Skip to main content

Symmetries of Gravity in AdS\(_3\)

  • Chapter
  • First Online:
BMS Particles in Three Dimensions

Part of the book series: Springer Theses ((Springer Theses))

  • 483 Accesses

Abstract

In this chapter we explore a physical model where the Virasoro group plays a key role, namely three-dimensional gravity on Anti-de Sitter (AdS) backgrounds and its putative dual two-dimensional conformal field theory (CFT). These considerations will be a basis and a guide for our study of asymptotically flat space-times in part III.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In two dimensions one has in addition \(R_{\mu \nu }=\frac{1}{2}R g_{\mu \nu }\).

  2. 2.

    This is not a trivial requirement; for instance the function \(\sin (r^{42})/r\) is of order \({\mathcal O}(1/r)\) as \(r\rightarrow +\infty \) but its derivative is not of order \({\mathcal O}(1/r^2)\).

  3. 3.

    The term “superpotential” here has nothing to do with supersymmetry.

  4. 4.

    In practice, for constant \(\epsilon \) this gives \(\delta A_{\mu }=0\), but for fields with non-zero electric charge the transformation given by constant \(\epsilon \)’s is non-trivial.

  5. 5.

    Strictly speaking we have displayed this isomorphism here for the complexification of \(\mathfrak {so}(2,2)\), but it also holds for real Lie algebras.

  6. 6.

    The terminology is somewhat backwards, since the highest weight h is actually the lowest eigenvalue of \(L_0\) in the space of the representation; this terminological clash is standard.

  7. 7.

    The actual value of the quantum weight h may differ from the classical parameter defined in (8.66) by corrections of order \({\mathcal O}(1/c)\), so from now on it is understood that h refers to the quantum value. This subtlety will have very little effect on our discussion.

  8. 8.

    As before, the quantum values of \((h,\bar{h})\) may differ from their classical counterparts by 1 / c corrections.

References

  1. J.D. Brown, M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity. Commun. Math. Phys. 104, 207–226 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. R.P. Geroch, Structure of the gravitational field at spatial infinity. J. Math. Phys. 13, 956–968 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  3. R. Geroch, Asymptotic structure of space-time, Asymptotic Structure of Space-Time (Springer, Boston, 1977), pp. 1–105

    Google Scholar 

  4. A. Ashtekar, Asymptotic structure of the gravitational field at spatial infinity, in General Relativity and Gravitation II, ed. by A. Held (Plenum Press, New York, 1980), p. 37

    Google Scholar 

  5. L. Abbott, S. Deser, Charge definition in non-abelian gauge theories. Phys. Lett. B 116(4), 259–263 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  6. G. Barnich, F. Brandt, Covariant theory of asymptotic symmetries, conservation laws and central charges. Nucl. Phys. B 633, 3–82 (2002), arXiv:hep-th/0111246

  7. G. Barnich, Boundary charges in gauge theories: using Stokes theorem in the bulk. Class. Quantum Gravity 20, 3685–3698 (2003), arXiv:hep-th/0301039

  8. G. Barnich, G. Compère, Surface charge algebra in gauge theories and thermodynamic integrability. J. Math. Phys. 49, 042901 (2008), arXiv:0708.2378

  9. G. Barnich, C. Troessaert, Aspects of the BMS/CFT correspondence. JHEP 05, 062 (2010), arXiv:1001.1541

  10. M. Bañados, Three-dimensional quantum geometry and black holes. AIP Conf. Proc. 484, 147 (1999), arXiv:hep-th/9901148

  11. K. Skenderis, S.N. Solodukhin, Quantum effective action from the AdS/CFT correspondence. Phys. Lett. B 472, 316–322 (2000), arXiv:hep-th/9910023

  12. M. Bañados, C. Teitelboim, J. Zanelli, The black hole in three-dimensional space-time. Phys. Rev. Lett. 69, 1849–1851 (1992), arXiv:hep-th/9204099

  13. M. Bañados, M. Henneaux, C. Teitelboim, J. Zanelli, Geometry of the (2+1) black hole. Phys. Rev. D 48, 1506–1525 (1993), arXiv:gr-qc/9302012 [Erratum: Phys. Rev. D 88, 069902 (2013)]

  14. A. Garbarz, M. Leston, Classification of boundary gravitons in AdS\(_3\) gravity. JHEP 05, 141 (2014), arXiv:1403.3367

  15. G. Barnich, B. Oblak, Holographic positive energy theorems in three-dimensional gravity. Class. Quantum Gravity 31, 152001 (2014), arXiv:1403.3835

  16. G. Barnich, B. Oblak, Notes on the BMS group in three dimensions: II. Coadjoint representation. JHEP 03, 033 (2015), arXiv:1502.00010

  17. T. Nakatsu, H. Umetsu, N. Yokoi, Three-dimensional black holes and Liouville field theory. Prog. Theor. Phys. 102, 867–896 (1999), arXiv:hep-th/9903259

  18. J. Navarro-Salas, P. Navarro, Virasoro orbits, AdS(3) quantum gravity and entropy. JHEP 05, 009 (1999), arXiv:hep-th/9903248

  19. A. Maloney, E. Witten, Quantum gravity partition functions in three dimensions. JHEP 02, 029 (2010), arXiv:0712.0155

  20. C. Teitelboim, How commutators of constraints reflect the space-time structure. Ann. Phys. 79, 542–557 (1973)

    Article  ADS  Google Scholar 

  21. Virgo, LIGO Scientific Collaboration, B.P. Abbott et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016), arXiv:1602.03837

  22. S. Deser, R. Jackiw, S. Templeton, Topologically massive gauge theories. Ann. Phys. 140, 372–411 (1982) [Ann. Phys. 281, 409 (2000)]

    Google Scholar 

  23. E.A. Bergshoeff, O. Hohm, P.K. Townsend, Massive gravity in three dimensions. Phys. Rev. Lett. 102, 201301 (2009), arXiv:0901.1766

  24. R. Penrose, Relativistic symmetry groups, in Group Theory in Non-Linear Problems: Lectures Presented at the NATO Advanced Study Institute on Mathematical Physics, held in Istanbul, Turkey, 7–18 August 1972 (Springer, Netherlands, 1974), pp. 1–58

    Google Scholar 

  25. J.W. York, Role of conformal three-geometry in the dynamics of gravitation. Phys. Rev. Lett. 28, 1082–1085 (1972)

    Google Scholar 

  26. G.W. Gibbons, S.W. Hawking, Action integrals and partition functions in quantum gravity. Phys. Rev. D 15, 2752–2756 (1977)

    Google Scholar 

  27. A. Achucarro, P.K. Townsend, A Chern-Simons action for three-dimensional anti-de Sitter supergravity theories. Phys. Lett. B 180, 89 (1986)

    Google Scholar 

  28. E. Witten, (2+1)-dimensional gravity as an exactly soluble system. Nucl. Phys. B 311, 46 (1988)

    Google Scholar 

  29. M. Blagojevic, Gravitation and Gauge Symmetries, Series in High Energy Physics, Cosmology and Gravitation (CRC Press, Boca Raton, 2001)

    Book  MATH  Google Scholar 

  30. G. Lucena Gómez, Higher-spin theories - part II: enter dimension three. PoS ModaveVIII, 003 (2012), arXiv:1307.3200

  31. L. Donnay, Asymptotic dynamics of three-dimensional gravity. PoSModave2015, 001 (2016), arXiv:1602.09021

  32. O. Coussaert, M. Henneaux, P. van Driel, The asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant. Class. Quantum Gravity12, 2961–2966 (1995), arXiv:gr-qc/9506019

  33. G. Barnich, H.A. González, Dual dynamics of three dimensional asymptotically flat Einstein gravity at null infinity. JHEP 05, 016 (2013), arXiv:1303.1075

  34. G. Compère, Symmetries and conservation laws in Lagrangian gauge theories with applications to the mechanics of black holes and to gravity in three dimensions. Ph.D. thesis, Brussels U. (2007), arXiv:0708.3153

  35. K. Skenderis, M. Taylor, B.C. van Rees, Topologically massive gravity and the AdS/CFT correspondence. JHEP 09, 045 (2009), arXiv:0906.4926

  36. C. Fefferman, C.R. Graham, The ambient metric, arXiv:0710.0919

  37. G. Barnich, A note on gauge systems from the point of view of Lie algebroids. AIP Conf. Proc. 1307, 7–18 (2010), arXiv:1010.0899

  38. J.D. Brown, J.W. York, Quasilocal energy and conserved charges derived from the gravitational action. Phys. Rev. D 47, 1407–1419 (1993)

    Google Scholar 

  39. M. Henningson, K. Skenderis, Holography and the Weyl anomaly. Fortsch. Phys. 48, 125–128 (2000), arXiv:hep-th/9812032

  40. V. Balasubramanian, P. Kraus, A stress tensor for anti-de Sitter gravity. Commun. Math. Phys. 208, 413–428 (1999), arXiv:hep-th/9902121

  41. S. de Haro, K. Skenderis, S.N. Solodukhin, Gravity in warped compactifications and the holographic stress tensor. Class. Quantum Gravity 18, 3171–3180 (2001), arXiv:hep-th/0011230. [495 (2000)]

  42. C. Troessaert, Enhanced asymptotic symmetry algebra of \(AdS\) \(_{3}\). JHEP 08, 044 (2013), arXiv:1303.3296

  43. G. Compère, W. Song, A. Strominger, New boundary conditions for AdS3. JHEP 05, 152 (2013), arXiv:1303.2662

  44. M. Henneaux, C. Martínez, R. Troncoso, Asymptotically anti-de Sitter spacetimes in topologically massive gravity. Phys. Rev. D 79, 081502 (2009), arXiv:0901.2874

  45. M. Henneaux, C. Martínez, R. Troncoso, More on asymptotically anti-de Sitter spaces in topologically massive gravity. Phys. Rev. D 82, 064038 (2010), arXiv:1006.0273

  46. Y. Liu, Y.-W. Sun, Consistent boundary conditions for new massive gravity in \(AdS_3\). JHEP 05, 039 (2009), arXiv:0903.2933

  47. C. Cunliff, Non-Fefferman-Graham asymptotics and holographic renormalization in new massive gravity. JHEP 04, 141 (2013), arXiv:1301.1347

  48. S. Aminneborg, I. Bengtsson, S. Holst, P. Peldan, Making anti-de Sitter black holes. Class. Quantum Gravity 13, 2707–2714 (1996), arXiv:gr-qc/9604005

  49. M. Bañados, A. Gomberoff, C. Martínez, Anti-de Sitter space and black holes. Class. Quantum Gravity 15, 3575–3598 (1998), arXiv:hep-th/9805087

  50. C. Crnković, E. Witten, Covariant description of canonical formalism in geometrical theories

    Google Scholar 

  51. J.M. Maldacena, The large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1113–1133 (1999), arXiv:hep-th/9711200 [Adv. Theor. Math. Phys. 2, 231 (1998)]

  52. E. Witten, Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998), arXiv:hep-th/9802150

  53. J. Kim, M. Porrati, On a canonical quantization of 3D anti de Sitter pure gravity. JHEP 10, 096 (2015), arXiv:1508.03638

  54. C. Troessaert, Poisson structure of the boundary gravitons in 3D gravity with negative \(\Lambda \). Class. Quantum Gravity 32(23), 235019 (2015), arXiv:1507.01580

  55. G. Compère, P.-J. Mao, A. Seraj, M.M. Sheikh-Jabbari, Symplectic and killing symmetries of AdS\(_{3}\) gravity: holographic vs boundary gravitons. JHEP 01, 080 (2016), arXiv:1511.06079

  56. E.J. Martinec, Conformal field theory, geometry, and entropy, arXiv:hep-th/9809021

  57. E. Witten, Three-dimensional gravity revisited, arXiv:0706.3359

  58. M.M. Sheikh-Jabbari, H. Yavartanoo, On 3d bulk geometry of Virasoro coadjoint orbits: orbit invariant charges and Virasoro hair on locally AdS3 geometries, arXiv:1603.05272

  59. A. Seraj, Conserved charges, surface degrees of freedom, and black hole entropy. Ph.D. thesis (2016), arXiv:1603.02442

  60. R. Schon, S.-T. Yau, Proof of the positive mass theorem. 2. Commun. Math. Phys. 79, 231–260 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  61. E. Witten, A simple proof of the positive energy theorem. Commun. Math. Phys. 80, 381 (1981)

    Article  ADS  MATH  Google Scholar 

  62. R.M. Wald, General relativity (1984)

    Google Scholar 

  63. D.R. Brill, S. Deser, Variational methods and positive energy in general relativity. Ann. Phys. 50, 548–570 (1968)

    Article  ADS  Google Scholar 

  64. E. Witten, Coadjoint orbits of the Virasoro group. Commun. Math. Phys. 114, 1 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. B. Feigin, D. Fuks, Casimir operators in modules over Virasoro algebra. Dokl. Akad. Nauk SSSR 269(5), 1057–1060 (1983)

    MathSciNet  MATH  Google Scholar 

  66. W. Taylor, Virasoro representations on Diff\(S^1/S^1\) coadjoint orbits, arXiv:hep-th/9204091

  67. W. Taylor, Coadjoint orbits and conformal field theory. Ph.D. thesis, UC, Berkeley (1993), arXiv:hep-th/9310040

  68. H.-S. La, P.C. Nelson, A.S. Schwarz, Remarks on Virasoro model space. Conf. Proc. C9003122, 259–265 (1990)

    Google Scholar 

  69. H. Airault, P. Malliavin, Unitarizing probability measures for representations of Virasoro algebra. Journal de Mathématiques Pures et Appliquées 80(6), 627–667 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  70. H. Airault, P. Malliavin, A. Thalmaier, Support of Virasoro unitarizing measures. Comptes Rendus Mathematique 335(7), 621–626 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  71. B. Feigin, D. Fuks, Verma modules over the Virasoro algebra. Funkts. Anal. Prilozh. 17(3), 91–92 (1983)

    MathSciNet  MATH  Google Scholar 

  72. B. Feigin, D. Fuchs, Verma modules over the Virasoro algebra, in Topology, ed. by L.D. Faddeev, A.A. Malcev. Lecture Notes in Mathematics, vol. 1060 (Springer, Berlin, 1984), pp. 230–245

    Google Scholar 

  73. B. Feigin, D. Fuchs, Representations of the Virasoro algebra. Reports: Matematiska Institutionen. Department, University (1986)

    Google Scholar 

  74. G. Segal, Unitary representations of some infinite-dimensional groups. Commun. Math. Phys. 80(3), 301–342 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. V.G. Kac, Some problems on infinite dimensional Lie algebras and their representations, Lie Algebras and Related Topics: Proceedings of a Conference Held at New Brunswick, New Jersey, 29–31 May 1981 (Springer, Berlin, 1982), pp. 117–126

    Google Scholar 

  76. P. Goddard, A. Kent, D. Olive, Unitary representations of the Virasoro and super-Virasoro algebras. Commun. Math. Phys. 103(1), 105–119 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. P. Di Francesco, P. Mathieu, D. Senechal, Conformal Field Theory, Graduate Texts in Contemporary Physics (Springer, New York, 1997)

    Google Scholar 

  78. H. Salmasian, K.-H. Neeb, Classification of positive energy representations of the Virasoro group, arXiv:1402.6572

  79. T. Apostol, Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics (Springer, New York, 1998)

    MATH  Google Scholar 

  80. A. Wassermann, Direct proofs of the Feigin-Fuchs character formula for unitary representations of the Virasoro algebra (2010), arXiv:1012.6003

  81. A. Wassermann, Kac-Moody and Virasoro algebras (2010), arXiv:1004.1287

  82. S. Giombi, A. Maloney, X. Yin, One-loop partition functions of 3D gravity. JHEP 08, 007 (2008), arXiv:0804.1773

  83. C.A. Keller, A. Maloney, Poincare series, 3D gravity and CFT spectroscopy. JHEP 02, 080 (2015), arXiv:1407.6008

  84. A. Strominger, On BMS invariance of gravitational scattering. JHEP 07, 152 (2014), arXiv:1312.2229

  85. I.J.R. Aitchison, A.J.G. Hey, Gauge Theories in Particle Physics, Graduate Student Series in Physics (Taylor & Francis, New York, 2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blagoje Oblak .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Oblak, B. (2017). Symmetries of Gravity in AdS\(_3\) . In: BMS Particles in Three Dimensions. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-61878-4_8

Download citation

Publish with us

Policies and ethics