., Diagnostic accuracy of computed tomography-derived fractional flow reserve: a systematic review. JAMA Cardiol 2, 803–810 (2017)

    Article  PubMed  Google Scholar 

  83. A. Palazzuoli, F. Cademartiri, M.L. Geleijnse, B. Meijboom, F. Pugliese, O. Soliman et al., Left ventricular remodelling and systolic function measurement with 64 multi-slice computed tomography versus second harmonic echocardiography in patients with coronary artery disease: a double blind study. Eur. J. Radiol 73, 82–88 (2010)

    Article  PubMed  Google Scholar 

  84. L.F.M. Di Martino, O.I.I. Soliman, L. van Gils, W.B. Vletter, N.M. Van Mieghem, B. Ren et al., Relation between calcium burden, echocardiographic stent frame eccentricity and paravalvular leakage after core valve transcatheter aortic valve implantation. Eur. Heart J. Cardiovasc. Imaging 18, 648–653 (2017)

    Google Scholar 

  85. L.F. Di Martino, W.B. Vletter, B. Ren, C. Schultz, N.M. Van Mieghem, O.I. Soliman et al., Prediction of paravalvular leakage after transcatheter aortic valve implantation. Int. J. Cardiovasc. Imaging 31, 1461–1468 (2015)

    Google Scholar 

  86. O.I.I. Soliman, N. El Faquir, B. Ren, E. Spitzer, L. van Gils, H. Jonker et al., Comparison of valve performance of the mechanically expanding Lotus and the balloon-expanded SAPIEN3 transcatheter heart valves: an observational study with independent core laboratory analysis. Eur. Heart J. Cardiovasc. Imaging 19, 157–167 (2018)

    Article  Google Scholar 

  87. M. Abdelghani, H. Tateishi, E. Spitzer, J.G. Tijssen, R.J. de Winter, O.I. Soliman et al., Echocardiographic and angiographic assessment of paravalvular regurgitation after TAVI: optimizing inter-technique reproducibility. Eur. Heart J. Cardiovasc. Imaging 17, 852–860 (2016)

    Article  PubMed  Google Scholar 

  88. M. Abdelghani, O.I. Soliman, C. Schultz, A. Vahanian, P.W. Serruys, Adjudicating paravalvular leaks of transcatheter aortic valves: a critical appraisal. Eur. Heart J 37, 2627–2644 (2016)

    Article  PubMed  Google Scholar 

  89. H. Tateishi, Y. Miyazaki, T. Okamura, R. Modolo, M. Abdelghani, O.I.I. Soliman et al., Role of computed tomography in planning the appropriate X-ray gantry for quantitative aortography of post-transcatheter aortic valve implantation regurgitation. Circ. J. (2018) 15 May

    Google Scholar 

  90. M. Abdelghani, E. Spitzer, O.I.I. Soliman, D. Beitzke, R. Laggner, R. Cavalcante et al., A simplified and reproducible method to size the mitral annulus: implications for transcatheter mitral valve replacement. Eur. Heart J. Cardiovasc. Imaging 18, 697–706 (2017)

    Google Scholar 

  91. R. Muslem, M. Ouhlous, S. Akin, A.A. Fares, O.I. Soliman, in Tricuspid Valve Disease: a Computed Tomographic Assessment, ed. by O.I. Soliman, F.J. ten Cate. Practical Manual of Tricuspid Valve Diseases (Springer International Publishing, Cham, 2018), pp. 179–203

    Google Scholar 

  92. M.O. Leach, K. Brindle, J. Evelhoch, J.R. Griffiths, M.R. Horsman, A. Jackson et al., The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br. J. Cancer 92, 1599 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. J.F. Schaefer, V. Schneider, J. Vollmar, M. Wehrmann, H. Aebert, G. Friedel et al., Solitary pulmonary nodules: association between signal characteristics in dynamic contrast enhanced MRI and tumor angiogenesis. Lung Cancer 53, 39–49 (2006)

    Article  PubMed  Google Scholar 

  94. J.H. Kim, J.M. Lee, J.H. Park, S.C. Kim, I. Joo, J.K. Han et al., Solid pancreatic lesions: characterization by using timing bolus dynamic contrast-enhanced MR imaging assessment—a preliminary study. Radiology 266, 185–196 (2013)

    Article  PubMed  Google Scholar 

  95. H. Hawighorst, W. Weikel, P.G. Knapstein, M.V. Knopp, I. Zuna, S.O. Schönberg et al., Angiogenic activity of cervical carcinoma: assessment by functional magnetic resonance imaging-based parameters and a histomorphological approach in correlation with disease outcome. Clin. Cancer Res 4, 2305–2312 (1998)

    Google Scholar 

  96. R. García-Figueiras, V.J. Goh, A.R. Padhani, S. Baleato-González, M. Garrido, L. León et al., CT perfusion in oncologic imaging: a useful tool? Am. J. Roentgenol 200, 8–19 (2013)

    Article  PubMed  Google Scholar 

  97. C.S. Reiner, M. Roessle, T. Thiesler, D. Eberli, E. Klotz, T. Frauenfelder et al., Computed tomography perfusion imaging of renal cell carcinoma: systematic comparison with histopathological angiogenic and prognostic markers. Invest. Radiol 48, 183–191 (2013)

    Google Scholar 

  98. V. Goh, S. Halligan, S.A. Taylor, D. Burling, P. Bassett, C.I. Bartram, Differentiation between diverticulitis and colorectal cancer: quantitative CT perfusion measurements versus morphologic criteria—initial experience 1. Radiology 242, 456–462 (2007)

    Article  PubMed  Google Scholar 

  99. G. Murphy, K. Jhaveri, The expanding role of imaging in the management of renal cell carcinoma. Expert Rev. Anticancer Ther 11, 1871–1888 (2011)

    Article  PubMed  Google Scholar 

  100. P. Clauser, R. Mann, A. Athanasiou, H. Prosch, K. Pinker, M. Dietzel et al., A survey by the European society of breast imaging on the utilisation of breast MRI in clinical practice. Eur. Radiol 28, 1909–1918 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  101. M. Tozaki, I. Isomoto, Y. Kojima, K. Kubota, Y. Kuroki, K. Ohnuki et al., The Japanese breast cancer society clinical practice guideline for screening and imaging diagnosis of breast cancer. Breast Cancer 22, 28–36 (2015)

    Article  PubMed  Google Scholar 

  102. L. Liberman, J.H. Menell, Breast imaging reporting and data system (BI-RADS). Radiol. Clin 40, 409–430 (2002)

    Article  PubMed  Google Scholar 

  103. L. Li, K. Wang, X. Sun, K. Wang, Y. Sun, G. Zhang et al., Parameters of dynamic contrast-enhanced MRI as imaging markers for angiogenesis and proliferation in human breast cancer. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 21, 376–382 (2015) 1 Feb, 20 Sep/received, 28 Dec/accepted 2015

    Google Scholar 

  104. D. Newell, K. Nie, J.-H. Chen, C.-C. Hsu, H. J. Yu, O. Nalcioglu, et al., Selection of diagnostic features on breast MRI to differentiate between malignant and benign lesions using computer-aided diagnosis: differences in lesions presenting as mass and non-mass-like enhancement. Eur. Radiol. 20(4), 771–781 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  105. N.D. Prionas, K.K. Lindfors, S. Ray, S.-Y. Huang, L.A. Beckett, W.L. Monsky, et al., Contrast-enhanced dedicated breast CT: initial clinical experience. Radiology 256(3), 714–723 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  106. N.B. Delongchamps, F. Beuvon, D. Eiss, T. Flam, N. Muradyan, M. Zerbib et al., Multiparametric MRI is helpful to predict tumor focality, stage, and size in patients diagnosed with unilateral low-risk prostate cancer. Prostate Cancer Prostatic Dis 14, 232–237 (2011)

    Article  CAS  PubMed  Google Scholar 

  107. S. Isebaert, L. Van den Bergh, K. Haustermans, S. Joniau, E. Lerut, L. De Wever et al., Multiparametric MRI for prostate cancer localization in correlation to whole-mount histopathology. JMRI 37, 1392–1401 (2013)

    Article  PubMed  Google Scholar 

  108. I. Ocak, M. Bernardo, G. Metzger, T. Barrett, P. Pinto, P.S. Albert et al., Dynamic contrast-enhanced MRI of prostate cancer at 3 T: a study of pharmacokinetic parameters. Am. J. Roengtenol. 189, W193–W191 (2007)

    Article  Google Scholar 

  109. T. Auer, M. Edlinger, J. Bektic, U. Nagele, T. Herrmann, G. Schäfer et al., Performance of PI-RADS version 1 versus version 2 regarding the relation with histopathological results. World J. Urol. 35, 687–693 (2017)

    Article  PubMed  CAS  Google Scholar 

  110. A.M. Hötker, Y. Mazaheri, Ö. Aras, J. Zheng, C. S. Moskowitz, T. Gondo et al., Assessment of prostate cancer aggressiveness by use of the combination of quantitative DWI and dynamic contrast-enhanced MRI. Am. J. Roentgenol. 206, 756–763 (2016) 1 Apr 2016

    Article  PubMed  Google Scholar 

  111. A. Oto, C. Yang, A. Kayhan, M. Tretiakova, T. Antic, C. Schmid-Tannwald et al., Diffusion-weighted and dynamic contrast-enhanced MRI of prostate cancer: correlation of quantitative MR parameters with gleason score and tumor angiogenesis. Am. J. Roengtenol 197, 1382–1390 (2011)

    Article  PubMed  Google Scholar 

  112. M. Notohamiprodjo, S. Sourbron, M. Staehler, H.J. Michaely, U.I. Attenberger, G.P. Schmidt et al., Measuring perfusion and permeability in renal cell carcinoma with dynamic contrast-enhanced MRI: a pilot study. JMRI 31, 490–501 (2010)

    Article  PubMed  Google Scholar 

  113. M.A. Bali, T. Metens, V. Denolin, M. Delhaye, P. Demetter, J. Closset et al., Tumoral and nontumoral pancreas: correlation between quantitative dynamic contrast-enhanced MR imaging and histopathologic parameters. Radiology 261, 456–466 (2011)

    Article  PubMed  Google Scholar 

  114. D.G. Mitchell, J. Bruix, M. Sherman, C.B. Sirlin, LI-RADS (liver imaging reporting and data system): summary, discussion, and consensus of the LI-RADS management working group and future directions. Hepatology 61, 1056–1065 (2015)

    Article  PubMed  Google Scholar 

  115. K. Mortele, M. Praet, H. Van Vlierberghe, B. de Hemptinne, K. Zou, P. Ros, Focal nodular hyperplasia of the liver: detection and characterization with plain and dynamic-enhanced MRI. Abdom. Imaging 27, 700–707 (2002)

    Article  PubMed  Google Scholar 

  116. D.V. Sahani, N.-S. Holalkere, P.R. Mueller, A.X. Zhu, Advanced hepatocellular carcinoma: CT perfusion of liver and tumor tissue—initial experience. Radiology 243, 736–743 (2007)

    Article  PubMed  Google Scholar 

  117. N.C. Yu, V. Chaudhari, S.S. Raman, C. Lassman, M.J. Tong, R.W. Busuttil et al., CT and MRI improve detection of hepatocellular carcinoma, compared with ultrasound alone, in patients with cirrhosis. Clin. Gastroenterol. Hepatol. 9, 161–167

    Article  CAS  PubMed  Google Scholar 

  118. D. Ippolito, C. Capraro, A. Casiraghi, C. Cestari, S. Sironi, Quantitative assessment of tumour associated neovascularisation in patients with liver cirrhosis and hepatocellular carcinoma: role of dynamic-CT perfusion imaging. Eur. Radiol 22, 803–811 (2012)

    Article  PubMed  Google Scholar 

  119. J. Oosterbroek, E. Bennink, M. Philippens, C. Raaijmakers, M. Viergever, H. de Jong, Comparison of DCE-CT models for quantitative evaluation of Ktrans in larynx tumors. Phys. Med. Biol 60, 3759 (2015)

    Article  CAS  PubMed  Google Scholar 

  120. L. Ash, T.N. Teknos, D. Gandhi, S. Patel, S.K. Mukherji, Head and neck squamous cell carcinoma: CT perfusion can help noninvasively predict intratumoral microvessel density. Radiology 251(2), 422-428 (2009)

    Article  PubMed  Google Scholar 

  121. B.G. Muller, J.J. Fütterer, R.T. Gupta, A. Katz, A. Kirkham, J. Kurhanewicz et al., The role of magnetic resonance imaging (MRI) in focal therapy for prostate cancer: recommendations from a consensus panel. BJU Int 113, 218–227 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  122. M.R. Moman, C.A.T. van den Berg, A.E. Boeken Kruger, J.J. Battermann, M.A. Moerland, U.A. van der Heide, et al., Focal salvage guided by T2-weighted and dynamic contrast-enhanced magnetic resonance imaging for prostate cancer recurrences. Int. J. Rad. Oncol. Biol. Phys. 76(3), 741-746 (2010)

    Article  PubMed  Google Scholar 

  123. P.J. Kneeshaw, L.W. Turnbull, A. Smith, P.J. Drew, Dynamic contrast enhanced magnetic resonance imaging aids the surgical management of invasive lobular breast cancer. Eur. J. Surg. Oncol 29, 32–37 (2003)

    Article  CAS  Google Scholar 

  124. N. Betrouni, P. Colin, P. Puech, A. Villers, S. Mordon, An image guided treatment platform for prostate cancer photodynamic therapy, in Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, (2013), pp. 370-373

    Google Scholar 

  125. N. Betrouni, S. Boukris, F. Benzaghou, Vascular targeted photodynamic therapy with TOOKAD® soluble (WST11) in localized prostate cancer: efficiency of automatic pre-treatment planning. Lasers Med. Sci. 32, 1301–1307 (2017) 1 Aug 2017

    Article  CAS  PubMed  Google Scholar 

  126. A. Oto, I. Sethi, G. Karczmar, R. McNichols, M. K. Ivancevic, W. M. Stadler, et al., MR imaging–guided focal laser ablation for prostate cancer: phase I trial. Radiology 267, 932-940 (2013)

    Article  PubMed  Google Scholar 

  127. L.G. Merckel, F.M. Knuttel, R. Deckers, T. van Dalen, G. Schubert, N.H.G.M. Peters et al., First clinical experience with a dedicated MRI-guided high-intensity focused ultrasound system for breast cancer ablation. Eur. Radiol. 26, 4037–4046 (2016) 1 Nov 2016

    Article  PubMed  PubMed Central  Google Scholar 

  128. L.G.P.H. Vroomen, H.J. Scheffer, M.C.A.M. Melenhorst, M.C. de Jong, J.E. van den Bergh, C. van Kuijk et al., MR and CT imaging characteristics and ablation zone volumetry of locally advanced pancreatic cancer treated with irreversible electroporation. Eur. Radiol. 27, 2521–2531 (2017) 1 June 2017

    Article  PubMed  PubMed Central  Google Scholar 

  129. T.M. Wah, H.C. Irving, W. Gregory, J. Cartledge, A.D. Joyce, P.J. Selby, Radiofrequency ablation (RFA) of renal cell carcinoma (RCC): experience in 200 tumours. BJU Int 113, 416–428 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  130. S.N. Goldberg, G.S. Gazelle, P.R. Mueller, Thermal ablation therapy for focal malignancy. Am. J. Roentgenol. 174, 323–331 (2000) 1 Feb 2000

    Article  CAS  PubMed  Google Scholar 

  131. P.J. De Visschere, G.O. De Meerleer, J.J. Fütterer, G.M. Villeirs, Role of MRI in follow-up after focal therapy for prostate carcinoma. Am. J. Roentgenol 194, 1427–1433 (2010)

    Google Scholar 

  132. E. Eisenhauer, P. Therasse, J. Bogaerts, L. Schwartz, D. Sargent, R. Ford et al., New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009)

    Article  CAS  PubMed  Google Scholar 

  133. R. Lencioni, J.M. Llovet, Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin. Liver Dis. 30, 52–60 (2010) 19 Feb 2010

    Article  CAS  Google Scholar 

  134. T. Bäuerle, W. Semmler, Imaging response to systemic therapy for bone metastases. Eur. Radiol. 19, 2495–2507 (2009) 1 Oct 2009

    Article  PubMed  Google Scholar 

  135. R.A.P. Dijkhoff, R.G.H. Beets-Tan, D.M.J. Lambregts, G.L. Beets, M. Maas, Value of DCE-MRI for staging and response evaluation in rectal cancer: a systematic review. Eur. J. Radiol. 95, 155–168

    Article  PubMed  Google Scholar 

  136. M.D. Pickles, M. Lowry, D.J. Manton, L.W. Turnbull, prognostic value of DCE-MRI in breast cancer patients undergoing neoadjuvant chemotherapy: a comparison with traditional survival indicators. Eur. Radiol. 25, 1097–1106 (2015) 1 Apr 2015

    Article  PubMed  Google Scholar 

  137. S. Drisis, T. Metens, M. Ignatiadis, K. Stathopoulos, S.-L. Chao, M. Lemort, Quantitative DCE-MRI for prediction of pathological complete response following neoadjuvant treatment for locally advanced breast cancer: the impact of breast cancer subtypes on the diagnostic accuracy. Eur. Radiol. 26(5), 1474-1484 (2016)

    Article  PubMed  Google Scholar 

  138. G. Petralia, L. Preda, G. Giugliano, B.A. Jereczek-Fossa, A. Rocca, G. D’andrea et al., Perfusion computed tomography for monitoring induction chemotherapy in patients with squamous cell carcinoma of the upper aerodigestive tract: correlation between changes in tumor perfusion and tumor volume. J. Comput. Assist. Tomogr. 33, 552–559 (2009)

    Article  PubMed  Google Scholar 

  139. N. Tacelli, T. Santangelo, A. Scherpereel, A. Duhamel, V. Deken, E. Klotz et al., Perfusion CT allows prediction of therapy response in non-small cell lung cancer treated with conventional and anti-angiogenic chemotherapy. Eur. Radiol 23, 2127–2136 (2013)

    Article  PubMed  Google Scholar 

  140. E. Sacco, F. Pinto, A. Totaro, A. D’Addessi, M. Racioppi, G. Gulino et al., Imaging of renal cell carcinoma: state of the art and recent advances. Urol. Int 86, 125–139 (2011)

    Article  PubMed  Google Scholar 

  141. G.C. Jayson, R. Kerbel, L.M. Ellis, A.L. Harris, Antiangiogenic therapy in oncology: current status and future directions. Lancet 388, 518–529 (2016)

    Article  CAS  Google Scholar 

  142. J. Guo, J. Glass, M. McCarville, B. Shulkin, V. Daryani, C. Stewart et al., Assessing vascular effects of adding bevacizumab to neoadjuvant chemotherapy in osteosarcoma using DCE-MRI. Br. J. Cancer 113, 1282 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. M. Merz, J. Ritsch, C. Kunz, B. Wagner, S. Sauer, D. Hose et al., Dynamic contrast-enhanced magnetic resonance imaging for assessment of antiangiogenic treatment effects in multiple myeloma. Clin. Cancer Res 21, 106–112 (2015)

    Article  PubMed  CAS  Google Scholar 

  144. J.M. Hudson, C. Bailey, M. Atri, G. Stanisz, L. Milot, R. Williams et al., The prognostic and predictive value of vascular response parameters measured by dynamic contrast-enhanced-CT, -MRI and -US in patients with metastatic renal cell carcinoma receiving sunitinib. Eur. Radiol. (2018) 30 Jan 2018

    Google Scholar 

  145. J.S. Lind, M.R. Meijerink, A.-M.C. Dingemans, C. van Kuijk, M.C. Öllers, D. De Ruysscher et al., Dynamic contrast-enhanced CT in patients treated with sorafenib and erlotinib for non-small cell lung cancer: a new method of monitoring treatment? Eur. Radiol 20, 2890–2898 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mischi, M., Turco, S., Soliman, O.I., ten Cate, F.J., Wijkstra, H., Schoots, I. (2018). Extravascular Contrast Agents. In: Quantification of Contrast Kinetics in Clinical Imaging . Springer, Cham. https://doi.org/10.1007/978-3-319-64638-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64638-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64637-4

  • Online ISBN: 978-3-319-64638-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics