Skip to main content

Functional Genomics in Peanut Wild Relatives

  • Chapter
  • First Online:
The Peanut Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Breeding efforts to develop peanut (Arachis hypogaea L.) cultivars with multiple resistances, high seed quality and yield have been hindered by the narrow genetic base of the cultivated genepool and the complex nature of its genome. Conversely, peanut wild relatives (Arachis spp.) are considered important sources of resistance alleles, since they have high genetic diversity and have been selected during evolution in a range of adverse environments and conditions. Transcriptome studies on wild species constitute important assets for the identification of genomic segments of interest for transfer into cultivated species. An unprecedented amount of genomic information for wild and cultivated Arachis has been produced in recent years, leading to the discovery of genes and regulatory sequences, and enlarging the collections of molecular markers. The increasing availability of Arachis transcriptomic resources such as ESTs, Unigenes, full-length cDNA clones and derived proteins is enabling a more precise correlation of genotype/phenotype in the genus, with the potential to facilitate accurate intervention in pathways to improve peanut agronomical traits. To maximize these valuable assets, candidate gene validation and peanut genetic transformation methods have been developed to facilitate the deployment of wild alleles into new cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abbo S, Lev-Yadun S, Gopher A (2012) Plant domestication and crop evolution in the Near East: on events and processes. Crit Rev Plant Sci 31(3):241–257

    Article  Google Scholar 

  • Akasaka Y, Mii M, Daimon H (1998) Morphological alterations and root nodule formation in Agrobacterium rhizogenes-mediated transgenic hairy roots of peanut (Arachis hypogaea L.). Ann Bot 81(2):355–362

    Article  Google Scholar 

  • Bendezu IF, Starr JL (2003) Mechanism of Resistance to Meloidogyne arenaria in the peanut cultivar COAN. J Nematology 35(1):115–118

    CAS  Google Scholar 

  • Bertioli DJ, Moretzsohn MC, Madsen LH, Sandal N, Leal-Bertioli SC, Guimarães PM, Hougaard BK, Fredslund J, Schauser L, Nielsen AM (2009) An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes. BMC Genom 10(1):45

    Article  CAS  Google Scholar 

  • Bertioli DJ, Seijo G, Freitas FO, Valls JF, Leal-Bertioli S, Moretzsohn MC (2014) An overview of peanut and its wild relatives. Plant Genet Resour 9(01):134–149

    Article  Google Scholar 

  • Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EKS, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn MC, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth CE, Umale P, Araujo ACG, Kozik A, Do Kim K, Burow MD, Varshney RK, Wang X, Zhang X, Barkley N, Guimaraes PM, Isobe S, Guo B, Liao B, Stalker HT, Schmitz RJ, Scheffler BE, Leal-Bertioli SCM, Xun X, Jackson SA, Michelmore R, Ozias-Akins P (2016) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet Adv Online Publ 48:438–446

    Article  CAS  Google Scholar 

  • Bhattacharya A, Ramos M, Faustinelli P, Ozias-Akins P (2012) Reporter gene expression patterns regulated by an Ara h 2 promoter differ in homologous versus heterologous systems. Peanut Sci 39(1):43–52

    Article  Google Scholar 

  • Bonavia D (1982) Los Gavilanes: mar, desierto y oásis en la historia del hombre: precerámico peruano. Corporación Financiera de Desarrollo, Oficina de Asuntos Culturales

    Google Scholar 

  • Brasileiro ACM, Araujo ACG, Leal-Bertioli SC, Guimaraes PM (2014) Genomics and genetic transformation in Arachis. Int J Plant Biol Res 2(3):1017

    Google Scholar 

  • Brasileiro AM, Morgante C, Araujo AG, Leal-Bertioli SM, Silva A, Martins AQ, Vinson C, Santos CR, Bonfim O, Togawa R, Saraiva MP, Bertioli D, Guimaraes P (2015) Transcriptome profiling of wild Arachis from water-limited environments uncovers drought tolerance candidate genes. Plant Mol Biol Rep:1–17

    Google Scholar 

  • Brozynska M, Furtado A, Henry RJ (2015) Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnol J

    Google Scholar 

  • Chen X, Liang X (2014) Peanut transcriptomics. Genet, Genomics and Breeding of Peanuts:139

    Google Scholar 

  • Chen X, Zhu W, Azam S, Li H, Zhu F, Li H, Hong Y, Liu H, Zhang E, Wu H, Yu S, Zhou G, Li S, Zhong N, Wen S, Li X, Knapp SJ, Ozias-Akins P, Varshney RK, Liang X (2013) Deep sequencing analysis of the transcriptomes of peanut aerial and subterranean young pods identifies candidate genes related to early embryo abortion. Plant Biotechnol J 11(1):115–127

    Article  CAS  PubMed  Google Scholar 

  • Chen N, Yang Q, Pan L, Chi X, Chen M, Hu D, Yang Z, Wang T, Wang M, Yu S (2014a) Identification of 30 MYB transcription factor genes and analysis of their expression during abiotic stress in peanut (Arachis hypogaea L.). Gene 533(1):332–345

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Ren X, Zhou X, Huang L, Yan L, Lei Y, Liao B, Huang J, Huang S, Wei W, Jiang H (2014b) Dynamics in the resistant and susceptible peanut (Arachis hypogaea L.) root transcriptome on infection with the Ralstonia solanacearum. BMC Genomics 15(1):1078

    Google Scholar 

  • Chen S, Lei Y, Xu X, Huang J, Jiang H, Wang J, Cheng Z, Zhang J, Song Y, Liao B (2015a) The peanut (Arachis hypogaea L.) gene AhLPAT2 Increases the lipid content of transgenic Arabidopsis seeds. PLoS ONE 10(8):e0136170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen X, Yang Q, Li H, Li H, Hong Y, Pan L, Chen N, Zhu F, Chi X, Zhu W, Chen M, Liu H, Yang Z, Zhang E, Wang T, Zhong N, Wang M, Liu H, Wen S, Li X, Zhou G, Li S, Wu H, Varshney R, Liang X, Yu S (2015b) Transcriptome-wide sequencing provides insights into geocarpy in peanut (Arachis hypogaea L.). Plant Biotechnol J 14(5):1214–1224

    Google Scholar 

  • Chi X, Yang Q, Chen X, Wang J, Pan L, Chen M, Yang Z, He Y, Liang X, Yu S (2011) Identification and characterization of microRNAs from peanut (Arachis hypogaea L.) by high-throughput sequencing. PLoS ONE 6(11):e27530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi K, Burow MD, Church G, Burow G, Paterson AH, Simpson CE, Starr JL (1999) Genetics and mechanism of resistance to Meloidogyne arenaria in peanut germplasm. J Nematology 31(3):283–290

    CAS  Google Scholar 

  • Chopra R, Burow G, Farmer A, Mudge J, Simpson CE, Burow MD (2014) Comparisons of de novo transcriptome assemblers in diploid and polyploid species using peanut (Arachis spp.) RNA-Seq data. PLoS ONE 9(12):e115055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chopra R, Burow G, Farmer A, Mudge J, Simpson C, Wilkins T, Baring M, Puppala N, Chamberlin K, Burow M (2015) Next-generation transcriptome sequencing, SNP discovery and validation in four market classes of peanut. Arachis hypogaea L. Mol Genet Genomics 290(3):1169–1180

    Article  CAS  PubMed  Google Scholar 

  • Chu Y, Bhattacharya A, Wu C, Knoll J, Ozias-Akins P (2013) Improvement of peanut (Arachis hypogaea L.) transformation efficiency and determination of transgene copy number by relative quantitative real-time PCR. In Vitro Cell Dev Biol -Plant 49(3):266–275

    Google Scholar 

  • Chu Y, Guimaraes L, Wu C, Timper P, Holbrook C, Ozias-Akins P (2014) A technique to study Meloidogyne arenaria resistance in Agrobacterium rhizogenes-transformed peanut. Plant Dis 98(10):1292–1299

    Article  CAS  Google Scholar 

  • Devi M, Bhatnagar-Mathur P, Sharma K, Serraj R, Anwar S, Vadez V (2011) Relationships between transpiration efficiency and its surrogate traits in the rd29A:DREB1A transgenic lines of groundnut. J Agronomical Crop Sci 197:272–283

    Article  CAS  Google Scholar 

  • Dhillon SS, Rake AV, Miksche JP (1980) Reassociation kinetics and cytophotometric characterization of peanut (Arachis hypogaea L.) DNA. Plant Physiol 65(6):1121–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dwivedi S, Crouch J, Nigam S, Ferguson M, Paterson A (2003) Molecular breeding of groundnut for enhanced productivity and food security in the semi-arid tropics: opportunities and challenges. Adv Agron 80:153–221

    Article  CAS  Google Scholar 

  • Fávero AP, Cuco SM, Aguiar-Perecin MLd, Valls JF, Vello NA (2004) Rooting in leaf petioles of Arachis for cytological analysis. Cytologia 69(2):215–219

    Article  Google Scholar 

  • Feng S, Wang X, Zhang X, Dang PM, Holbrook CC, Culbreath AK, Wu Y, Guo B (2012) Peanut (Arachis hypogaea) expressed sequence tag project: progress and application. Comp Funct Genomics 2012:9

    Article  CAS  Google Scholar 

  • Geng L, Niu L, Gresshoff P, Shu C, Song F, Huang D, Zhang J (2012) Efficient production of Agrobacterium rhizogenes-transformed roots and composite plants in peanut (Arachis hypogaea L.). Plant Cell, Tissue and Organ Culture (PCTOC) 109(3):491–500

    Google Scholar 

  • Geng L, Duan X, Liang C, Shu C, Song F, Zhang J (2014) Mining tissue-specific contigs from peanut (Arachis hypogaea L.) for promoter cloning by deep transcriptome sequencing. Plant Cell Physiol 55(10):1793–1801

    Article  CAS  PubMed  Google Scholar 

  • Gepts P (2014) The contribution of genetic and genomic approaches to plant domestication studies. Curr Opin Plant Biol 18:51–59

    Article  PubMed  Google Scholar 

  • Govind G, Vokkaliga ThammeGowda H, Jayaker Kalaiarasi P, Iyer D, Muthappa S, Nese S, Makarla U (2009) Identification and functional validation of a unique set of drought induced genes preferentially expressed in response to gradual water stress in peanut. Mol Genet Genomics 281(6):591–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guimaraes P, Garsmeur O, Proite K, Leal-Bertioli S, Seijo G, Chaine C, Bertioli D, D’Hont A (2008) BAC libraries construction from the ancestral diploid genomes of the allotetraploid cultivated peanut. BMC Plant Biol 8(1):14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guimaraes P, Brasileiro A, Morgante C, Martins A, Pappas G, Silva O, Togawa R, Leal-Bertioli S, Araujo A, Moretzsohn M, Bertioli D (2012) Global transcriptome analysis of two wild relatives of peanut under drought and fungi infection. BMC Genom 13(1):387

    Article  CAS  Google Scholar 

  • Guimaraes PM, Guimaraes LA, Morgante CV, Silva OB Jr, Araujo ACG, Martins ACQ, Saraiva MAP, Oliveira TN, Togawa RC, Leal-Bertioli SCM, Bertioli DJ, Brasileiro ACM (2015) Root transcriptome analysis of wild peanut reveals candidate genes for nematode resistance. PLoS ONE 10(10):e0140937

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guimarães P, Brasileiro A, Proite K, de Araújo A, Leal-Bertioli S, Pic-Taylor A, da Silva F, Morgante C, Ribeiro S, Bertioli D (2010) A study of gene expression in the nematode resistant wild peanut relative, Arachis stenosperma, in response to challenge with Meloidogyne arenaria. Tropical Plant Biol:1–10

    Google Scholar 

  • Hasan MM, Cha M, Bajpai VK, Baek K-H (2013) Production of a major stilbene phytoalexin, resveratrol in peanut (Arachis hypogaea) and peanut products: a mini review. Rev Environ Sci Bio/Technol 12(3):209–221

    Article  CAS  Google Scholar 

  • Holbrook C, Stalker H (2003) Peanut breeding and genetic resources. Plant Breeding Rev 22:297–355

    Google Scholar 

  • Holbrook CC, Ozias-Akins P, Chu Y, Guo B (2011) Impact of molecular genetic research on peanut cultivar development. Agronomy 1(1):3–17

    Article  Google Scholar 

  • Husted L (1936) Cytological studies an the peanut. Arachis. II. Cytologia 7(3):396–423

    Article  Google Scholar 

  • Jain S, Kumar D, Jain M, Chaudhary P, Deswal R, Sarin NB (2012) Ectopic overexpression of a salt stress-induced pathogenesis-related class 10 protein (PR10) gene from peanut (Arachis hypogaea L.) affords broad spectrum abiotic stress tolerance in transgenic tobacco. Plant Cell, Tissue and Organ Culture (PCTOC) 109(1):19–31

    Google Scholar 

  • Janila P, Nigam SN, Pandey MK, Nagesh P, Varshney RK (2013) Groundnut improvement: use of genetic and genomic tools. Frontiers in Plant Sci 4:23

    Article  CAS  Google Scholar 

  • Kalyani G, Reddy AS, Kumar PL, Rao RDVJP, Aruna R, Waliyar F, Nigam SN (2007) Sources of resistance to tobacco streak virus in wild Arachis (Fabaceae: Papilionoidae) Germplasm. Plant Dis 91(12):1585–1590

    Article  Google Scholar 

  • Kang IH, Gallo M (2007) Cloning and characterization of a novel peanut allergen Ara h 3 isoform displaying potentially decreased allergenicity. Plant Sci 172(2):345–353

    Article  CAS  Google Scholar 

  • Katam R, Basha SM, Suravajhala P, Pechan T (2010) Analysis of peanut leaf proteome. J Proteome Res 9(5):2236–2254

    Article  CAS  PubMed  Google Scholar 

  • Katam R, Sakata K, Suravajhala P, Pechan T, Kambiranda DM, Naik KS, Guo B, Basha SM (2016) Comparative leaf proteomics of drought-tolerant and-susceptible peanut in response to water stress. J Proteomics 143(30):209–226

    Article  CAS  PubMed  Google Scholar 

  • Kellmann J-W, Kleinow T, Engelhardt K, Philipp C, Wegener D, Schell J, Schreier PH (1996) Characterization of two class II chitinase genes from peanut and expression studies in transgenic tobacco plants. Plant Mol Biol 30(2):351–358

    Article  CAS  PubMed  Google Scholar 

  • Kochert G, Stalker HT, Gimenes M, Galgaro L, Lopes CR, Moore K (1996) RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am J Bot:1282–1291

    Google Scholar 

  • Koilkonda P, Sato S, Tabata S, Shirasawa K, Hirakawa H, Sakai H, Sasamoto S, Watanabe A, Wada T, Kishida Y, Tsuruoka H, Fujishiro T, Yamada M, Kohara M, Suzuki S, Hasegawa M, Kiyoshima H, Isobe S (2012) Large-scale development of expressed sequence tag-derived simple sequence repeat markers and diversity analysis in Arachis spp. Mol Breeding 30(1):125–138

    Article  CAS  Google Scholar 

  • Koppelman SJ, Wensing M, Ertmann M, Knulst AC, Knol EF (2004) Relevance of Ara h1, Ara h2 and Ara h3 in peanut-allergic patients, as determined by immunoglobulin E Western blotting, basophil–histamine release and intracutaneous testing: Ara h2 is the most important peanut allergen. Clin Exp Allergy 34(4):583–590

    Article  CAS  PubMed  Google Scholar 

  • Kottapalli KR, Payton P, Rakwal R, Agrawal GK, Shibato J, Burow M, Puppala N (2008) Proteomics analysis of mature seed of four peanut cultivars using two-dimensional gel electrophoresis reveals distinct differential expression of storage, anti-nutritional, and allergenic proteins. Plant Sci 175(3):321–329

    Article  CAS  Google Scholar 

  • Kottapalli KR, Rakwal R, Shibato J, Burow G, Tissue D, Burke J, Puppala N, Burow M, Payton P (2009) Physiology and proteomics of the water-deficit stress response in three contrasting peanut genotypes. Plant, Cell Environ 32(4):380–407

    Article  CAS  Google Scholar 

  • Kottapalli KR, Zabet-Moghaddam M, Rowland D, Faircloth W, Mirzaei M, Haynes PA, Payton P (2013) Shotgun label-free quantitative proteomics of water-deficit-stressed midmature peanut (Arachis hypogaea L.) seed. J Proteome Res 12(11):5048–5057

    Article  CAS  PubMed  Google Scholar 

  • Krapovickas A, Gregory W.C (1994) Taxonomia del Gênero Arachis (Leguminosae). Bonplandia 8:1–186

    Google Scholar 

  • Krapovickas A, Gregory WC, Williams DE, Simpson CE (2007) Taxonomy of the genus Arachis (LEGUMINOSAE). Bonplandia 16:7–205

    Google Scholar 

  • Krishna G, Singh BK, Kim EK, Morya VK, Ramteke PW (2015) Progress in genetic engineering of peanut (Arachis hypogaea L.)—A review. Plant Biotechnol J 13(2):147–162

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Kirti P (2011) Differential gene expression in Arachis diogoi upon interaction with peanut late leaf spot pathogen, Phaeoisariopsis personata and characterization of a pathogen induced cyclophilin. Plant Mol Biol 75(4):497–513

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Kirti PB (2015) Transcriptomic and proteomic analyses of resistant host responses in Arachis diogoi challenged with Late Leaf Spot pathogen. Phaeoisariopsis personata. PLoS ONE 10(2):e0117559

    Article  PubMed  CAS  Google Scholar 

  • Kumar D, Rampuria S, Singh N, Shukla P, Kirti PB (2015) Characterization of a vacuolar processing enzyme expressed in Arachis diogoi in resistance responses against Late Leaf Spot pathogen. Phaeoisariopsis personata. Plant Mol Biol 88(1–2):177–191

    Article  CAS  PubMed  Google Scholar 

  • Leal-Bertioli S, Jose A, Alves-Freitas D, Moretzsohn M, Guimaraes P, Nielen S, Vidigal B, Pereira R, Pike J, Favero A, Parniske M, Varshney R, Bertioli D (2009) Identification of candidate genome regions controlling disease resistance in Arachis. BMC Plant Biol 9(1):112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leal-Bertioli SC, De Farias MP, Silva Pedro ÍT, Guimarães PM, Brasileiro ACM, Bertioli DJ, De Araujo ACG (2010) Ultrastructure of the initial interaction of Puccinia arachidis and Cercosporidium personatum with leaves of Arachis hypogaea and Arachis stenosperma. J Phytopathol 158(11–12):792–796

    Article  Google Scholar 

  • Leal-Bertioli SC, Bertioli DJ, Guimarães PM, Pereira TD, Galhardo I, Silva JP, Brasileiro ACM, Oliveira RS, Silva PÍ, Vadez V (2012) The effect of tetraploidization of wild Arachis on leaf morphology and other drought-related traits. Environ Exp Bot 84:17–24

    Article  Google Scholar 

  • Leal-Bertioli SCM, Santos SP, Dantas KM, Inglis PW, Nielen S, Araujo ACG, Silva JP, Cavalcante U, Guimarães PM, Brasileiro ACM, Carrasquilla-Garcia N, Penmetsa RV, Cook D, Moretzsohn MC, Bertioli DJ (2015) Arachis batizocoi: a study of its relationship to cultivated peanut (A. hypogaea) and its potential for introgression of wild genes into the peanut crop using induced allotetraploids. Ann Bot 115(2):237–249

    Article  PubMed  Google Scholar 

  • Li X-Y, Liu X, Yao Y, Li Y-H, Liu S, He C-Y, Li J-M, Lin Y-Y, Li L (2013) Overexpression of Arachis hypogaea AREB1 gene enhances drought tolerance by modulating ROS scavenging and maintaining endogenous ABA content. Int J Mol Sci 14(6):12827–12842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X, Lu J, Liu S, Liu X, Lin Y, Li L (2014) Identification of rapidly induced genes in the response of peanut (Arachis hypogaea) to water deficit and abscisic acid. BMC Biotechnol 14(1):58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang J, Yang L, Chen X, Li L, Guo D, Li H, Zhang B (2009) Cloning and characterization of the promoter of the 9-cis-epoxycarotenoid dioxygenase gene in Arachis hypogaea L. Biosci Biotech Bioch 73(9):2103–2106

    Article  CAS  Google Scholar 

  • Liu X, Hong L, Li X-Y, Yao Y, Hu B, Li L (2011) Improved drought and salt tolerance in transgenic Arabidopsis overexpressing a NAC transcriptional factor from Arachis hypogaea. Biosci Biotech Bioch 75(3):443–450

    Article  CAS  Google Scholar 

  • Liu X, Liu S, Wu J, Zhang B, Li X, Yan Y, Li L (2013) Overexpression of Arachis hypogaea NAC3 in tobacco enhances dehydration and drought tolerance by increasing superoxide scavenging. Plant Physiol Biochem 70:354–359

    Article  CAS  PubMed  Google Scholar 

  • Melouk H, Banks D (1978) A method of screening peanut genotypes for resistance to Cercospora leafspot 1. Peanut Sci 5(2):112–114

    Article  Google Scholar 

  • Michelotto MD, Barioni W, Jr., de Resende MDV, de Godoy IJ, Leonardecz E, Fávero AP (2015) Identification of fungus resistant wild accessions and interspecific hybrids of the genus Arachis. PLoS ONE 10(6):e0128811

    Google Scholar 

  • Mochida K, Saisho D, Hirayama T (2015) Crop improvement using life cycle datasets acquired under field conditions. Frontiers in Plant Sci 6:740. doi:10.3389/fpls.2015.00740.

    Google Scholar 

  • Moretzsohn MC, Leoi L, Proite K, Guimaraes PM, Leal-Bertioli SCM, Gimenes MA, Martins WS, Valls JFM, Grattapaglia D, Bertioli DJ (2005) A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet 111(6):1060–1071

    Google Scholar 

  • Moretzsohn M, Barbosa A, Alves-Freitas D, Teixeira C, Leal-Bertioli S, Guimaraes P, Pereira R, Lopes C, Cavallari M, Valls J, Bertioli D, Gimenes M (2009) A linkage map for the B-genome of Arachis (Fabaceae) and its synteny to the A-genome. BMC Plant Biol 9(1):40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morgante CV, Brasileiro ACM, Roberts PA, Guimaraes LA, Araujo ACG, Fonseca LN, Leal-Bertioli SCM, Bertioli DJ, Guimaraes PM (2013) A survey of genes involved in Arachis stenosperma resistance to Meloidogyne arenaria race 1. Funct Plant Biol 40(12):1298–1309

    Google Scholar 

  • Nagy E, Chu Y, Guo Y, Khanal S, Tang S, Li Y, Dong W, Timper P, Taylor C, Ozias-Akins P, Corley Holbrook C, Beilinson V, Nielsen N, Thomas Stalker H, Knapp S (2010) Recombination is suppressed in an alien introgression in peanut harboring Rma, a dominant root-knot nematode resistance gene. Mol Breeding 26(2):357–370

    Article  CAS  Google Scholar 

  • Nagy ED, Guo Y, Tang S, Bowers JE, Okashah RA, Taylor CA, Zhang D, Khanal S, Heesacker AF, Khalilian N, Farmer AD, Carrasquilla-Garcia N, Penmetsa RV, Cook D, Stalker HT, Nielsen N, Ozias-Akins P, Knapp SJ (2012) A high-density genetic map of Arachis duranensis, a diploid ancestor of cultivated peanut. BMC Genomics 13:469–469

    Google Scholar 

  • Nautiyal P, Rajgopal K, Zala P, Pujari DS, Basu M, Dhadhal BA, Nandre BM (2008) Evaluation of wild Arachis species for abiotic stress tolerance: I. Thermal stress and leaf water relations. Euphytica 159(1–2):43–57

    Google Scholar 

  • Nelson SC, Simpson CE, Starr JL (1989) Resistance to Meloidogyne arenaria in Arachis spp. germplasm. Supplement J Nematology 21:654–660

    CAS  Google Scholar 

  • Ozias-Akins P, Gill R (2001) Progress in the development of tissue culture and transformation methods applicable to the production of transgenic peanut. Peanut Sci 28(2):123–131

    Article  CAS  Google Scholar 

  • Ozias-Akins P, Schnall JA, Anderson WF, Singsit C, Clemente TE, Adang MJ, Weissinger AK (1993) Regeneration of transgenic peanut plants from stably transformed embryogenic callus. Plant Sci 93(1–2):185–194

    Article  CAS  Google Scholar 

  • Pande S, Rao J (2001) Resistance of wild Arachis species to Late Leaf Spot and rust in greenhouse trials. Plant Dis 85:851–855

    Article  Google Scholar 

  • Pandey MK, Monyo E, Ozias-Akins P, Liang X, Guimarães P, Nigam SN, Upadhyaya HD, Janila P, Zhang X, Guo B, Cook DR, Bertioli DJ, Michelmore R, Varshney RK (2012) Advances in Arachis genomics for peanut improvement. Biotechnol Adv 30(3):639–651

    Article  CAS  PubMed  Google Scholar 

  • Patel SS, Shah DB, Panchal HJ (2015) De novo transcriptome analysis of Arachis hypogaea L.(SRR1212866). OMICS Res 5

    Google Scholar 

  • Peng Z, Gallo M, Tillman B, Rowland D, Wang J (2015) Molecular marker development from transcript sequences and germplasm evaluation for cultivated peanut (Arachis hypogaea L.). Mol Genet Genomics:1–19. doi:10.1007/s00438-015-1115-6

  • Porto MS, Pinheiro MPN, Batista VGL, dos Santos RC, de Albuquerque Melo Filho P, de Lima LM (2014) Plant promoters: an approach of structure and function. Mol Biotechnol 56(1):38–49

    Google Scholar 

  • Proite K, Leal-Bertioli S, Bertioli D, Moretzsohn M, da Silva F, Martins N, Guimaraes P (2007) ESTs from a wild Arachis species for gene discovery and marker development. BMC Plant Biol 7(1):7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Proite K, Carneiro R, Falcao R, Gomes A, Leal-Bertioli S, Guimaraes P, Bertioli D (2008) Post-infection development and histopathology of Meloidogyne arenaria race 1 on Arachis spp. Plant Pathol 57(5):974–980. doi:10.1111/j.1365-3059.2008.01861.x

    Article  Google Scholar 

  • Rao S (2003) Nutrient balance and economics of integrated nutrient management in groundnut (Arachis hypogaea L.) - mustard (Brassica juncea L.). Madras Agric J 90(7–9):465–471

    Google Scholar 

  • Reddy AS, Reddy LJ, Mallikarjuna N, Abdurahman MD, Reddy YV, Bramel PJ, Reddy DVR (2000) Identification of resistance to Peanut Bud Necrosis Virus (PBNV) in wild Arachis germplasm. Ann Appl Biol 137(2):135–139

    Article  Google Scholar 

  • Robertson D (2004) VIGS vectors for gene silencing: many targets, many tools. Annu Rev Plant Biol 55:495–519

    Article  CAS  PubMed  Google Scholar 

  • Schmidt H, Gelhaus C, Latendorf T, Nebendahl M, Petersen A, Krause S, Leippe M, Becker W-M, Janssen O (2009) 2-D DIGE analysis of the proteome of extracts from peanut variants reveals striking differences in major allergen contents. Proteomics 9(13):3507–3521

    Article  CAS  PubMed  Google Scholar 

  • Seijo J, Lavia G, Fernandez A, Krapovickas A, Ducasse D, Moscone E (2004) Physical mapping of the 5S and 18S-25S rRNA genes by FISH as evidence that Arachis duranensis and A. ipaensis are the wild diploid progenitors of A. hypogaea (Leguminosae). Am J Bot 91:1294–1303

    Article  CAS  PubMed  Google Scholar 

  • Senthil-Kumar M, Govind G, Kang L, Mysore KS, Udayakumar M (2007) Functional characterization of Nicotiana benthamiana homologs of peanut water deficit-induced genes by virus-induced gene silencing. Planta 225(3):523–539

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Ansari M, Varaprasad K, Singh A, Reddy L (1999) Resistance to Meloidogyne javanica in wild Arachis species. Genet Resour Crop Evol 46(6):557–568

    Article  Google Scholar 

  • Sharma HC, Pampapathy G, Dhillon MK, Ridsdill-Smith JT (2005) Detached leaf assay to screen for host plant resistance to Helicoverpa armigera. J Econ Entomol 98(2):568–576

    Article  PubMed  Google Scholar 

  • Sharma S, Upadhyaya HD, Varshney RK, Gowda C (2013) Pre-breeding for diversification of primary gene pool and genetic enhancement of grain legumes. Frontiers in Plant Sci 4. doi:10.3389/fpls.2013.00309

  • Shen Y, Zhiguo E, Zhang X, Liu Y, Chen Z (2015) Screening and transcriptome analysis of water deficiency tolerant germplasms in peanut (Arachis hypogaea). Acta Physiol Plant 37(5):1–9

    Article  CAS  Google Scholar 

  • Shirasawa K, Bertioli DJ, Varshney RK, Moretzsohn MC, Leal-Bertioli SCM, Thudi M, Pandey MK, Rami J-F, Foncéka D, Gowda MVC, Qin H, Guo B, Hong Y, Liang X, Hirakawa H, Tabata S, Isobe S (2013) Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes. DNA Res 20(2):173–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla P, Singh N, Kumar D, Vijayan S, Ahmed I, Kirti P (2014) Expression of a pathogen-induced cysteine protease (AdCP) in tapetum results in male sterility in transgenic tobacco. Funct Integr Genomics 14(2):307–317

    Article  CAS  PubMed  Google Scholar 

  • Simpson CE, Starr JL (2001) Registration of ‘COAN’ peanut appreciation is expressed to the Texas Peanut Producers Board for their generous support of this research from 1988 to the present time. Registration by CSSA. Crop Sci 41(3):918

    Article  Google Scholar 

  • Singh A, Moss J (1984) Utilisation of wild relatives in the genetic improvement of Arachis hypogaea L. Theor Appl Genet 68(4):355–364

    Article  CAS  PubMed  Google Scholar 

  • Singh NK, Kumar KRR, Kumar D, Shukla P, Kirti PB (2013) Characterization of a pathogen induced Thaumatin-Like protein gene AdTLP from Arachis diogoi, a wild peanut. PLoS ONE 8(12):e83963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singsit C, Holbrook CC, Culbreath AK, Ozias-Akins P (1995) Progenies of an interspecific hybrid between Arachis hypogaea and A.stenosperma—pest resistance and molecular homogeneity. Euphytica 83(1):9–14

    Article  CAS  Google Scholar 

  • Sinharoy S, Saha S, Chaudhury SR, DasGupta M (2009) Transformed hairy roots of Arachis hypogaea: a tool for studying root nodule symbiosis in a non–infection thread legume of the Aeschynomeneae tribe. Mol Plant Microbe Interact 22(2):132–142

    Article  CAS  PubMed  Google Scholar 

  • Sprent JI, Odee DW, Dakora FD (2009) African legumes: a vital but under-utilized resource. J Exp Bot:erp342

    Google Scholar 

  • Stalker HT, Tallury SP, Ozias-Akins P, Bertioli D, Bertioli SCL (2013) The value of diploid peanut relatives for breeding and genomics. Peanut Sci 40(2):70–88

    Article  Google Scholar 

  • Subrahmanyam P, Moss JP, Rao VR (1983) Resistance to peanut rust in wild Arachis species. Plant Dis 67(2):209–212

    Article  Google Scholar 

  • Sun Y, Wang Q, Li Z, Hou L, Dai S, Liu W (2013) Comparative proteomics of peanut gynophore development under dark and mechanical stimulation. J Proteome Res 12(12):5502–5511

    Article  CAS  PubMed  Google Scholar 

  • Valls J, Simpson C (2005) New species of Arachis (Leguminosae) from Brazil, Paraguay and Bolivia. Bonplandia:35–63

    Google Scholar 

  • Varshney RK, Roorkiwal M, Nguyen T (2013) Legume genomics: from genomic resources to molecular breeding. The Plant Genome 6(3):1–7

    Google Scholar 

  • Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12(6):e1001883

    Article  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Kudapa H, Pazhamala L, Chitikineni A, Thudi M, Bohra A, Gaur PM, Janila P, Fikre A, Kimurto P (2015) Translational genomics in agriculture: some examples in grain legumes. Crit Rev Plant Sci 34(1–3):169–194

    Article  Google Scholar 

  • Viquez OM, Konan KN, Dodo HW (2003) Structure and organization of the genomic clone of a major peanut allergen gene, Ara h 1. Mol Immunol 40(9):565–571

    Article  CAS  PubMed  Google Scholar 

  • Wan X-R, Li L (2006) Regulation of ABA level and water-stress tolerance of Arabidopsis by ectopic expression of a peanut 9-cis-epoxycarotenoid dioxygenase gene. Biochem Bioph Res Co 347(4):1030–1038

    Article  CAS  Google Scholar 

  • Wang T, Zhang E, Chen X, Li L, Liang X (2010) Identification of seed proteins associated with resistance to pre-harvested aflatoxin contamination in peanut (Arachis hypogaea L). BMC Plant Biol 10(1):1

    Article  CAS  Google Scholar 

  • Wang Z, Yan S, Liu C, Chen F, Wang T (2012) Proteomic analysis reveals an aflatoxin-triggered immune response in cotyledons of Arachis hypogaea infected with Aspergillus flavus. J Proteome Res 11(5):2739–2753

    Article  CAS  PubMed  Google Scholar 

  • Wojciechowski MF (2003) Reconstructing the phylogeny of legumes (Leguminosae): an early 21st century perspective. Adv legume syst 10:5–35

    Google Scholar 

  • Wu N, Matand K, Wu H, Li B, Li Y, Zhang X, He Z, Qian J, Liu X, Conley S, Bailey M, Acquaah G (2013) De novo next-generation sequencing, assembling and annotation of Arachis hypogaea L. Spanish botanical type whole plant transcriptome. Theor Appl Genet 126(5):1145–1149

    Article  CAS  PubMed  Google Scholar 

  • Xia H, Zhao C, Hou L, Li A, Zhao S, Bi Y, An J, Zhao Y, Wan S, Wang X (2013) Transcriptome profiling of peanut gynophores revealed global reprogramming of gene expression during early pod development in darkness. BMC Genom 14(1):517

    Article  CAS  Google Scholar 

  • Yin D, Wang Y, Zhang X, Li H, Lu X, Zhang J, Zhang W, Chen S (2013) De novo assembly of the peanut (Arachis hypogaea L.) seed transcriptome revealed candidate unigenes for oil accumulation pathways. PLoS ONE 8(9):e73767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu M, Liu F, Zhu W, Sun M, Liu J, Li X (2015) New features of triacylglycerol biosynthetic pathways of peanut seeds in early developmental stages. Funct Integr Genomics 15(6):707–716

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Liang S, Duan J, Wang J, Chen S, Cheng Z, Zhang Q, Liang X, Li Y (2012) De novo assembly and characterisation of the transcriptome during seed development, and generation of genic-SSR markers in peanut (Arachis hypogaea L.). BMC Genom 13(1):90

    Article  CAS  Google Scholar 

  • Zhao C-Z, Xia H, Frazier T, Yao Y-Y, Bi Y-P, Li A-Q, Li M-J, Li C-S, Zhang B-H, Wang X-J (2010) Deep sequencing identifies novel and conserved microRNAs in peanuts (Arachis hypogaea L.). BMC Plant Biol 10(1):3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao C, Zhao S, Hou L, Xia H, Wang J, Li C, Li A, Li T, Zhang X, Wang X (2015) Proteomics analysis reveals differentially activated pathways that operate in peanut gynophores at different developmental stages. BMC Plant Biol 15(1):188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou Y, Yang P, Zhang F, Luo X, Xie J (2014) Analysis of promoter activity of the peanut (Arachis hypogaea L.) seed-specific allergen gene Ara h 2.02 in transgenic Arabidopsis. Bothalia J 44(12):80–97

    Google Scholar 

  • Zhu W, Zhang E, Li H, Chen X, Zhu F, Hong Y, Liao B, Liu S, Liang X (2013) Comparative proteomics analysis of developing peanut aerial and subterranean pods identifies pod swelling related proteins. J Proteomics 91:172–187

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia M. Guimarães .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guimarães, P.M., Brasileiro, A.C.M., Mehta, A., Araujo, A.C.G. (2017). Functional Genomics in Peanut Wild Relatives. In: Varshney, R., Pandey, M., Puppala, N. (eds) The Peanut Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-63935-2_10

Download citation

Publish with us

Policies and ethics