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Abstract. We propose a hierarchical abstract domain for the analysis
of free-list memory allocators that tracks shape and numerical properties
about both the heap and the free lists. Our domain is based on Sepa-
ration Logic extended with predicates that capture the pointer arith-
metics constraints for the heap-list and the shape of the free-list. These
predicates are combined using a hierarchical composition operator to
specify the overlapping of the heap-list by the free-list. In addition to
expressiveness, this operator leads to a compositional and compact rep-
resentation of abstract values and simplifies the implementation of the
abstract domain. The shape constraints are combined with numerical
constraints over integer arrays to track properties about the allocation
policies (best-fit, first-fit, etc). Such properties are out of the scope of
the existing analyzers. We implemented this domain and we show its
effectiveness on several implementations of free-list allocators.

1 Introduction

A dynamic memory allocator (DMA) is a piece of software managing a reserved
region of the heap. It appears in general purpose libraries (e.g., C standard li-
brary) or as part of applications where the dynamic allocation shall be controlled
to avoid failure due to memory exhaustion (e.g., embedded critical software). A
client program interacts with the DMA by requesting blocks of memory of vari-
able size that it may free at any time. To offer this service, the DMA manages the
reserved memory region by partitioning it into arbitrary sized blocks of memory,
also called chunks. When a chunk is allocated to a client program, the DMA can
not relocate it to compact the memory region (like in garbage collectors) and it
is unaware about the kind (type or value) of data stored. The set of chunks not
in use, also called free chunks, is managed using different techniques. In this pa-
per, we focus on free-list allocators [19,26], that records free chunk in a list. This
class of DMA includes textbook examples [17,19] and real-world allocators [20].

The automated analysis of DMA faces several challenges. Although the code
of DMA is not long (between one hundred to a thousand LOC), it is highly
optimised to provide good performance. Low-level code (e.g., pointer arithmetics,
bit fields, calls to system routines like sbrk) is used to manage efficiently (i.e.,
with low additional cost in memory and time) the operations on the chunks
in the reserved memory region. At the same time, the free-list is manipulated
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using high level operations over typed memory blocks (values of C structures)
by mutating pointer fields without pointer arithmetic. The analyser has to deal
efficiently with this polar usage of the heap made by the DMA. The invariants
maintained by the DMA are complex. The memory region is organised into a
heap-list based on the size information stored in the chunk header such that
chunk overlapping and memory leaks are avoided. The start addresses of chunks
shall be aligned to the some given constant. The free-list may have complex
shapes (cyclic, acyclic, doubly-linked) and may be sorted by the start address
of chunks to ease free chunks coalescing at deallocation. A precise analysis shall
keep track of both numerical and shape properties to infer specifications implying
such invariants for the allocation and deallocation methods of the DMA.

These challenges have been addressed partially by several works in the last
ten years [5, 23, 25]. Efficient numerical analyses has been designed to track
address alignment and bit-fields [23]. The most important progress has been
done by the analysis proposed by Calcagno et al [5]. It is able to track the
free-list shape and the numerical properties of chunk start addresses due to
an abstract domain built on an extension of Separation Logic (SL) [24] with
numerical constraints and predicates specifying memory blocks. However, some
properties of the heap and free-list can not be tracked, e.g., the absence of
memory leaks or ordering of start addresses of free-chunks. Although the analysis
in [25] does not concern DMA, it is the first to propose a hierarchical abstraction
of the memory to track properties of linked data structures stored in static
memory regions. However, this analysis can not track properties like address
sorting of the high level data structures (here the free-list) stored in the memory
region. Furthermore, its link with a logic theory is not clear. Thus, a precise,
logic based analysis for the inference of properties of free-list DMA is still a
challenge.

In this paper, we propose a static analysis that is able to infer the above
complex invariants of DMA on both heap-list and free-list. We define an ab-
stract domain which uses logic formulas to abstract DMA configurations. The
logic proposed extends the fragment of symbolic heaps of SL with a hierarchical
composition operator c to specify that the free-list cover partially the heap-list.
This operator provides a hierarchical abstraction of the memory region under the
DMA control: the low-level memory manipulations are specified at the level of
the heap-list and propagated in a way controlled by the abstraction at the level
of the free-list. The shape specification is combined with a fragment of an array
theory to capture properties of chunks in lists, similar to [3]. This combination
is done in an accurate way wrt logic by including sequences of chunk addresses
in the inductive definitions of list segments. The main advantages and contri-
butions of this work are (1) high precision of the abstraction which is able to
capture complex properties of free-list DMA implementations, (2) strong logical
basis allowing to infer invariants that may be used by other verification methods,
and (3) modularity of the abstract domain permitting to reuse existing abstract
domains for the analysis of linked lists with integer data.
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2 Overview

Fig. 1 includes excerpts from our running example, a free-list DMA implementa-
tion proposed in [1]. The type HDR (Fig. 1 (a)) defines the informations stored by
the DMA at the start of chunks. The size field stores the full size of the chunk
(in blocks of sizeof(HDR) bytes) and is used by the heap-list to determine the
start of the next chunk. The fnx field is valid only for free chunks (i.e., chunks in
the free-list) and stores the start address of the next free chunk. To simplify the
presentation, we added the ghost field isfree, to mark explicitly free chunks.
The memory region managed by the DMA is between addresses stored by the
global variables _hsta and _hend; they are initialised by minit using sbrk calls.
The start of the free list is stored in frhd. An intuitive view of the concrete
state of the DMA is shown in Fig. 1(d). The busy chunks are represented in
grey. The “next chunk” relation in the heap-list defined by the size field is rep-
resented by the lower arrows; the upper arrows represent the “next free chunk”
relation defined by the fnx field. Furthermore, other structural invariants should
be maintained after each call of DMA methods: the heap-list shall be correct in-
side the memory region [_hsta,_hend), consecutive chunks of the heap-list are
not both free (early coalescing policy), the free-list shall include only chunks
of the heap-list, be acyclic and sorted by start address of chunks. The alloca-
tion method searches a chunk with size bigger than the requested nbytes; if the
chunk is larger, it is split in two parts such that the last part (the end of the
initial chunk) is allocated.

The goal of our analysis is to establish that, if the client uses correctly the
DMA methods, these methods (i) preserve the above structural invariants and
(ii) are memory safe. In particular, we analyse the DMA methods starting from
a client program which initialises the DMA and then calls allocation and deal-
location methods (see Sec. 5) in a correct way.

Heap-list abstraction. The concrete memory configurations managed by the DMA
are abstracted by a first abstraction layer based on the symbolic heap graphs
fragment of SL [9]. The fragment is parameterised by a set of predicates which
capture the heap-list as follows:

– The predicate blk(X;Y ), introduced in [5], specifies an untyped sequence
of bytes between the symbolic addresses X and Y . E.g., the configuration
obtained at line 20 of minit is abstracted by blk(_hsta;_hend).

– The predicate chd(X;Y ) specifies a memory block blk(X;Y ) storing a value
of type HDR; the fields of this value are represented by the symbolic variables
X.size, X.fnx, and X.isfree respectively.

– The predicate chk(X;Y ) specifies a chunk built from a chunk header
chd(X;Z) followed by a block blk(Z;Y ) such that the full memory occu-
pied has size Y −X = X.size×sizeof(HDR).

– A well formed heap-list segment starting at address X and ending before
Y is specified using the predicate hls(X;Y )[W ]. The inductive definition of
this predicate (see Tab. 2). requires that chunks does not overlap or leave
memory leaks. The variable W registers the sequence of start addresses of
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1 typedef struct hdr_s {
2 struct hdr_s *fnx;
3 size_t size;
4 //@ghost bool isfree;
5 } HDR;
6

7 static void *_hsta = NULL;
8 static void *_hend = NULL;
9 static HDR *frhd = NULL;

10 static size_t memleft;
11

12 void minit(size_t sz)
13 {
14 size_t align_sz;
15 align_sz = (sz+sizeof(HDR)-1)
16 & ~(sizeof(HDR)-1);
17

18 _hsta = sbrk(align_sz);
19 _hend = sbrk(0);
20

21 frhd = _hsta;
22 frhd->size = align_sz / sizeof(HDR);
23 frhd->fnx = NULL;
24 //@ghost frhd->isfree = true;
25

26 memleft = frhd->size;
27 }

(a) Globals and initialisation

28 void* malloc(size_t nbytes)
29 {
30 HDR *nxt, *prv;
31 size_t nunits =
32 (nbytes+sizeof(HDR)-1)/sizeof(HDR) + 1;
33

34 for (prv = NULL, nxt = frhd; nxt;
35 prv = nxt, nxt = nxt->fnx) {
36 if (nxt->size >= nunits) {
37 if (nxt->size > nunits) {
38 nxt->size -= nunits;
39 nxt += nxt->size;
40 nxt->size = nunits;
41 } else {
42 if (prv == NULL)
43 frhd = nxt->fnx;
44 else
45 prv->fnx = nxt->fnx;
46 }
47 memleft -= nunits;
48 //@ghost nxt->isfree = false;
49 return ((void*)(nxt + 1));
50 }
51 }
52 warning("Allocation Failed!");
53 return (NULL);
54 }

(b) Allocation

frhd prv nxt

flso fck

hlsc
hli

_hsta _hend

«

Y2Y1X0

X0

nil
flso

(c) Part of the abstract invariant at line 34

_hsta,
frhd

_hendnilnxtprv

hli

(d) Concrete memory

Fig. 1. Running example with code, concrete memory, and abstract specification

chunks in the list segment and it is used to put additional constraints on
the fields of these chunks. For DMA with early coalescing of free-chunks, we
abstract the heap-list segments by a stronger predicate, hlsc.

These predicates are combined using the separation conjunction operator ∗ of
SL, which requires disjointness of memory regions specified by its operands.
The bottom of Fig. 1(c) illustrates the heap-list abstraction of the concrete
memory provided in Fig. 1(d); for readability, the abstraction is represented by
its Gaifman graph. The ghost variable hli represents the end of the data segment
of the DMA, as returned by sbrk(0).

Hierarchical abstraction of the free-list. The first abstraction layer captures the
total order of chunks in the heap-list. The free-list defines a total order over
the set of free chunks. The second layer captures this order using the same SL
fragment but over a different set of predicates (see Tab. 2):
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– The predicate fck(X;Y ) specifies a chunk chk(X; . . .) starting at X, with
X.fnx bound to Y and X.isfree set to true.

– The predicate fls(X;Y )[W ] specifies a free-list segment starting at X, whose
last element field fnx points to Y ; W registers the sequence of start addresses
of free chunks in the list segment. The predicate flso(X, . . .)[W ] abstracts
free-list segments sorted by the start address of chunks.

The top of Fig. 1(c) illustrates the free-list abstraction by its Gaifman graph.

Finally, the memory shape abstraction is obtained by composing the two
abstraction levels using a new operator c, which requires that the set of chunks
in the free-list abstraction is exactly the sub-set of chunks of the heap list with
the isfree field set to true. Notice that the c operator can not be replaced
by the logical conjunction because we are using the intuitive semantics of SL
where spatial formulas fully specify the memory configurations. Or the free-list
abstraction provides only a partial specification of the heap.

Constraints over sequences of chunk addresses. The inductive invariants specify
invariants of DMA independent of user input, e.g., early chunk coalescing or
free-list sorting. To capture policies like first-fit allocation (implemented by the
malloc in Fig. 1(b)), we introduce universal constraints over sequences of chunk
start addresses W attached to shape atoms, like in [3]. For example, the first-fit
policy obtained at line 37 of malloc, is specified by:

hlsc(X0; hli)[WH ] c(fls(Y0;Y2)[W1] ∗ fck(Y2;Y3) ∗ fls(Y3; nil)[W2]) (1)

∧ Y2.size ≥ nunits ∧ ∀X ∈W1 ·X.size < nunits

where Y2 is the symbolic address stored in the program variable nxt. The general
form of universal constraints is ∀ X ∈ W · AG ⇒ AU where AG and AU are
arithmetic constraints over X and its fields. To obtain an efficient analysis, we
fix AG and infer AU . We require that both AG and AU belong to a class of
constraints allowed by a numerical abstract domain (see Sec. 3).

Static analysis with hierarchical shape abstraction. Overall, the analysis algo-
rithm is a standard shape analysis algorithm. To expose fields constrained or
assigned by the program statements, it unfolds predicate definitions. To limit
the size of the abstraction, the algorithm normalises formulas to maintain only
symbolic addresses that are cut-points, i.e., they are stored in the program vari-
ables or are sharing points in lists. This transformation of formulas folds back
sub-formulas into more general predicates. Because the set of normalised shape
formulas is bounded, we define widening only for the sequence constraints.

The hierarchical shape requires to solve a number of specific issues (see
Sec. 5). The unfolding of shape predicates shall be done at the appropriate
level of abstraction. For example, a traversal of the free-list requires only un-
folding and folding at the free-list level. The heap-list level may abstract chunks
and symbolic addresses which are in the free-list level. Thus, we define protocols
for the unfolding and folding operations at each level that are sound wrt the
hierarchical composition c and with the sequence constraints.
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Table 1. Logic syntax

X,Y ∈ AVar location variables W ∈ SVar sequence variables

i, j ∈ IVar integer variables # ∈ {=, 6=,≤,≥} comparison operators

x ∈ Var logic variable ~x, ~y ∈ Var∗ vector of variables

X.f field access t,∆ integer term resp. formula

ϕ ::= Π ∧Σ | ϕ ∨ ϕ | ∃x · ϕ formulas

Π ::= A | ∀X ∈W ·A⇒ A |W = w | Π ∧Π pure formulas

A ::= X[.fnx]− Y [.fnx] # t | ∆ | A ∧A location and integer constraints

w ::= ε | [X] |W | w.w sequence terms

Σ ::= ΣH c ΣF spatial formulas

ΣH ::= emp | blk(X;Y ) | chd(X;Y ) | chk(X;Y ) | X 7→ x | heap formulas

hls(X;Y )[W ] | hlsc(X, i;Y, j)[W ] | ΣH ∗ΣH

ΣF ::= emp | fck(X;Y ) | fls(X;Y )[W ] | flso(X,x;Y, y)[W ] | ΣF ∗ΣF free-list formulas

3 Logic Fragment Underlying the Abstract Domain

We formalise in this section a fragment of Separation Logic [24] used to define
the values of our abstract domain in Sec. 4.

Syntax. Let AVar be a set of location variables representing heap addresses; to
simplify the presentation, we consider that AVar contains a special variable nil
representing the null address, also denoted by nil. Let SVar be a set of sequence
variables, interpreted as sequences of heap addresses and IVar be a set of integer
variables. The full set of logic variables is denoted by Var = AVar ∪ SVar ∪ IVar.
The domain of heap addresses is denoted by A while the domain values stored in
the heap is generically denoted by V, thus A ⊆ V. To simplify the presentation,
we fix HDR, the type of chunk headers, and its fields {size, fnx, isfree} typed
as declared in Fig. 1. The syntax of formulas is given in Tab. 1.

Formulas are in disjunctive normal form. Each disjunct is built from a pure
formula Π and a spatial formula Σ. Pure formulas Π characterise the values of
logic variables using comparisons between location variables, e.g., X − Y = 0,
constraints ∆ over integer terms, and sequence constraints. We let constraints
in ∆ unspecified, though we assume that they belong to decidable theories, e.g.,
linear arithmetic. The integer terms t are built over integer variables and field
accesses using classic arithmetic operations and constants. We denote by Π∀
(resp. ΠW , Π∃) the set of sub-formulas of Π built from universal constraints
(resp. sequence constraints, quantifier free arithmetic constraints).

A spatial formula has two components: ΣH specifies the heap-list and the
locations outside this region; ΣF specifies only the free-list. The operator c
ensures that all locations specified by ΣF are start addresses of free chunks in
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Table 2. Derived predicates

chd(X;Y ) , blk(X;Y ) ∧ sizeof(HDR) = Y −X ∧X ≡sizeof(HDR) 0

chk(X;Y ) , ∃Z · chd(X;Z) ∗ blk(Z;Y ) ∧X.size× sizeof(HDR) = Y −X
fck(X;Y ) , ∃Z · chk(X;Z) ∧X.isfree = 1 ∧X.fnx = Y

hls(X;Y )[W ] , emp ∧X = Y ∧W = ε

∨ ∃Z,W ′ · chk(X;Z) ∗ hls(Z;Y )[W ′] ∧W = [X].W ′

hlsc(X, fp;Y, f`)[W ] , emp ∧X = Y ∧W = ε ∧ 0 ≤ fp + f` ≤ 1

∨ ∃Z,W ′, f · chk(X;Z) ∗ hlsc(Z, f ;Y, f`)[W
′] ∧W = [X].W ′

∧ f = X.isfree ∧ 0 ≤ X.isfree + fp ≤ 1

fls(X;Y )[W ] , emp ∧X = Y ∧W = ε

∨ ∃Z,W ′ · fck(X;Z) ∗ fls(Z;Y )[W ′] ∧W = [X].W ′ ∧X 6= Y

flso(X,x;Y, y)[W ] , emp ∧X = Y ∧W = ε ∧ x− y ≤ 0

∨ ∃Z,W ′ · fck(X;Z) ∗ flso(Z,X;Y, y)[W ′] ∧W = [X].W ′ ∧ x−X ≤ 0

the heap-list. The atom emp holds iff the domain of the heap is empty. The
points-to atom X 7→ x specifies that the heap contains exactly memory block at
location X storing the value given by x. The block atom blk(X;Y ) holds iff the
heap contains a block of memory at location X ending before the location Y .
The other predicates are derived from blk and defined in Tab. 2. Notice that the
chunk header atom chd(X;Y ) does not expose the fields of the block at location
X using the points-to operator of SL. This ease the manipulation of heap-list
level formulas, e.g., the coalescing of block and chunk atoms into a single block.

Semantics. Formulas ϕ are interpreted over pairs (I, h) where I is an interpre-
tation of logic variables and h is a heap mapping a location to a non-empty
sequence of values stored at this location. Formally, I ∈ [(AVar ∪ IVar) ⇀
V] ∪ [SVar ⇀ V∗] and h ∈ [A ⇀ V+] such that nil 6∈ dom(h). Let h(`)[i] de-
note the ith element of h(`). Without loss of generality, we consider that a value
of type HDR is a sequence of values indexed by fields. Tab. 3 provides the most
important semantic rules. We denote by JϕK the pairs (I, h) such that I, h |= ϕ.
The semantic entailment ϕ⇒ ψ is defined by JϕK ⊆ JψK.

Transformation rules. The definitions in Tab. 2 imply a set of lemmas used to
transform formulas in abstract values (in Sec. 5). The first set of lemmas is
obtained by directing predicate definitions in both directions. For example, each
definition P (. . .) , ∨iϕi introduces a set of folding lemmas ϕi ⇒ P (. . .) and an
unfolding lemma P (. . .)⇒ ∨iϕi.

The second class of lemmas concerns list segment predicates in Tab. 2. The
inductive definitions of these predicates satisfy the syntactic constraints defined
in [12] for compositional predicates. Thus, every P ∈ {hls, hlsc, fls, flso} satisfies
the following segment composition lemma:

P (X,~x;Y, ~y)[W1] ∗ P (Y, ~y;Z, ~z)[W2] ∧W = W1.W2 ⇒ P (X,~x;Z, ~z)[W ] (2)
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Table 3. Logic semantics: main rules

I, h |= ΣH c ΣF iff I, h |= ΣH and ∃h′ ⊆ h s.t. I, h′ |= ΣF

∀` ∈ dom(h′) · h′(`)[isfree] = 1
I, h |= emp iff dom(h) = ∅
I, h |= blk(X;Y ) iff dom(h) = I(X) ∧ I(Y )− I(X) = |h(I(X))|
I, h |= X 7→ x iff dom(h) = I(X) ∧ h(I(X))[0] = I(x)
I, h |= Σ1 ∗Σ2 iff ∃h1, h2 s.t. h = h1 ] h2 and I, hi |= Σi for i = 1, 2
I, h |= ∀X ∈W ·A1 ⇒ A2 iff I(W ) = [a1, . . . , an] s.t. ∀i ∈ (1..n) I[X 7→ ai], h |= A1 ⇒ A2

where
h1 ⊆ h2 iff dom(h1) ⊆ dom(h2) and ∀` ∈ dom(h1) · h1(`) = h2(`)
h1 ~ h2 iff ∀ l1 ∈ dom(h1), l2 ∈ dom(h2) · l1 6= l2∧(

(l1..l1 + |h1(l1)| − 1) ∩ (l2..l2 + |h2(l2)| − 1) = ∅
)

h = h1 ] h2 iff h1 ~ h2, dom(h) = dom(h1) ] dom(h2), and

(h1 ] h2)(`) ,
{
h1(`) if ` ∈ dom(h1)
h2(`) if ` ∈ dom(h2)

The reverse implication is applied to split non-empty list segments. Finally, the
block sub-formulas are removed, split, or folded using the following lemmas:

blk(X;Y ) ∧ X ≥ Y ⇒ emp (3)

blk(X;Y ) ∧ X < Y ⇒ blk(X;Z) ∗ blk(Z;Y ) ∧X ≤ Z ≤ Y (4)

blk(X;Y ) ∗ blk(Y ′;Z) ∧ X ≤ Y = Y ′ ≤ Z ⇒ blk(X;Z). (5)

4 Abstract Domain for Hierarchical Shape Abstraction

We define in this section the join-semilattice 〈A,v,t〉 used in our analysis. It is
parameterised by a numerical abstract domain 〈N ,vN ,tN 〉.
Concrete states. Let X be the set of program variables, where hli is a ghost
variable of location type. Values in A represent sets of concrete states M ∈ M
of the program. A concrete state M encloses an environment ε ∈ E = X → A
mapping each program variable to its storing location, and a heap h : A ⇀ V+

mapping locations to sequences of values. For simplicity, hli symbol is overloaded
to denote the symbolic location stored by hli.

Abstract values. Values in A are a restricted form of logic formulas. Generally
speaking, A is a co-fibered product [6] of an extended symbolic heap domain for
the spatial part and a data word domain [3] for the pure part. More precisely,
A includes a special value for > and finite mappings of the form:

a] ::= {〈ε]i , Σi(
−→x ,−→W )〉 7→ Πi(

−→x ,−→W ∪ {WH ,WF })}i∈I (6)

where ε]i : X → Var is an abstract environment mapping program variables to
symbolic location variables, Πi includes arithmetic constraints allowed by N ,
and the free variables of each formulas are detailed. Furthermore, the usage of
sequence variables in Σi and Πi are restricted as follows:
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R1: A sequence variable is bound to exactly one list segment atom in Σi; thus
Σi defines an injection between list segment atoms and sequence variables.

R2: Πi contains only the sequence constraints WH = w and WF = w′, where
WH and WF are special variables representing the full sequence of start
addresses of chunks in the heap resp. free-list levels.

In addition, the universal constraints in the pure formulas Πi are restricted such
that, in any formula ∀X ∈W ·AG ⇒ AU :

R3: AG and AU use only terms where X appears inside a field access X.f.

R4: AG has one of the forms X.size#i or X.isfree = i.

These restrictions still permit to specify DMA policies like first-fit (see eq. (1))
and besides enable an efficient inference of universal constraints.

Internal representation. To ease the manipulation of extended spatial formulas
〈ε], Σ〉, we use the Gaifman graph representation, like in Fig. 1(c); nodes repre-
sent symbolic locations variables and labeled edges represent the spatial atoms
in Σ or mappings in ε]. The universal formulas are represented by a map binding
each pair of sequence variable and some guard AG to a numerical abstract value.

Concretisation. An abstract value of the form (6) represents a formula ∨i∃~x, ~W ·
Σi∧Πi∧ ε]i where each binding (v, x) ∈ ε]i is encoded by v 7→ x (v is the location
where is stored the program variable v). The false formula is represented by the
empty mapping which corresponds to ⊥. Based on the correspondence between
abstract values and logic formulas, we define the concretisation γ : A → M by
γ(a]) = Ja]K.
Ordering. The partial order v is defined using a sound procedure inspired by [4,
12]. For any two non trivial abstract values a], b] ∈ A, a] v b] if for each binding

〈ε]i , Σi〉 7→ Πi ∈ a] there exists a binding 〈ε]j , Σj〉 7→ Πj ∈ b] such that:

– there is a graph isomorphism between the Gaifman graphs of spatial formula
at each level of abstraction from Σi to Σj ; this isomorphism is defined by a

bijection Ψ : img(ε]i) → img(ε]j) between symbolic location variables and a
bijection Ω between sequence variables. Thus, Σi[Ψ ][Ω] = Σj ,

– for each sequence constraint W = w in ΠW,i, Ω(W ) = Ω(w) is a sequence
constraint in ΠW,j ,

– Ψ(Π∃,i) vN Π∃,j ,
– for each W defined in Σi and for each universal constraint ∀X ∈W ·AG ⇒
AU in Π∀,i, then Π∀,j contains a universal constraint on W ′ = Ω(W ) of the
form ∀X ∈W ′ ·AG ⇒ A′U such that Ψ(Π∃,i ∧AU ) vN A′U .

The following theorem is a consequence of restrictions on the syntax of formulas
used in the abstract values.

Theorem 1 (v soundness). If a] v b] then γ(a]) ⊆ γ(b]).
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Join. Given two non-trivial abstract values, a] and b], their join is computed by
joining the pure parts of bindings with isomorphic shape graphs [3]. Formally,

for each two bindings 〈ε]i , Σi〉 7→ Πi ∈ a] and 〈ε]j , Σj〉 7→ Πj ∈ b] such that there

is a graph isomorphism defined by Ψ and Ω between 〈ε]i , Σi〉 and 〈ε]j , Σj〉, we

define their join to be the mapping {〈ε]j , Σj〉 7→ Π} where Π is defined by:

– Π includes the sequence constraints of b], i.e., ΠW , ΠW,j ,

– Π∃ , Ψ(Π∃,i) tN Π∃,j ,
– for each W sequence variable in dom(Ω) and for each type of constraint AG,

then Π∀ contains the formula ∀X ∈ Ω(W ) · AG ⇒ Ψ(AU,i) tN AU,j where
AU,i (resp. AU,j) is the constraint bound to W (resp. Ω(W )) in Π∀,i (resp.
Π∀,j) for guard AG or > if no such constraint exists.

The join of two bindings with non-isomorphic spatial parts is the union of the two
bindings. Then, (a] t b]) computes the join of bindings in a] with each binding
in b]. Intuitively, the operator collects the disjuncts of a] and b] but replaces the
disjuncts with isomorphic spatial parts by one disjunct which maps the spatial
part to the join of the pure parts. Two universal constraints are joined when
they concern the same sequence variables and guard AG since

(
(∀c ∈W ·AG ⇒

A1) ∨ (∀c ∈W ·AG ⇒ A2)
)
⇒

(
∀c ∈W ·AG ⇒ (A1 ∨A2)

)
.

Theorem 2 (t soundness). For any a], b] ∈ A, γ(a]) ∪ γ(b]) ⊆ γ(a] t b]).

Cardinality of the abstract domain. The number of mappings in (6) increases
during the symbolic execution by the introduction of new existential variables
keeping track of the created chunks. Although the analysis stores only values
with linear shape of lists (other shapes are signalled as error), the number of
linear shapes is exponential in the number of nodes, in general. We avoid this
memory explosion by eliminating existential variables using the transformation
rules that replace sub-formulas by predicates, an operation classically called
predicate folding. This operation uses lemmas (2)–(5), as discussed in Sec. 5.
Thus, the domain of abstract values is bounded by an exponential on the number
of pointer program variables local to DMA methods which is small in general,
e.g., ≤ 3 in our benchmark. However, the domain of pure formulas used in the
image of abstract values is not bounded because of integer constants. This fact
requires to define widening operators for the data word domain used for the pure
constraints.

5 Analysis Algorithm

We now describe the specific issues of the static analysis algorithm based on the
hierarchical abstract domain presented in Sec. 4.

5.1 Main principles

The analysis is defined as a forward, non-relational abstract interpreta-
tion [8] over a shape abstract domain, and follows the principles of [7, 9, 10].
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1 int main(void) {
2 minit(1024);
3 void* p = malloc(20);
4 malloc(20);
5 mfree(p); p = NULL;
6 p = malloc(20);
7 malloc(20);
8 mfree(p); p = NULL;
9 return 0;

10 }

Fig. 2. A client program

The DMA methods are analysed starting from some
client function, like the main function in Fig. 2. The
client programs are chosen to reveal policies of the
DMA concerning the free chunk coalescing and the
choice of the free chunk to be allocated. The analy-
sis computes, for each control location `, an abstract
value a]` such that the γ(a]`) includes all the pro-
gram configurations reachable by the concrete seman-
tics of the program. For this, we define sound abstract
transformers to compute abstract post-conditions and

widening operators to speed-up the convergence of the fix-point computation.
The original points on abstract transformers concern the transfer of information
between layers in the hierarchical unfolding, splitting, and folding of predicates,
as detailed in Sec. 5.2–5.3. Furthermore, these operations are defined in a modu-
lar way, by extending [6] to data word numerical domains. The widening operator
uses the widening of data word domain defined in [10].

5.2 Hierarchical unfolding

Abstract transfer functions compute over-approximations of post-images of
atomic conditions and assignments in the program. For the spatial part, the
abstract value is transformed such that the program variables read or written
by the program operation are constrained using predicates that may capture the
effect of the program operation. This transformation is called predicate unfolding.

We define the following partial order between predicates blk < chd < chk <
fck < hls, hlsc, fls, flso which intuitively corresponds to an increasing degree of
specialisation. For each program operation s and each pointer variable x in s, an
atom P (X; . . .) with ε](x) = X is transformed using lemmas in Sec. 3 to obtain
the atom Q(X; . . .) such that Q ≤ P is the maximal predicate satisfying:

– if s reads the fields of HDR, then Q ≤ fck,
– if s assigns x.isfree or x.fnx, then Q ≤ chk,
– if s mutates x using pointer arithmetics or assigns x.size, then Q ≤ chd.

Consider the condition nxt->size > nunits at line 37 in Fig. 1(b), which reads
the field size. Applied to the abstract value in Fig. 1(c), it requires to unfold
the flso predicate from Y2, to obtain the top part of Fig. 3(a). To compute the
post-image of the next assignment nxt->size -= nunits, the symbolic location
Y2 shall be the root a chd predicate (third case above). Thus, Y2 is instantiated
in the heap-list by first splitting and then unfolding the hlsc predicate, then
by unfolding chk to obtain the bottom part of Fig. 3(a). The unfolding of chk
requires to remove the fck atom from Y2 in the free-list level because its definition
is not more satisfied at the heap-list level.

The assignment nxt += nxt->size does not require to transform the pred-
icate rooted in Y2 because it is already ≤ chd. Instead, the transformer adds
a new symbolic location Z1 in the heap-list level and constrain it by Z1 =
Y2 + Y2.size × sizeof(HDR). If Z1 goes beyond the limits of the user part



12 Bin Fang and Mihaela Sighireanu

frhd prv nxt

flso fck fck

hlsc
hli

_hsta _hend

«

Y2Y1Y0

X0

nil
flso

Y3Y3Y3

frhd prv nxt

flso fck
Y2Y1Y0 nil

flso
Y3Y3Y3

hlsc

hli

_hsta _hend

X0 Y2 X1 X2

chd blk hlsc

«

Unfold to assign Y2.size

Ʌ Y2.isfree=1(a) Hierarchical unfolding at line 38

frhd prv

nxt

flso fck
Y2Y1Y0 nil

flso
Y3Y3Y3

hlsc

hli

_hsta _hend

X0 Y2 X1 X2

chd blk hlsc

«

Z1 Z2

chd blk

nxt

hlsc
hli

_hsta _hend

X0 X2

hlsc
Z1 Z2

chd

frhd prv

flso fck
Y2Y1Y0 nil

flso
Y3Y3Y3

fck

«

blk

Transfer free chunk Y2 and fold hlsc

Ʌ Y2.isfree=1 Ʌ Y2.fnx=Y3

(b) Hierarchical folding after line 48

Fig. 3. Hierarchical abstract transformers for the running example

of the chunk starting at Y2 (i.e., outside the interval [X1, X2) in Fig. 3(a)), the
analysis signals a chunk breaking. Otherwise, the blk atom from X1 is split using
lemma (4) to insert Z1; the result is given by the top part of Fig. 3(b).

5.3 Hierarchical folding

To reduce the size of abstract values, the abstract transformers finish their com-
putation on a binding 〈ε]i , Σi〉 7→ Πi by eliminating the symbolic locations which
are not cut-points in Σi. The elimination uses predicate folding lemma like (2)
or (5) to replace sub-formulas using these variables by one predicate atom. The
graph representation eases the computation of sub-formulas matching the left
part of folding lemma.

More precisely, the elimination process has the following steps. First, it
searches sequences of sub-formula of the form chd(X0;X1) ∗ blk(X1;X2) . . . ∗
blk(Xn−1;Xn) where none of Xi (1 ≤ i < n) is in img(ε]). Such sub-formulas
are folded into chk(X0;Xn) if the pure part of the abstract value implies
X0.size × sizeof(HDR) = Xn − X0 (see Tab. 2). We use the variable elim-
ination provided by the numerical domain N to project out {X1, . . . , Xn−1}
from the pure part. Furthermore, if the pure part implies X0.isfree = 1, then
the chunk atom (and its start address) is promoted as fck to the free-list level.
This step is illustrated in Fig. 3(b) by sub-formulas chd(Y2;X1) ∗ blk(X1;Z1).

The second step folds list segments by applying their inductive definition and
the composition lemma (2). The atoms chk(X0; . . .) for which the free-list level
contains an atom fck(X0; . . .) may be folded at the heap-level into list segments
due to the semantics of c. For example, the chunk starting from locations Y2
is folded inside the heap-list segment in Fig. 3(b). Notice that folding of list
segments implies the update of sequence and universal constraints like in [10].
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Table 4. Benchmark of DMA
DMA LOC List Pred. |a]| |WH |/|WF | Invariants

DKff [19] 176 hlsc, flso 25 8/5 first-fit, MIN_SIZE-size
DKbf [19] 130 hlsc, flso 26 8/6 best-fit, MIN_SIZE-size
LA [1] 181 hlsc, flso 25 8/5 first-fit, 0-size
DKnf [19] 137 hlsc, flso 30 8/6 first-fit, MIN_SIZE-size
KR [17] 284 hlsc, flso 32 8/6 first-fit, 0-size

6 Experiments

We implemented the abstract domain in Ocaml and integrated it into an anal-
yser as plug-in3 of the Frama-C platform [18]. We are using several modules of
Frama-C, e.g., C parsing, abstract syntax tree transformations, and fix-point
computation. The data word domain uses as numerical domain N the library
of polyhedra with congruence constraints provided by Apron [16]. To obtain
precise numerical invariants, we transform program statements using bit-vector
operations (e.g., line 16 of Fig. 1(a)) into statements permitted by the polyhedra
domain that over-approximate the original effet.

We applied our analysis on the benchmark of free-list DMA in Tab. 4. DKff
and DKbf are implementations of Algorithms A and B from Sec. 2.5 of [19].
These DMA keep an acyclic free-list sorted by the start addresses of chunks.
The deallocation does coalescing of successive free chunks. The allocation imple-
ments a first-fit resp. best-fit policy such that the fitting chunk is not split if the
remaining free part is less than MIN_SIZE (variant proposed in [19]). This prop-
erty is expressed by the invariant “MIN_SIZE-size” ∀X ∈WH ·X.size ≥ 8 (here
MIN_SIZE is 8 bytes) which is inferred by our analyser. The best-fit policy is im-
plied by the universal constraint ∀X ∈Wi ·X.size ≥ rsz⇒ X.size ≥ Y .size
where rsz is the requested size, Y is the symbolic address of the fitting chunk,
and Wi represents list segments around the fitting chunk. LAis our running
example in Fig. 1; it follows the same principles as DKff, but get rid of the
constraint for chunk splitting. Our analyser infers the “0-size” invariant, i.e.,
∀X ∈WH ·X.size ≥ 4 (=sizeof(HDR)). Notice that the code analysed fixes an
obvious problem of the malloc method published in [1]. DKnf implements the
next-fit policy using the “roving pointer” technique proposed in [19]: a global
variable points to the chunk in the free-list involved in the last allocation or
deallocation; malloc searches for a fitting free chunk starting from this pointer.
Thus, the next-fit policy is a first-fit from the roving pointer. DKnf is challeng-
ing because the roving pointer introduces a case splitting that increases the size
(number of disjuncts) in abstract values. The KR allocator [17] keeps a circular
singly linked list, circularly sorted by the chunk start addresses; the start of
the free-list points to the last deallocated block. The circular shape of the list
requires to keep track of the free chunk with the biggest start address and this
increases the size of the abstract values.

The analysis of each example with client program in Fig. 2 takes less than
3 seconds on a 2.53 GHz Intel Core 2 Duo laptop with 4GB of RAM. The

3 https://www.irif.univ-paris-diderot.fr/~sighirea/celia/plus.html
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universally quantified invariants inferred for DMA policies are given in the last
column. Columns |a]| and |WH |/|WF | provide the maximum number of disjuncts
generated for an abstract value resp. the maximum number of predicate atoms
in each abstraction level.

7 Related Works and Conclusion

Our analysis infers complex invariants of free-list DMA implementations due to
the combination of two ingredients: the hierarchical representation of the shape
of the memory region managed by the DMA and an abstract domain for the
numerical constraints based on universally quantified formulas. The abstract
domain has a clear logical definition, which facilitates the use of the inferred
invariants by other verification methods.

The proposed abstract domain extends previous works [3, 5, 10, 11, 21]. We
consider the SL fragment proposed in [5] to analyse programs using pointer
arithmetic. We enrich this fragment in both spatial and pure formulas to infer
a richer class of invariants. E.g., we add a heap-list level to track properties like
chunk overlapping and universal constraints to infer first-fit policy invariants.

The split of shape abstraction on levels is inspired by works on overlaid data
structures [11, 21]. We consider here a specific overlapping schema based on set
inclusion which is adequate for DMA. We propose new abstract transformers
which do not require user annotations like in [21]. Another hierarchical analysis
of shape and numeric properties has been proposed in [25]. They consider the
analysis of linked data structures coded in arrays and track the shape of these
data structures and not the shape of the free set. Their approach is not based
on logic and the invariants inferred on the content of list segments are simpler.

Our abstract domain includes a simpler version of the data word domain
proposed in [3, 10], since the universal constraints quantify only one position
in the list. Several abstract domains have been defined to infer invariants over
arrays, e.g., [13] for array sizes, [14, 15] for array content. These works infer
invariants of different kind on array partitions and they can not be applied
directly to sequences of addresses. Recently, [22] defined an abstract domain for
the analysis of array properties and applies it to the Minix 1.1 DMA, which uses
chunks of fixed size. A modular combination of shape and numerical domains
has been proposed in [6]. We extend their proposal to combine shape domains
with domains on sequences of integers. Precise analyses exist for low level code
in C [23] or for binary code [2]. They efficiently track properties about pointer
alignment and memory region separations, but can not infer shape properties.

References

1. L. Aldridge. Memory allocation in C. Embedded Systems Programming, pages
35–42, August 2008.

2. G. Balakrishnan and T. W. Reps. Recency-abstraction for heap-allocated storage.
In SAS, volume 4134 of LNCS, pages 221–239. Springer, 2006.

3. A. Bouajjani, C. Dragoi, C. Enea, and M. Sighireanu. On inter-procedural analysis
of programs with lists and data. In PLDI, pages 578–589. ACM, 2011.



Hierarchical Shape Abstraction for Analysis of Free-List Memory Allocators 15

4. A. Bouajjani, C. Dragoi, C. Enea, and M. Sighireanu. Accurate invariant checking
for programs manipulating lists and arrays with infinite data. In ATVA, volume
7561 of LNCS, pages 167–182. Springer, 2012.

5. C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Beyond reachability:
Shape abstraction in the presence of pointer arithmetic. In SAS, volume 4134 of
LNCS, pages 182–203. Springer, 2006.

6. B. E. Chang and X. Rival. Modular construction of shape-numeric analyzers. In
Semantics, Abstract Interpretation, and Reasoning about Programs, volume 129 of
EPTCS, pages 161–185, 2013.

7. B. E. Chang, X. Rival, and G. C. Necula. Shape analysis with structural invariant
checkers. In SAS, volume 4634 of LNCS, pages 384–401. Springer, 2007.

8. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL, pages
238–252. ACM, 1977.

9. D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis based on
separation logic. In TACAS, volume 3920, pages 287–302. Springer, 2006.

10. C. Dragoi. Automated verification of heap-manipulating programs with infinite
data. PhD thesis, University Paris Diderot, 2011.

11. C. Dragoi, C. Enea, and M. Sighireanu. Local shape analysis for overlaid data
structures. In SAS, volume 7935 of LNCS, pages 150–171. Springer, 2013.

12. C. Enea, M. Sighireanu, and Z. Wu. On automated lemma generation for separation
logic with inductive definitions. In ATVA, LNCS, pages 80–96. Springer, 2015.

13. S. Gulwani, T. Lev-Ami, and S. Sagiv. A combination framework for tracking
partition sizes. In POPL, pages 239–251. ACM, 2009.

14. S. Gulwani, B. McCloskey, and A. Tiwari. Lifting abstract interpreters to quantified
logical domains. In POPL, pages 235–246. ACM, 2008.
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