Skip to main content

Methods, Techniques and Sensors for Precision Flood Monitoring Through Remote Sensing

  • Chapter
  • First Online:
Flood Monitoring through Remote Sensing

Abstract

In this chapter we introduce the subject matter of the book, highlighting the many aspects of signal and image processing, modelling and interpretation involved in the production of high-precision flood maps from remotely sensed data. For each field linked to the flood mapping activity, we summarize some basic definitions and research aspects, reviewing briefly some of the most recent applications and citing appropriate literature. We then introduce organically the subjects treated in each of the following chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    In a monostatic, active remote sensor, the receiving antenna is placed close (possibly coincides with) the transmitting one. Otherwise, the sensor is said to be bistatic.

  2. 2.

    The incidence angle is defined as the angle between the direction of observation of the sensor (also known as line of sight or LOS) and the vertical direction.

  3. 3.

    As coherent devices, the polarization of waves emitted and received by radar sensor antennae can be controlled. Most currently available SAR instruments work with linear polarizations, conventionally referred to the horizontal (H) or vertical (V) direction. Transmitted and received polarization can be controlled independently, so that co-polarized (H-transmitted, H-received, or HH, and V-transmitted, V-received, or VV), as well as cross-polarized, channels (VH or HV) can be investigated [76, p. 541].

  4. 4.

    Radar frequency ranges are divided into bands, whose names and limits derive mainly from historical military conventions [105]. The most used by current satellite radar sensors are L (1 to 2 GHz), C (4 to 8 GHz) and X (8 to 12.5 GHz) bands, with P ( < 300 MHz) and, on the other extreme, K bands ( > 12 GHz) mostly used in airborne sensors.

  5. 5.

    Light detection and ranging (LiDAR) sensors collect large clouds of precisely geocoded points, which can be then fused together into high-resolution matrices or sparse representations of the Earth surface, providing the highest-resolution DEMs available to date [116].

References

  1. Alfieri, L., Salamon, P., Bianchi, A., Neal, J., Bates, P.D., Feyen, L.: Advances in pan-European flood hazard mapping. Hydrol. Process. 28(13), 4067–4077 (2014). doi: https://doi.org/10.1002/hyp.9947

  2. Andreadis, K.M., Clark, E.A., Lettenmaier, D.P., Alsdorf, D.E.: Prospects for river discharge and depth estimation through assimilation of swath-altimetry into a raster-based hydrodynamics model. Geophys. Res. Lett. 34(10), L10,403 (2007). doi: https://doi.org/10.1029/2007GL029721

  3. Argenti, F., Lapini, A., Bianchi, T., Alparone, L.: A tutorial on speckle reduction in synthetic aperture radar images. IEEE Geosci. Remote Sens. Maga. 1(3), 6–35 (2013). doi: https://doi.org/10.1109/MGRS.2013.2277512

  4. Baker, V.R.: Geomorphological understanding of floods. Geomorphology 10(1–4), 139–156 (1994). doi: https://doi.org/10.1016/0169–555X(94)90013–2

  5. Balz, T.: SAR Simulation of Urban Areas: Techniques and Applications, pp. 215–231. Springer, Dordrecht (2010). doi: https://doi.org/10.1007/978-90-481–3751-0_9

  6. Bamler, R., Hartl, P.: Synthetic aperture radar interferometry. Inverse Prob. 14(4), R1–R54 (1998). doi: https://doi.org/10.1088/0266-5611/14/4/001

  7. Barton, I.J., Bathols, J.M.: Monitoring floods with AVHRR. Remote Sens. Environ. 30(1), 89–94 (1989). doi: https://doi.org/10.1016/0034-4257(89)90050–3

  8. Bates, P.D.: Remote sensing and flood inundation modelling. Hydrol. Process. 18(13), 2593–2597 (2004). doi: https://doi.org/10.1002/hyp.5649

  9. Bates, P.D.: Integrating remote sensing data with flood inundation models: how far have we got? Hydrol. Process. 26(16), 2515–2521 (2012). doi: https://doi.org/10.1002/hyp.9374

  10. Bates, P.D., Horritt, M.S., Aronica, G., Beven, K.: Bayesian updating of flood inundation likelihoods conditioned on flood extent data. Hydrol. Process. 18(17), 3347–3370 (2004). doi: https://doi.org/10.1002/hyp.1499

  11. Bates, P.D., Wilson, M.D., Horritt, M.S., Mason, D.C., Holden, N., Currie, A.: Reach scale floodplain inundation dynamics observed using airborne synthetic aperture radar imagery: data analysis and modelling. J. Hydrol. 328(1–2), 306–318 (2006). doi: https://doi.org/10.1016/j.jhydrol.2005.12.028

  12. Bazi, Y., Bruzzone, L., Melgani, F.: An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images. IEEE Trans. Geosci. Remote Sens. 43(4), 874–886 (2005). doi: https://doi.org/10.1109/TGRS.2004.842441

  13. Bishop, C.M.: Neural networks for pattern recognition. Clarendon Press/Oxford University Press, Oxford/New York (1995)

    Google Scholar 

  14. Boni, G., Ferraris, L., Pulvirenti, L., Squicciarino, G., Pierdicca, N., Member, S., Candela, L., Pisani, A.R., Zoffoli, S., Onori, R., Proietti, C., Pagliara, P.: A prototype system for flood monitoring based on flood forecast combined with COSMO-SkyMed and sentinel-1 data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 1–12 (2016). doi: https://doi.org/10.1109/JSTARS.2016.2514402

  15. Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Pergamon Press, Oxford (1980)

    Google Scholar 

  16. Boschetti, M., Nutini, F., Manfron, G., Brivio, P.A., Nelson, A.: Comparative analysis of normalised difference spectral indices derived from MODIS for detecting surface water in flooded rice cropping systems. PLoS One 9(2), e88741 (2014). doi: https://doi.org/10.1371/journal.pone.0088741

  17. Bovolo, F., Bruzzone, L.: The time variable in data fusion: a change detection perspective. IEEE Geosci. Remote Sens. Maga. 3(3), 8–26 (2015). doi: https://doi.org/10.1109/MGRS.2015.2443494

  18. Cafforio, C., Prati, C., Rocca, F.: SAR data focusing using seismic migration techniques. IEEE Trans. Aerosp. Electron. Syst. 27(2), 194–207 (1991). doi: https://doi.org/10.1109/7.78293

  19. Cossu, R., Schoepfer, E., Bally, P., Fusco, L.: Near real-time SAR-based processing to support flood monitoring. J. Real-Time Image Proc. 4(3), 205–218 (2009). doi: https://doi.org/10.1007/s11554–009-0114-4

  20. Curlander, J.C., McDonough, R.N.: Synthetic aperture radar: systems and signal processing. Wiley, New York (1991)

    Google Scholar 

  21. D’Addabbo, A., Refice, A., Pasquariello, G., Lovergine, F.P., Capolongo, D., Manfreda, S.: A Bayesian network for flood detection combining SAR imagery and ancillary data. IEEE Trans. Geosci. Remote Sens. 54(6), 3612–3625 (2016). doi: https://doi.org/10.1109/TGRS.2016.2520487

  22. De Groeve, T.: Flood monitoring and mapping using passive microwave remote sensing in Namibia. Geomat. Nat. Haz. Risk 1(1), 19–35 (2010). doi: https://doi.org/10.1080/19475701003648085

  23. Deledalle, C.A., Denis, L., Tupin, F., Reigber, A., Jager, M.: NL-SAR: a unified nonlocal framework for resolution-preserving (Pol)(In)SAR denoising. IEEE Trans. Geosci. Remote Sens. 53(4), 2021–2038 (2015). doi: https://doi.org/10.1109/TGRS.2014.2352555

  24. Deledalle, C.A., Loïc, D., Poggi, G., Tupin, F., Verdoliva, L.: Exploiting patch similarity for SAR image processing: the nonlocal paradigm. IEEE Signal Process. Mag. 31(4), 69–78 (2014). doi: https://doi.org/10.1109/MSP.2014.2311305

  25. Dellepiane, S.G., Bo, G., Monni, S., Buck, C.: SAR images and interferometric coherence for flood monitoring. In: IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120), vol. 6, pp. 2608–2610. IEEE (2000). doi: https://doi.org/10.1109/IGARSS.2000.859656

  26. Di Baldassarre, G., Uhlenbrook, S.: Is the current flood of data enough? A treatise on research needs for the improvement of flood modelling. Hydrol. Process. 26(1), 153–158 (2012). doi: https://doi.org/10.1002/hyp.8226

  27. Di Martino, G., Di Simone, A., Iodice, A., Riccio, D.: Scattering-based nonlocal means SAR despeckling. IEEE Trans. Geosci. Remote Sens. 54(6), 3574–3588 (2016). doi: https://doi.org/10.1109/TGRS.2016.2520309

  28. European Council: EU directive of the European parliament and of the European council on the estimation and management of flood risks (2007/60/EU) (2007). http://ec.europa.eu/environment/water/flood_risk/

  29. Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., Alsdorf, D.E.: The shuttle radar topography mission. Rev. Geophys. 45(2), RG2004 (2007). doi: https://doi.org/10.1029/2005RG000183

  30. Feng, Q., Liu, J., Gong, J.: Urban flood mapping based on unmanned aerial vehicle remote sensing and random forest classifier – a case of Yuyao, China. Water 7(4), 1437–1455 (2015). doi: https://doi.org/10.3390/w7041437

  31. Franceschetti, G., Iodice, A., Riccio, D., Ruello, G.: SAR raw signal simulation for urban structures. IEEE Trans. Geosci. Remote Sens. 41(9), 1986–1995 (2003). doi: https://doi.org/10.1109/TGRS.2003.814626

  32. Frost, V.S., Stiles, J.A., Shanmugan, K.S., Holtzman, J.C.: A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 4(2), 157–166 (1982). doi: https://doi.org/10.1109/TPAMI.1982.4767223

  33. Gaume, E., Borga, M.: Post-flood field investigations in upland catchments after major flash floods: proposal of a methodology and illustrations. J. Flood Risk Manage. 1(4), 175–189 (2008). doi: https://doi.org/10.1111/j.1753–318X.2008.00023.x

  34. Geudtner, D., Winter, R., Vachon, P.: Flood monitoring using ERS-1 SAR interferometry coherence maps. In: IGARSS ’96. 1996 International Geoscience and Remote Sensing Symposium, vol. 2, pp. 966–968. IEEE (1996). doi: https://doi.org/10.1109/IGARSS.1996.516536

  35. Giustarini, L., Hostache, R., Kavetski, D., Chini, M., Corato, G., Schlaffer, S., Matgen, P.: Probabilistic flood mapping using synthetic aperture radar data. IEEE Trans. Geosci. Remote Sens. 1–12 (2016). doi: https://doi.org/10.1109/TGRS.2016.2592951

  36. Giustarini, L., Hostache, R., Matgen, P., Schumann, G.J.P., Bates, P.D., Mason, D.C.: A change detection approach to flood mapping in urban areas using TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 51(4), 2417–2430 (2013). doi: https://doi.org/10.1109/Tgrs.2012.2210901

  37. Gnecco, G., Morisi, R., Roth, G., Sanguineti, M., Taramasso, A.C.: Supervised and semi-supervised classifiers for the detection of flood-prone areas. Soft Comput. (2016). doi: https://doi.org/10.1007/s00500-015-1983-z

  38. Grimaldi, S., Li, Y., Pauwels, V.R.N., Walker, J.P.: Remote sensing-derived water extent and level to constrain hydraulic flood forecasting models: opportunities and challenges. Surv. Geophys. 37(5), 977–1034 (2016). doi: https://doi.org/10.1007/s10712-016-9378-y

  39. Guyet, T., Nicolas, H.: Long term analysis of time series of satellite images. Pattern Recogn. Lett. 70, 17–23 (2015). doi: https://doi.org/10.1016/j.patrec.2015.11.005

  40. Hanssen, R.F.: Radar Interferometry: Data Interpretation and Error Analysis. Kluwer Academic Publishers (2001). doi: https://doi.org/10.1007/s13398-014-0173–7.2

  41. Henry, J.B.B., Chastanet, P., Fellah, K., Desnos, Y.L.L.: Envisat multi-polarized ASAR data for flood mapping. Int. J. Remote Sens. 27(10), 1921–1929 (2006). doi: https://doi.org/10.1080/01431160500486724

  42. Hess, L.L., Melack, J.M., Simonett, D.S.: Radar detection of flooding beneath the forest canopy: a review. Int. J. Remote Sens. 11(7), 1313–1325 (1990). doi: https://doi.org/10.1080/01431169008955095

  43. Houser, P.R., De Lannoy, G.J., Walker, J.P.: Land surface data assimilation. In: Data Assimilation, pp. 549–597. Springer, Berlin/Heidelberg (2010). doi: https://doi.org/10.1007/978-3-540-74703-1_21

  44. Ireland, G., Volpi, M., Petropoulos, G.: Examining the capability of supervised machine learning classifiers in extracting flooded areas from landsat TM imagery: a case study from a mediterranean flood. Remote Sens. 7(3), 3372–3399 (2015). doi: https://doi.org/10.3390/rs70303372

  45. Ji, L., Zhang, L., Wylie, B.: Analysis of dynamic thresholds for the normalized difference water index. Photogramm. Eng. Remote Sens. 75(11), 1307–1317 (2009). doi: https://doi.org/10.14358/PERS.75.11.1307

  46. Joyce, K.E., Belliss, S.E., Samsonov, S.V., McNeill, S.J., Glassey, P.J.: A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters. Prog. Phys. Geogr. 33(2), 183–207 (2009). doi: https://doi.org/10.1177/0309133309339563

  47. Jung, H.C., Jasinski, M., Kim, J.W., Shum, C.K., Bates, P.D., Neal, J., Lee, H., Alsdorf, D.E.: Calibration of two-dimensional floodplain modeling in the central Atchafalaya Basin Floodway System using SAR interferometry. Water Resour. Res. 48(7), W07511, (2012). doi: https://doi.org/10.1029/2012WR011951

  48. Klemas, V.: Remote sensing of floods and flood-prone areas: an overview. J. Coastal Res. 314, 1005–1013 (2015). doi: https://doi.org/10.2112/JCOASTRES-D-14–00160.1

  49. Kuan, D.T., Sawchuk, A.A., Strand, T.C., Chavel, P.: Adaptive noise smoothing filter for images with signal-dependent noise. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 7(2), 165–177 (1985). doi: https://doi.org/10.1109/TPAMI.1985.4767641

  50. Kussul, N., Shelestov, A., Skakun, S.: Flood monitoring from SAR data. In: NATO Science for Peace and Security Series C: Environmental Security, vol. 97, pp. 19–29 (2011). doi: https://doi.org/10.1007/978-90-481-9618-0_3

  51. Lee, J.S.: Speckle suppression and analysis for synthetic aperture radar images. Opt. Eng. 25(5), 255636 (1986). doi: https://doi.org/10.1117/12.7973877

  52. Longbotham, N., Pacifici, F., Glenn, T., Zare, A., Volpi, M., Tuia, D., Christophe, E., Michel, J., Inglada, J., Chanussot, J., Du, Q.: Multi-modal change detection, application to the detection of flooded areas: Outcome of the 2009–2010 data fusion contest. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5(1), 331–342 (2012). doi: https://doi.org/10.1109/JSTARS.2011.2179638

  53. Lu, D., Weng, Q.: A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 28(5), 823–870 (2007). doi: https://doi.org/10.1080/01431160600746456

  54. Ma, P., Lin, H.: Robust detection of single and double persistent scatterers in urban built environments. IEEE Trans. Geosci. Remote Sens. 54(4), 2124–2139 (2015). doi: https://doi.org/10.1109/TGRS.2015.2496193

  55. Ma, X., Shen, H., Zhao, X., Zhang, L.: SAR image despeckling by the use of variational methods With adaptive nonlocal functionals. IEEE Trans. Geosci. Remote Sens. 54(6), 1–15 (2016). doi: https://doi.org/10.1109/TGRS.2016.2517627

  56. Manavalan, R.: SAR image analysis techniques for flood area mapping – literature survey. Earth Sci. Inf. (2016). doi: https://doi.org/10.1007/s12145-016-0274-2

  57. Manjusree, P., Prasanna Kumar, L., Bhatt, C.M., Rao, G.S., Bhanumurthy, V.: Optimization of threshold ranges for rapid flood inundation mapping by evaluating backscatter profiles of high incidence angle SAR images. Int. J. Disaster Risk Sci. 3(2), 113–122 (2012). doi: https://doi.org/10.1007/s13753-012-0011-5

  58. Marti-Cardona, B., Lopez-Martinez, C., Dolz-Ripolles, J., Bladè-Castellet, E.: ASAR polarimetric, multi-incidence angle and multitemporal characterization of Doñana wetlands for flood extent monitoring. Remote Sens. Environ. 114(11), 2802–2815 (2010). doi: https://doi.org/10.1016/j.rse.2010.06.015

  59. Martinis, S., Kersten, J., Twele, A.: A fully automated TerraSAR-X based flood service. ISPRS J. Photogramm. Remote Sens. 104, 203–212 (2015). doi: https://doi.org/10.1016/j.isprsjprs.2014.07.014

  60. Marzano, F.S., Mori, S., Chini, M., Pulvirenti, L., Pierdicca, N., Montopoli, M., Weinman, J.A.: Potential of high-resolution detection and retrieval of precipitation fields from X-band spaceborne synthetic aperture radar over land. Hydrol. Earth Syst. Sci. 15(3), 859–875 (2011). doi: https://doi.org/10.5194/hess-15-859-2011

  61. Marzano, F.S., Mori, S., Weinman, J.A.: Evidence of rainfall signatures on X-band synthetic aperture radar imagery over land. IEEE Trans. Geosci. Remote Sens. 48(2), 950–964 (2010). doi: https://doi.org/10.1109/TGRS.2009.2034843

  62. Mason, D.C., Davenport, I.J., Neal, J.C., Schumann, G.J.P., Bates, P.D.: Near real-time flood detection in urban and rural areas using high-resolution synthetic aperture radar images. IEEE Trans. Geosci. Remote Sens. 50(8), 3041–3052 (2012). doi: https://doi.org/10.1109/TGRS.2011.2178030

  63. Mason, D.C., Horritt, M.S., Dall’Amico, J.T., Scott, T.R., Bates, P.D.: Improving river flood extent delineation from synthetic aperture radar using airborne laser altimetry. IEEE Trans. Geosci. Remote Sens. 45(12), 3932–3943 (2007). doi: https://doi.org/10.1109/TGRS.2007.901032

  64. Mason, D.C., Schumann, G.J.-P., Bates, P.D.: Data utilization in flood inundation modelling. In: Flood Risk Science and Management, pp. 209–233. Wiley-Blackwell, Oxford (2010). doi: https://doi.org/10.1002/9781444324846.ch11

  65. Mason, D.C., Speck, R., Devereux, B., Schumann, G.J.P., Neal, J.C., Bates, P.D.: Flood detection in urban areas using TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 48(2), 882–894 (2010). doi: https://doi.org/10.1109/TGRS.2009.2029236

  66. Matgen, P., Montanari, M., Hostache, R., Pfister, L., Hoffmann, L., Plaza, D., Pauwels, V.R.N., De Lannoy, G.J.M., De Keyser, R., Savenije, H.H.G.: Towards the sequential assimilation of SAR-derived water stages into hydraulic models using the Particle Filter: Proof of concept. Hydrol. Earth Syst. Sci. 14(9), 1773–1785 (2010). doi: https://doi.org/10.5194/hess-14-1773-2010

  67. Matgen, P., Schumann, G.J.P., Henry, J.B., Hoffmann, L., Pfister, L.: Integration of SAR-derived river inundation areas, high-precision topographic data and a river flow model toward near real-time flood management. Int. J. Appl. Earth Obs. Geoinf. 9(3), 247–263 (2007). doi: https://doi.org/10.1016/j.jag.2006.03.003

  68. Maulik, U., Chakraborty, D.: Remote sensing image classification: a survey of support-vector-machine-based advanced techniques. IEEE Geosci. Remote Sens. Maga. 5(1), 33–52 (2017). doi: https://doi.org/10.1109/MGRS.2016.2641240

  69. McFeeters, S.K.: The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 17(7), 1425–1432 (1996). doi: https://doi.org/10.1080/01431169608948714

  70. Memon, A.A., Muhammad, S., Rahman, S., Haq, M.: Flood monitoring and damage assessment using water indices: A case study of Pakistan flood-2012. Egypt. J. Remote Sens. Space Sci. 18(1), 99–106 (2015). doi: https://doi.org/10.1016/j.ejrs.2015.03.003

  71. de Moel, H., van Alphen, J., Aerts, J.C.J.H.: Flood maps in Europe – methods, availability and use. Nat. Hazards Earth Syst. Sci. 9(2), 289–301 (2009). doi: https://doi.org/10.5194/nhess-9-289-2009

  72. Morandeira, N.S., Grimson, R., Kandus, P.: Assessment of SAR speckle filters in the context of object-based image analysis. Remote Sens. Lett. 7(2), 150–159 (2016). doi: https://doi.org/10.1080/2150704X.2015.1117153

  73. Musa, Z.N., Popescu, I., Mynett, A.: A review of applications of satellite SAR, optical, altimetry and DEM data for surface water modelling, mapping and parameter estimation. Hydrol. Earth Syst. Sci. 19(9), 3755–3769 (2015). doi: https://doi.org/10.5194/hess-19-3755-2015

  74. Nico, G., Pappalepore, M., Pasquariello, G., Refice, A., Samarelli, S.: Comparison of SAR amplitude vs. coherence flood detection methods – a GIS application. Int. J. Remote Sens. 21(8), 1619–1631 (2000). doi: https://doi.org/10.1080/014311600209931

  75. Niculescu, S., Lardeux, C., Hanganu, J., Mercier, G., David, L.: Change detection in floodable areas of the Danube delta using radar images. Nat. Hazards 78(3), 1899–1916 (2015). doi: https://doi.org/10.1007/s11069-015-1809-4

  76. Njoku, E.G. (ed.): Encyclopedia of Remote Sensing. Encyclopedia of Earth Sciences Series. Springer, New York (2014). doi: https://doi.org/10.1007/978-0-387-36699-9

  77. O’Grady, D., Leblanc, M., Bass, A.: The use of radar satellite data from multiple incidence angles improves surface water mapping. Remote Sens. Environ. 140, 652–664 (2014). doi: https://doi.org/10.1016/j.rse.2013.10.006

  78. Oliver-Cabrera, T., Wdowinski, S.: InSAR-based mapping of tidal inundation extent and amplitude in Louisiana Coastal Wetlands. Remote Sens. 8(5), 393 (2016). doi: https://doi.org/10.3390/rs8050393

  79. Pappenberger, F., Frodsham, K., Beven, K., Romanowicz, R., Matgen, P.: Fuzzy set approach to calibrating distributed flood inundation models using remote sensing observations. Hydrol. Earth Syst. Sci. 11(2), 739–752 (2007). doi: https://doi.org/10.5194/hess-11-739-2007

  80. Pappenberger, F., Matgen, P., Beven, K.J., Henry, J.B., Pfister, L., Fraipont, P.: Influence of uncertain boundary conditions and model structure on flood inundation predictions. Adv. Water Resour. 29(10), 1430–1449 (2006). doi: https://doi.org/10.1016/j.advwatres.2005.11.012

  81. Pierdicca, N., Pulvirenti, L., Chini, M.: Dealing with flood mapping using SAR data in the presence of wind or heavy precipitation. In: Notarnicola, C., Paloscia, S., Pierdicca, N. (eds.) Proceedings of SPIE, vol. 8891, p. 88910K (2013). doi: https://doi.org/10.1117/12.2030105

  82. Pultz, T., Leconte, R., St-Laurent, L., Peters, L.: Flood mapping with airborne SAR imagery: case of the 1987 Saint-John river flood. Can. Water Resour. J. 16(2), 173–189 (1991). doi: https://doi.org/10.4296/cwrj1602173

  83. Pulvirenti, L., Chini, M., Pierdicca, N., Boni, G.: Use of SAR data for detecting floodwater in urban and agricultural areas: the role of the interferometric coherence. IEEE Trans. Geosci. Remote Sens. 54(3), 1532–1544 (2016). doi: https://doi.org/10.1109/TGRS.2015.2482001

  84. Pulvirenti, L., Chini, M., Pierdicca, N., Guerriero, L., Ferrazzoli, P.: Flood monitoring using multi-temporal COSMO-skymed data: image segmentation and signature interpretation. Remote Sens. Environ. 115(4), 990–1002 (2011). doi: https://doi.org/10.1016/j.rse.2010.12.002

  85. Pulvirenti, L., Marzano, F.S., Pierdicca, N., Mori, S., Chini, M.: Discrimination of water surfaces, heavy rainfall, and wet snow using COSMO-SkyMed observations of severe weather events. IEEE Trans. Geosci. Remote Sens. 52(2), 858–869 (2014). doi: https://doi.org/10.1109/TGRS.2013.2244606

  86. Pulvirenti, L., Pierdicca, N., Boni, G., Fiorini, M., Rudari, R.: Flood damage assessment through multitemporal COSMO-SkyMed data and hydrodynamic models: the Albania 2010 case study. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(7), 2848–2855 (2014). doi: https://doi.org/10.1109/JSTARS.2014.2328012

  87. Rabus, B., Eineder, M., Roth, A., Bamler, R.: The shuttle radar topography mission – a new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens. 57(4), 241–262 (2003). doi: https://doi.org/10.1016/S0924-2716(02)00124-7

  88. Rahman, M.S., Di, L.: The state of the art of spaceborne remote sensing in flood management. Nat. Hazards 85(2), 1223–1248 (2017). doi: https://doi.org/10.1007/s11069-016-2601-9

  89. Refice, A., Capolongo, D., Pasquariello, G., D’Addabbo, A., Bovenga, F., Nutricato, R., Lovergine, F.P., Pietranera, L.: SAR and InSAR for flood monitoring: examples with COSMO-SkyMed data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(7), 2711–2722 (2014). doi: https://doi.org/10.1109/JSTARS.2014.2305165

  90. Richards, J.A., Woodgate, P.W., Skidmore, A.K.: An explanation of enhanced radar backscattering from flooded forests. Int. J. Remote Sens. 8(7), 1093–1100 (1987). doi: https://doi.org/10.1080/01431168708954756

  91. Rogers, A.S., Kearney, M.S.: Reducing signature variability in unmixing coastal marsh Thematic Mapper scenes using spectral indices. Int. J. Remote Sens. 25(12), 2317–2335 (2004). doi: https://doi.org/10.1080/01431160310001618103

  92. Rosen, P., Hensley, S., Joughin, I., Li, F., Madsen, S., Rodriguez, E., Goldstein, R.: Synthetic aperture radar interferometry. Proc. IEEE 88(3), 333–382 (2000). doi: https://doi.org/10.1109/5.838084

  93. Rouse, W., Haas, R.H., Schell, J.A., Deering, D.W.: Monitoring vegetation systems in the Great Plains with ERTS. In: 3rd ERTS Symposium, pp. 309–317. NASA SP-351 I (1973)

    Google Scholar 

  94. Sanyal, J., Lu, X.X.: Application of remote sensing in flood management with special reference to monsoon Asia: a review. Nat. Hazards 33(2), 283–301 (2004). doi: https://doi.org/10.1023/B:NHAZ.0000037035.65105.95

  95. Schanze, J., Zeman, E., Marsalek, J. (eds.): Flood Risk Management: Hazards, Vulnerability and Mitigation Measures. NATO Science Series, vol. 67. Springer, Dordrecht (2006). doi: https://doi.org/10.1007/978-1-4020-4598-1

  96. Schlaffer, S., Chini, M., Dettmering, D., Wagner, W.: Mapping wetlands in Zambia using seasonal backscatter signatures derived from ENVISAT ASAR time series. Remote Sens. 8(5), 402 (2016). doi: https://doi.org/10.3390/rs8050402

  97. Schlaffer, S., Chini, M., Giustarini, L., Matgen, P.: Probabilistic mapping of flood-induced backscatter changes in SAR time series. Int. J. Appl. Earth Obs. Geoinf. 56, 77–87 (2017). doi: https://doi.org/10.1016/j.jag.2016.12.003

  98. Schlaffer, S., Hollaus, M., Wagner, W., Matgen, P.: Flood delineation from synthetic aperture radar data with the help of a priori knowledge from historical acquisitions and digital elevation models in support of near-real-time flood mapping. In: Michel, U., Civco, D.L., Ehlers, M., Schulz, K., Nikolakopoulos, K.G., Habib, S., Messinger, D., Maltese, A. (eds.) Proceedings of SPIE, vol. 8538, p. 853813 (2012). doi: https://doi.org/10.1117/12.974503

  99. Schumann, G.J.P., Bates, P.D., Horritt, M.S., Matgen, P., Pappenberger, F.: Progress in integration of remote sensing-derived flood extent and stage data and hydraulic models. Rev. Geophys. 47(3), RG4001 (2009). doi: https://doi.org/10.1029/2008RG000274

  100. Schumann, G.J.P., Matgen, P., Pappenberger, F., Black, A., Cutler, M., Hoffmann, L., Pfister, L.: The REFIX model: remote sensing based flood modelling. In: ISPRS Commission VII Mid-Term Symposium “Remote Sensing: From Pixels to Processes”, p. 6. Enschede (2006)

    Google Scholar 

  101. Schumann, G.J.P., Moller, D.K.: Microwave remote sensing of flood inundation. Phys. Chem. Earth Parts A/B/C 83–84, 84–95 (2015). http://dx.doi.org/10.1016/j.pce.2015.05.002

    Article  Google Scholar 

  102. Serpico, S.B., Dellepiane, S.G., Boni, G., Moser, G., Angiati, E., Rudari, R.: Information extraction from remote sensing images for flood monitoring and damage evaluation. Proc. IEEE 100(10), 2946–2970 (2012). doi: https://doi.org/10.1109/JPROC.2012.2198030

  103. Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global — The Long Term Archive. https://lta.cr.usgs.gov/SRTM1Arc

  104. Singh, A.: Digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 10(6), 989–1003 (1989). doi: https://doi.org/10.1080/01431168908903939

  105. Skolnik, M.I. (ed.): Radar Handbook, 2nd edn. McGraw-Hill, New York (1990)

    Google Scholar 

  106. Smith, L.C., Pavelsky, T.M.: Estimation of river discharge, propagation speed, and hydraulic geometry from space: Lena River, Siberia. Water Resour. Res. 44(3), 1–11 (2008). doi: https://doi.org/10.1029/2007WR006133

  107. Su, L., Gong, M., Sun, B., Jiao, L.: Unsupervised change detection in SAR images based on locally fitting model and semi-EM algorithm. Int. J. Remote Sens. 35(2), 621–650 (2014). doi: https://doi.org/10.1080/01431161.2013.871596

  108. Sulistioadi, Y.B., Tseng, K.H., Shum, C.K., Hidayat, H., Sumaryono, M., Suhardiman, A., Setiawan, F., Sunarso, S.: Satellite radar altimetry for monitoring small rivers and lakes in Indonesia. Hydrol. Earth Syst. Sci. 19(1), 341–359 (2015). doi: https://doi.org/10.5194/hess-19-341-2015

  109. Tanoue, M., Hirabayashi, Y., Ikeuchi, H.: Global-scale river flood vulnerability in the last 50 years. Sci. Rep. 6, 36021 (2016). doi: https://doi.org/10.1038/srep36021

  110. Touzi, R., Lopes, A., Bruniquel, J., Vachon, P.: Coherence estimation for SAR imagery. IEEE Trans. Geosci. Remote Sens. 37(1), 135–149 (1999). doi: https://doi.org/10.1109/36.739146

  111. Townsend, P.A.: Mapping seasonal flooding in forested wetlands using multi-temporal Radarsat SAR. Photogramm. Eng. Remote Sens. 67(7), 857–864 (2001)

    Google Scholar 

  112. Tsang, L., Kong, J.A., Ding, K.H.: Scattering of Electromagnetic Waves. Theories and Applications. Wiley, New York (2000)

    Google Scholar 

  113. Tsyganskaya, V., Martinis, S., Twele, A., Cao, W., Schmitt, A., Marzahn, P., Ludwig, R.: A fuzzy logic-based approach for the detection of flooded vegetation by means of synthetic aperture radar data. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLI-B7(September), 371–378 (2016). doi: https://doi.org/10.5194/isprsarchives-XLI-B7-371-2016

  114. Twele, A., Cao, W., Plank, S., Martinis, S.: Sentinel-1-based flood mapping: a fully automated processing chain. Int. J. Remote Sens. 37(13), 2990–3004 (2016). doi: https://doi.org/10.1080/01431161.2016.1192304

  115. Verdoliva, L., Gaetano, R., Ruello, G., Poggi, G.: Optical-driven nonlocal SAR despeckling. IEEE Geosci. Remote Sens. Lett. 12(2), 314–318 (2015). doi: https://doi.org/10.1109/LGRS.2014.2337515

  116. Vosselman, G., Maas, H.: Airborne and Terrestrial Laser Scanning. Whittles Publishing, Dunbeath (2010)

    Google Scholar 

  117. Walker, J.P., Houser, P.R., Reichle, R.H.: New technologies require advances in hydrologic data assimilation. EOS Trans. Am. Geophys. Union 84(49), 545 (2003). doi: https://doi.org/10.1029/2003EO490002

  118. Wang, Y., Hess, L.L., Filoso, S., Melack, J.M.: Understanding the radar backscattering from flooded and nonflooded Amazonian forests: results from canopy backscatter modeling. Remote Sens. Environ. 54(3), 324–332 (1995). doi: https://doi.org/10.1016/0034-4257(95)00140–9

  119. Wang, Y., Imhoff, M.L.: Simulated and observed L-HH radar backscatter from tropical mangrove forests. Int. J. Remote Sens. 14(15), 2819–2828 (1993). doi: https://doi.org/10.1080/01431169308904311

  120. Westerhoff, R.S., Kleuskens, M.P.H., Winsemius, H.C., Huizinga, H.J., Brakenridge, G.R., Bishop, C.: Automated global water mapping based on wide-swath orbital synthetic-aperture radar. Hydrol. Earth Syst. Sci. 17(2), 651–663 (2013). doi: https://doi.org/10.5194/hess-17-651-2013

  121. Weydahl, D.J.: Flood monitoring in Norway using ERS-1 SAR images. In: IGARSS ’96. 1996 International Geoscience and Remote Sensing Symposium, vol. 1, pp. 151–153. IEEE (1996). doi: https://doi.org/10.1109/IGARSS.1996.516274

  122. Zink, M., Bachmann, M., Brautigam, B., Fritz, T., Hajnsek, I., Moreira, A., Wessel, B., Krieger, G.: TanDEM-X: the new global DEM takes shape. IEEE Geosci. Remote Sens. Maga. 2(2), 8–23 (2014). doi: https://doi.org/10.1109/MGRS.2014.2318895

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Refice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Refice, A., D’Addabbo, A., Capolongo, D. (2018). Methods, Techniques and Sensors for Precision Flood Monitoring Through Remote Sensing. In: Refice, A., D'Addabbo, A., Capolongo, D. (eds) Flood Monitoring through Remote Sensing. Springer Remote Sensing/Photogrammetry. Springer, Cham. https://doi.org/10.1007/978-3-319-63959-8_1

Download citation

Publish with us

Policies and ethics