Skip to main content

Plant-Assisted Bioremediation: An Ecological Approach for Recovering Multi-contaminated Areas

  • Conference paper
  • First Online:
Soil Biological Communities and Ecosystem Resilience

Abstract

Plant-based clean up technologies are gaining popularity as a sustainable solution to contaminated soil remediation. In particular, plant-assisted bioremediation or phyto-assisted bioremediation exploits the synergistic action between plant root systems and natural microorganisms (bacteria and fungi) to remove, convert or contain toxic substances in soils, sediments or water. It can be applied successfully to contaminated areas. It relies on the use of a selected appropriate plant species for stimulating the biodegradation activity of natural soil microorganisms in the rhizosphere (e.g. through root exudates production or oxygen transport). Plant species can also produce extracellular enzymes that directly transform contaminants and/or make them more bioavailable. Moreover, they can also phyto-contain them. In selecting the plant species, the specific contaminant/s to be removed, and the local geopedological and climatic conditions need to be considered. Beyond the contaminant removal, there are additional benefits such as soil quality improvement, soil carbon sequestration and biomass production for energy purposes. The difficulties in remediating areas characterized by multiple pollutant occurrence (e.g. organic and inorganic toxic compounds) make the study of plant-microbial interactions important if sustainable soil recovery strategies are to be achieved. Consequently, in recent years, several plant species have been tested for stimulating natural microbial communities and supporting the remediation of contaminated soils. Among these, the poplar tree can be considered suitable for plant-assisted bioremediation purposes. In this chapter an example of the methodological approach used for its application to an area multi-contaminated (by polychlorinated biphenyls and heavy metals) is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ancona, V., Barra Caracciolo, A., Grenni, P., Di Lenola, M., Campanale, C., Calabrese, A., Uricchio, V. F., Mascolo, G., & Massacci, A. (2017). Plant-assisted bioremediation of a historically PCB and heavy metal-contaminated area in Southern Italy. New Biotechnology: Part B, 38, 65–73.

    Article  CAS  Google Scholar 

  • Artigas, J., Arts, G., Babut, B., Barra Caracciolo, A., Charles, S., Chaumot, A., Combourieu, B., Dahllöf, I., DesprĂ©aux, D., Ferrari, B., Friberg, N., Garric, J., Geffard, O., Gourlay-FrancĂ©, C., Hein, M., Hjorth, M., Krauss, M., De Lange, H. J., Lahr, J., Lehtonen, K. K., Lettieri, T., Liess, M., Lofts, S., Mayer, P., Morin, S., Paschke, A., Svendsen, C., Usseglio-Polatera, P., van den Brink, N., Vindimian, E., & Williams, R. (2012). Towards a renewed research agenda in eco toxicology. Environmental Pollution, 160, 201–206.

    Article  CAS  PubMed  Google Scholar 

  • Bais, H., Weir, T., Perry, L., Gilroy, S., & Vivanco, J. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233–266.

    Article  CAS  PubMed  Google Scholar 

  • Barra Caracciolo, A., Bottoni, P., & Grenni, P. (2013). Microcosm studies to evaluate microbial potential to degrade pollutants in soil and water ecosystems. Microchemical Journal, 107, 126–130.

    Article  CAS  Google Scholar 

  • Barra Caracciolo, A., Bustamante, M. A., Nogues, I., Di Lenola, M., Luprano, M. L., & Grenni, P. (2015). Changes in microbial community structure and functioning of a semiarid soil due to the use of anaerobic digestate derived composts and rosemary plants. Geoderma, 245–246, 89–97.

    Article  Google Scholar 

  • Baldantoni, D., Bellino, A., Cicatelli, A., & Castiglione, S. (2011). Artificial mycorrhization does not influence the effects of iron availability on Fe, Zn, Cu, Pb and Cd accumulation in leaves of a heavy metal tolerant white poplar clone. Plant Biosystems, 145, 236–240.

    Article  Google Scholar 

  • Bert, V., Allemon, J., Sajet, P., Dieu, S., Papin, A., Collet, S., Gaucher, R., Chalot, M., Michiels, B., & Raventos, C. (2017). Torrefaction and pyrolysis of metal-enriched poplars from phytotechnologies: Effect of temperature and biomass chlorine content on metal distribution in endproducts and valorization options. Biomass and Bioenergy, 96, 1–11.

    Article  CAS  Google Scholar 

  • Bianconi, D., De Paolis, M. R., Agnello, M. C., Lippi, D., Pietrini, F., Zacchini, M., Polcaro, C., Donati, E., Paris, P., Spina, S., & Massacci, A. (2010). Field-scale rhyzoremediation of a contaminated soil with hexachlorocyclohexane (HCH) isomers: The potential of poplars for environmental restoration. In I. A. Golubev (Ed.), Phytoremediation: Processes, characteristics, and applications (pp. 783–794). Hauppauge: Nova Science Publisher.

    Google Scholar 

  • Bru, D., Ramette, A., Saby, N. P., Dequiedt, S., Ranjard, L., Jolivet, C., Arrouays, D., & Philippot, L. (2011). Determinants of the distribution of nitrogen-cycling microbial communities at the landscape scale. The ISME Journal, 5, 532–542.

    Article  CAS  PubMed  Google Scholar 

  • Chekol, T., Vough, L. R., & Chaney, R. L. (2004). Phytoremediation of polychlorinated biphenyl-contaminated soils: The rhizosphere effect. Environment International Journal, 30, 799–804.

    Article  CAS  Google Scholar 

  • Di Baccio, D., Tognetti, R., Sebastiani, L., & Vitagliano, C. (2003). Responses of Populus deltoides x Populus nigra (Populus x euramericana) clone I-214 to high zinc concentrations. New Phytologist, 159, 443–452.

    Article  Google Scholar 

  • Ding, N., Hayat, T., Wang, J. E., Wang, H. Z., Liu, X. M., & Xu, J. M. (2011). Responses of microbial community in rhizosphere soils when ryegrass was subjected to stress from PCBs. Journal of Soils Sediments, 11, 1355–1362.

    Article  CAS  Google Scholar 

  • Dzantor, E. K., Chekol, T., & Vough, L. R. (2000). Feasibility of using forage grasses and legumes for phytoremediation of organic pollutants. Journal of Environmental Science and Health, 35, 1645–1661.

    Article  Google Scholar 

  • EC (European Commission). (2009). Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Official Journal of the European Union L, 140, 16–62.

    Google Scholar 

  • Field, J. A., & Sierra-Alvarez, R. (2008). Microbial transformation and degradation of polychlorinated biphenyls. Environmental Pollution, 155, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Fierer, N., & Jackson, R. B. (2006). The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences, USA, 103, 626–631.

    Article  CAS  Google Scholar 

  • Furukawa, K. (2000). Biochemical and genetic bases of microbial degradation of polychlorinated biphenyls (PCBs). Journal of General and Applied Microbiology, 46, 283–296.

    Article  CAS  PubMed  Google Scholar 

  • Gamalero, E., Cesaro, P., Cicatelli, A., Todeschini, V., Musso, C., et al. (2012). Poplar clones of different sizes, grown on a heavy metal polluted site, are associated with microbial populations of varying composition. Science of Total Environment, 425, 262–270.

    Article  CAS  Google Scholar 

  • Grenni, P., Rodriguez-Cruz, M. S., Herrero-Hernandez, E., Marin-Benito, J. M., Sanchez-Martin, M. J., & Barra Caracciolo, A. (2012). Effects of wood amendments on the degradation of terbuthylazine and on soil microbial community activity in a clay loam soil. Water, Air and Soil Pollution, 223, 5401–5412.

    Article  CAS  Google Scholar 

  • Hinojosa, M. B., Carreira, J. A., GarcĂ­a-RuĂ­z, R., & Dick, R. P. (2005). Microbial response to heavy metal-polluted soils: Community analysis from phospholipid-linked fatty acids and ester-linked fatty acids extracts. Journal of Environmental Quality, 34, 1789–1800.

    Article  CAS  PubMed  Google Scholar 

  • Hinojosa, M. B., Parra, A., Laudicina, V. A., & Moreno, J. M. (2016). Post-fire soil functionality and microbial community structure in a Mediterranean shrubland subjected to experimental drought. Science of the Total Environment, 573, 1178–1189.

    Article  CAS  PubMed  Google Scholar 

  • Hinsinger, P., Bengough, A. G., Vetterlein, D., & Young, I. M. (2009). Rhizosphere: Biophysics, biogeochemistry and ecological relevance. Plant and Soil, 321, 117–152.

    Article  CAS  Google Scholar 

  • ITRC. (2009). Phytotechnology. Technical and regulatory guidance and decision trees, revised. Available at http://www.scribd.com/doc/67998102/Phytotechnology-Technical-and-Regulatory-Guidance-and-Decision-Trees-Revised

  • Laudicina, V. A., Dennis, P. G., Palazzolo, E., & Badalucco, L. (2012). Key biochemical attributes to assess soil ecosystem sustainability. In A. Malik & E. Grohmann (Eds.), Environmental protection strategies for sustainable development (pp. 193–227). Cham: Springer.

    Google Scholar 

  • Liu, J., & Schnoor, J. L. (2008). Uptake and translocation of lesser chlorinated polychlorinated biphenyls (PCBs) in whole hybrid of poplar plants after hydroponic exposure. Chemosphere, 73, 1608–1616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MadejĂłn, P., Marañón, T., Murillo, J. M., & Robinson, B. (2004). White poplar (Populus alba) as a biomonitor of trace elements in contaminated riparian forests. Environmental Pollution, 132, 145–155.

    Article  PubMed  Google Scholar 

  • Matturro, B., Ubaldi, C., Grenni, P., Barra Caracciolo, A., & Rossetti, S. (2016). Polychlorinated biphenyl (PCB) anaerobic degradation in marine sediments: Microcosm study and role of autochtonous microbial communities. Environmental Science and Pollution Research, 23, 12613–12623.

    Article  CAS  PubMed  Google Scholar 

  • Massacci, A., Bianconi, D., & Paris, P. (2012). Pioppicoltura a turno di taglio breve per bioenergia e fitorimedio. SILVÆ, 7, 125–144.

    Google Scholar 

  • Meggo, R. E., & Schnoor, J. L. (2013). Rhizosphere redox cycling and implications for rhizosphere biotransformation of selected polychlorinated biphenyl (PCB) congeners. Ecological Engineering, 57, 285–292.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meggo, R. E., Schnoor, J. L., & Hu, D. (2013). Dechlorination of PCBs in the rhizosphere of switchgrass and poplar. Environmental Pollution, 178, 312–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musilova, L., Ridl, J., Polivkova, M., Macek, T., & Uhlik, O. (2016). Effects of secondary plant metabolites on microbial populations: Changes in community structure and metabolic activity in contaminated environments. International Journal of Molecular Science, 17, E1205.

    Article  Google Scholar 

  • Ohtsubo, Y., Kudo, T., Tsuda, M., & Nagata, Y. (2004). Strategies for bioremediation of polychlorinated biphenyls. Applied Microbiology and Biotechnology, 65, 250–258.

    Article  CAS  PubMed  Google Scholar 

  • Pham, T. T., Pino Rodriguez, N. J., Hijri, M., & Sylvestre, M. (2015). Optimizing polychlorinated biphenyl degradation by flavonoid-induced cells of the rhizobacterium Rhodococcus erythropolis U23A. PLoS One, 10, e0126033.

    Article  PubMed  PubMed Central  Google Scholar 

  • Philippot, L., Raaijmakers, J. M., Lemanceau, P., & van der Putten, W. M. (2013). Going back to the roots: the microbial ecology of the rhizosphere. Nature Review Microbiology, 11, 789–799.

    Article  CAS  PubMed  Google Scholar 

  • Pieper, D. H. (2005). Aerobic degradation of polychlorinated biphenyls. Applied Microbiology and Biotechnology, 67, 170–191.

    Article  CAS  PubMed  Google Scholar 

  • Pieper, D., & Seeger, M. (2008). Bacterial metabolism of polychlorinated biphenyls. Journal of Molecular Microbiology and Biotechnology, 15, 121–133.

    Article  CAS  PubMed  Google Scholar 

  • Pietrini, F., Zacchini, M., Iori, V., Pietrosanti, L., Bianconi, D., & Massacci, A. (2010). Screening of poplar clones for cadmium phytoremediation using photosynthesis, biomass and cadmium content analyses. International Journal of Phytoremediation, 12, 1–16.

    Google Scholar 

  • Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15–39.

    Article  CAS  PubMed  Google Scholar 

  • Qin, H., Brookes, P. C., & Xu, J. (2014). Cucurbita spp. and Cucumis sativus enhance the dissipation of polychlorinated biphenyl congeners by stimulating soil microbial community development. Environmental Pollution, 184, 306–312.

    Article  CAS  PubMed  Google Scholar 

  • Schutter, M. E., & Dick, R. P. (2000). Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Science Society of America Journal, 64, 1659–1668.

    Article  CAS  Google Scholar 

  • Sebastiani, L., Scebba, F., & Tognetti, R. (2004). Heavy metal accumulation and growth responses in poplar clones Eridano (Populus deltoides Ă— maximowiczii) and I-214 (P. Ă— euramericana) exposed to industrial waste. Environmental and Experimental Botany, 52, 79–88.

    Article  CAS  Google Scholar 

  • Soudek, P., Tykva, R., & Vanek, T. (2004). Laboratory analyses of 137Cs uptake by sunflower, reed and poplar. Chemosphere, 55, 1081–1087.

    Article  CAS  PubMed  Google Scholar 

  • Sylvestre, M., & Toussaint, J. P. (2011). Engineering microbial enzymes and plants to promote PCB degradation in soil: Current state of knowledge. In A. I. Koukkou (Ed.), Microbial bioremediation of nonmetals – Current research (pp. 177–196). Norfolk: Caister Academic.

    Google Scholar 

  • Teng, Y., Luo, Y., Sun, X., Tu, C., Xu, L., Liu, W., Li, Z., & Christie, P. (2010). Influence of arbuscular mycorrhiza and Rhizobium on phytoremediation by alfalfa of an agricultural soil contaminated with weathered PCBs: A field study. International Journal of Phytoremediation, 12, 516–533.

    Article  CAS  PubMed  Google Scholar 

  • Thijs, S., Sillen, W., Rineau, F., Weyens, N., & Vangronsveld, J. (2016). Towards an enhanced understanding of plant-microbiome interactions to improve phytoremediation: Engineering the metaorganism. Frontiers in Microbiology, 7, 341.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsednee, M., Mak, Y. W., Chen, Y. R., & Yeh, K. C. (2012). A sensitive LC-ESI-Q-TOF-MS method reveals novel phytosiderophores and phytosiderophore–iron complexes in barley. New Phytologist, 195, 951–961.

    Article  CAS  PubMed  Google Scholar 

  • Toussaint, J. P., Pham, T. T., Barriault, D., & Sylvestre, M. (2012). Plant exudates promote PCB degradation by a rhodococcal rhizobacteria. Applied Microbiology and Biotechnology, 95, 1589–1603.

    Article  CAS  PubMed  Google Scholar 

  • US EPA. (2010). Superfund green remediation strategy. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Office of Superfund Remediation and Technology Innovation. Available at https://www.epa.gov/sites/production/files/2016-01/documents/175857.pdf

  • Wenzel, W. W. (2009). Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant and Soil, 321, 385–408.

    Article  CAS  Google Scholar 

  • Wiegel, J., & Wu, Q. (2000). Microbial reductive dehalogenation of polychlorinated biphenyls. FEMS Microbiology and Ecology, 32, 1–15.

    Article  CAS  Google Scholar 

  • Xu, L., Teng, Y., Li, Z. G., Norton, J. M., & Luo, Y. M. (2010). Enhanced removal of polychlorinated biphenyls from alfalfa rhizosphere soil in a field study: The impact of a rhizobial inoculum. Science of Total Environment, 408, 1007–1013.

    Article  CAS  Google Scholar 

  • Zanaroli, G., Balloi, A., Negroni, A., Borruso, L., Daffonchio, D., & Fava, F. (2012). Chloroflexi bacterium dechlorinates polychlorinated biphenyls in marine sediments under in sit-like biogeochemical conditions. Journal of Hazardous Materials, 209, 449–457.

    Article  PubMed  Google Scholar 

  • Zhai, G., Hu, D., Lehmler, H. J., & Schnoor, J. L. (2011). Enantioselective biotransformation on chiral PCBs in whole poplar plants. Environmental Science and Technology, 45, 2308–2316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge CISA S.p.A. (Massafra, Italy), which partially funded the Research Project “Applicazione di tecniche di fitorimedio a basso costo in località ex campo Cimino-Manganecchia a Taranto”, Prot. IRSA-CNR N. 0005159, 04/12/2012.

Authors thank contribution by COST Action FP1305 “BioLink-Linking belowground biodiversity and ecosystem function in European forests”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Barra Caracciolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ancona, V. et al. (2017). Plant-Assisted Bioremediation: An Ecological Approach for Recovering Multi-contaminated Areas. In: Lukac, M., Grenni, P., Gamboni, M. (eds) Soil Biological Communities and Ecosystem Resilience. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-63336-7_18

Download citation

Publish with us

Policies and ethics