Skip to main content

Microbial Biosensors for Metal(loid)s

  • Chapter
  • First Online:
Microbial Ecotoxicology

Abstract

In this chapter we carry out an updated review on metal(loid)s biosensors using microorganisms as bioreceptor element of a classic biosensor or as a whole-cell biosensor. We analyze the potential advantages and possible disadvantages to use prokaryotic or eukaryotic microorganisms in metal(loid) biosensors. Likewise, the presence or absence of a cell wall in the microbial system can determine the degree of permeability of the target molecule to be detected. Sensitivity versus specificity of the biosensor is also discussed. We call attention on the necessity to carry out more bioassays using real environmental samples, and not only laboratory prepared once. A greater interest on designing biosensors using protozoa is also reclaimed, because these eukaryotic microorganism are much more sensitive to metal(loid)s than other microorganisms, and they share a higher degree of functional conservation with human genes than do other eukaryotic microbial models. Finally, a collection and analysis of the main metal(loid) microbial biosensors and genetic constructs potentially useful to design metal biosensors is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CB:

Classical or conventional biosensor/s

GFP:

Green fluorescent protein

MT:

Metallothionein

WCB:

Whole-cell biosensor/s

References

  • Aksmann A, Pokora W, Bascik-Remisiewicz A et al (2014) Time-dependent changes in antioxidative enzyme expression and photosynthetic activity of Chlamydomonas reinhardtii cells under acute exposure to cadmium and anthracene. Ecotoxicol Environ Saf 110C:31–40. doi:10.1016/j.ecoenv.2014.08.005

    Article  Google Scholar 

  • Alpat S, Alpat SK, Cadirci BH et al (2008) A novel microbial biosensor based on Circinella sp. modified carbon paste electrode and its voltammetric application. Sens Actuators 134:175–181. doi:10.1016/j.snb.2008.04.044

    Article  CAS  Google Scholar 

  • Amaro F, Turkewitz AP, Martin-Gonzalez A et al (2011) Whole-cell biosensors for detection of heavy metal ions in environmental samples based on metallothionein promoters from Tetrahymena thermophila. Microb Biotechnol 4:513–522. doi:10.1111/j.1751-7915.2011.00252.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amaro F, Turkewitz AP, Martin-Gonzalez A et al (2014) Functional GFP-metallothionein fusión protein from Tetrahymena thermophila: a potential whole-cell biosensor for monitoring heavy metal pollution and a cell model to study metallothionein overproduction effects. Biometals 27:195–205. doi:10.1007/s10534-014-9704-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aury JM, Jaillon O, Duret L et al (2006) Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature 444:171–178. doi:10.1038/nature05230

    Article  CAS  PubMed  Google Scholar 

  • Baronian KHR (2004) The use of yeast and moulds as sensing elements in biosensors. Biosens Bioelectron 19:953–962. doi:10.1016/j.bios.2003.09.010

    Article  CAS  PubMed  Google Scholar 

  • Belkin S (2003) Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6:206–212

    Article  CAS  PubMed  Google Scholar 

  • Berezhetskyy AL, Sosovska OF, Durrieu C et al (2008) Alkaline phosphatase conductometric biosensor for heavy-metal ions determination. IRBM 29:136–140

    Article  Google Scholar 

  • Bontidean I, Ahlqvist J, Chen W et al (2003) Novel synthetic phytochelatin-based capacitive biosensor for heavy metal ion detection. Biosens Bioeletron 18:547–553

    Article  CAS  Google Scholar 

  • Chay TC, Surif S, Heng LY (2005) A copper toxicity biosensor using immobilized cyanobacteria, Anabaena torulosa. Sens Lett 3:49–54

    Article  CAS  Google Scholar 

  • Chouteau C, Dzyadevych S, Chovelon JM et al (2004) Development of novel conductometric biosensors based on immobilised whole cell Chlorella vulgaris microalgae. Biosens Bioelectron 19:1089–1096. doi:10.1016/j.bios.2003.10.012

    Article  CAS  PubMed  Google Scholar 

  • Clark LC, Wolf R, Granger D et al (1953) Continuous recording of blood oxygen tensions by polarography. J Appl Physiol 6:189–193

    CAS  PubMed  Google Scholar 

  • Corbisier P, Ji G, Nuyts G et al (1993) luxAB gene fusions with the arsenic and cadmium resistance operons of Staphylococcus aureus plasmid pI258. FEMS Microbiol Lett 110:231–238

    Article  CAS  PubMed  Google Scholar 

  • Corbisier P, van der Lelie D, Borremans B et al (1999) Whole cell-and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Anal Chim Acta 387:235–244

    Article  CAS  Google Scholar 

  • De Francisco P, Melgar LM, Diaz S et al (2016) The Tetrahymena metallothionein gene family: twenty-one new cDNAs, molecular characterization, phylogenetic study and comparative analysis of the gene expression under different abiotic stressors. BMC Genom 17:346. doi:10.1186/s12864-016-2658-6

    Article  Google Scholar 

  • De Schamphelaere KAC, Nys C, Janssen CR (2014) Toxicity of lead (Pb) to freshwater green algae: development and validation of a bioavailability model and inter-species sensitivity comparison. Aquat Toxicol 155:348–359. doi:10.1016/j.aquatox.2014.07.008

    Article  PubMed  Google Scholar 

  • Diaz S, Amaro F, Rico D et al (2007) Tetrahymena metallothioneins fall into two subfamilies. PLoS ONE 2:e291. doi:10.1371/journal.pone.0000291

    Article  PubMed  PubMed Central  Google Scholar 

  • Eisen JA, Coyne RS, Wu M et al (2006) Macronuclear genome sequence of the ciliate Tetrahymena thermophile, a model eukaryote. PLoS Biol 4:e286. doi:10.1371/journal.pbio.0040286

    Article  PubMed  PubMed Central  Google Scholar 

  • Elad T, Benovich E, Magrisso S et al (2008) Toxicant identification by a luminescent bacterial bioreporter panel: application of pattern classification algorithms. Environ Sci Technol 42:8486–8491

    Article  CAS  PubMed  Google Scholar 

  • Erbe JL, Adams AC, Taylor KB et al (1996) Cyanobacteria carrying an smt-lux transcriptional fusion as biosensors for the detection of heavy metal cations. J Ind Microbiol 17:80–83

    Article  CAS  PubMed  Google Scholar 

  • Fairbrother A, Wenstel R, Sappington K et al (2007) Framework for metals risk assessment. Ecotoxicol Environ Saf 68:145–227

    Article  CAS  PubMed  Google Scholar 

  • Gammoudi I, Tarbague H, Othmane A et al (2010) Love-wave bacteria-based sensor for the detection of heavy metal toxicity in liquid medium. Biosens Bioelectron 26:1723–1726

    Article  CAS  PubMed  Google Scholar 

  • Golding GR, Kelly CA, Sparling R et al (2002) Evidence for facilitated update of Hg(II) by Vibrio anguillarum and Escherichia coli under anaerobic and aerobic conditions. Limnol Oceanogr 47:967–975

    Article  Google Scholar 

  • Gu MB, Mitchell RJ, Kim BC (2004) Whole-cell-based biosensors for environmental biomonitoring and application. Adv Biochem Eng Biotechnol 87:269–305. doi:10.1007/b13533

    CAS  PubMed  Google Scholar 

  • Guascito MR, Malitesta C, Mazzotta E et al (2008) Inhibitive determination of metal ions by an amperometric glucose oxidase biosensor: study of the effect of hydrogen peroxide decomposition. Sens Actuators B Chem 131:394–402

    Article  CAS  Google Scholar 

  • Gutierrez JC, Martin-Gonzalez A, Diaz S et al (2003) Ciliate as potential source of cellular and molecular biomarker/biosensors for heavy metal pollution. Eur J Protistol 39:461–467. doi:10.1078/0932-4739-00021

    Article  Google Scholar 

  • Gutierrez JC, Martin-Gonzalez A, Diaz S et al (2008) Ciliates as cellular tools to study the eukaryotic cell-heavy metal interactions. In: Brown SE, Welton WC (eds) Heavy metal pollution. Nova Science Publishers, New York, pp 1–44

    Google Scholar 

  • Gutierrez JC, Amaro F, Diaz S et al (2011) Ciliate metallothioneins: unique microbial eukaryotic heavy-metal-binder molecules. J Biol Inorg Chem 16:1025–1034. doi:10.1007/s00775-011-0820-9

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez JC, Amaro F, Martin-Gonzalez A (2015) Heavy metal whole-cell biosensors using eukaryotic microorganisms: an updated critical review. Front Microbiol 6:1–8. doi:10.3389/fmicb.2015.00048

    Google Scholar 

  • Hakkila K, Green T, Leskinen P et al (2004) Detection of bioavailable heavy metals in EILATox-Oregon samples using whole-cell luminescent bacterial sensors in suspension or immobilized onto fibreoptic tips. J Appl Toxicol 24:333–342

    Article  CAS  PubMed  Google Scholar 

  • Hill MK (2004) Understanding environmental pollution. A primer. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ilangovan R, Daniel D, Krastanov A et al (2006) Enzyme based biosensor for heavy metal ions determination. Biotechnol Equip 20:184–189

    Article  CAS  Google Scholar 

  • Ivask A, Hakkila K, Virta M (2001) Detection of organomercurials with sensor bacteria. Anal Chem 73:5168–5171

    Article  CAS  PubMed  Google Scholar 

  • Ivask A, Virta M, Kahru A (2002) Construction and use of specific luminescent recombinant bacterial sensors for the assessment of bioavailable fraction of cadmium, zinc, mercury and chromium in the soil. Soil Biol Biochem 34:1439–1447

    Article  CAS  Google Scholar 

  • Ivask A, Rolova T, Kahru A (2009) A suite of recombinant luminescent bacterial strains for the quantification of bioavailable heavy metals and toxicity testing. BMC Biotechnol 9:41. doi:10.1186/1472-6750-9-41

    Article  PubMed  PubMed Central  Google Scholar 

  • Ji G, Silver S (1992) regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258. J Bacteriol 174:3684–3694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jouanneau S, Durand M-J, Courcoux P et al (2011) Improvement of the identification of four heavy metals in environmental samples by using predictive decision tree models coupled with a set of five bioluminescent bacteria. Environ Sci Technol 45:2925–2931. doi:10.1021/es1031757

    Article  CAS  PubMed  Google Scholar 

  • Kröger S, Law RJ (2005) Biosensors for marine applications. We all need the sea, but does the sea need biosensors? Biosens Bioelectron 20:1903–1913. doi:10.1016/j.bios.2004.08.036

    Article  PubMed  Google Scholar 

  • Lagido C, Pettit J, Porter A et al (2001) Development and application of bioluminescent Caenorhabditis elegans as multicellular eukaryotic biosensors. FEBS Lett 493:36–39. doi:10.1016/S0014-5793(01)02271-2

    Article  CAS  PubMed  Google Scholar 

  • Lambreva MD, Giardi MT, Rambaldi I et al (2013) A powerful molecular engineering tool provided efficient Chlamydomonas mutants as bio-sensing elements for herbicides detection. PLoS ONE 8:e61851. doi:10.1371/journal.pone.0061851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Sode K, Nakanishi K et al (1992) A novel microbial sensor using luminous bacteria. Biosens Bioelectron 7:273–277

    Article  CAS  PubMed  Google Scholar 

  • Lehmann M, Riedel K, Adler K et al (2000) Amperometric measurement of copper ions with a deputy substrate using a novel Saccharomyces cerevisiae sensor. Biosens Bioelectron 15:211–219

    Article  CAS  PubMed  Google Scholar 

  • Leth S, Maltoni S, Simkus R et al (2002) Engineered bacteria based biosensors for monitoring bioavailable heavy metals. Electroanalysis 14:35–42. doi:10.1002/1521-4109(200201)14:1<35:AID-ELAN35>3.0.CO;2-W

    Article  CAS  Google Scholar 

  • Liao VH, Ou KL (2005) Development and testing of a green fluorescent protein-based bacterial biosensor for measuring bioavailable arsenic in contaminated groundwater samples. Environ Toxicol Chem 24:1624–1631

    Article  CAS  PubMed  Google Scholar 

  • Liao VH, Chien MT, Tseng YY et al (2006) Development and testing of a Green fluorescent protein based bacterial biosensor for measuring bioavailable arsenic in contaminated groundwater saples. Environ Pollut 142:17–23

    Article  CAS  PubMed  Google Scholar 

  • Magrisso S, Erel Y, Belkin S (2008) Microbial reporters of metal bioavailability. Microb Biotechnol 1:320–330. doi:10.1111/j.1751-7915.2008.00022.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Gonzalez A, Diaz S, Jareño C et al (1999) The use of protists in ecotoxicology. Recent Res Dev Microbiol 3:93–111

    CAS  Google Scholar 

  • Mehta J, Bhardwaj SK, Bhardwaj N et al (2016) Progress in the biosensing techniques for trace-level heavy metals. Biotechnol Adv 34:47–60. doi:10.1016/j.biotechadv.2015.12.0010734-9750

    Article  CAS  PubMed  Google Scholar 

  • Mergeay M, Monchy S, Vallaeys T et al (2003) Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol Rev 27:385–410. doi:10.1016/S0168-6445(03)00045-7

    Article  CAS  PubMed  Google Scholar 

  • Nguyen-Ngoc H, Durrieu C, Tran-Minh C (2009) Synchronous-scan fluorescence of algal cells for toxicology assessment of heavy metals and herbicides. Ecotoxicol Environ Saf 72:316–320. doi:10.1016/j.ecoenv.2008.04.016

    Article  CAS  PubMed  Google Scholar 

  • Oh SE, Hassan SH, Van Ginkel SW (2011) A novel biosensor for detecting toxicity in water using sulfur-oxidizing bacteria. Sens Actuators B Chem 154:17–21

    Article  CAS  Google Scholar 

  • Park JN, Shon MJ, Oh DB et al (2007) Identification of the cadmium-inducible Hansenula polymorpha SEO1 gene promoter by transcriptome analysis and its application to whole-cell heavy metal detection systems. Appl Environ Microbiol 73:5990–6000. doi:10.1128/AEM.00863-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paton GI, Palmer G, Burton M et al (1997) Development of an acute chronic ecotoxicology assay using lux-marked Rhizobium leguminosarum biovar trifolii. Lett App Microbiol 24:296–300

    Article  CAS  Google Scholar 

  • Peca L, Kos PB, Mate Z et al (2008) Construction of bioluminescent cyanobacterial reporter strains for detection of nickel, cobalt and zinc. FEMS Microbiol Lett 289:258–264

    Article  CAS  PubMed  Google Scholar 

  • Peña-Vázquez E, Perez-Conde C, Costas E et al (2010) Development of a microalgal PAM test method for Cu(II) in waters: comparison of using spectrofluorometry. Ecotoxicology 19:1059–1065. doi:10.1007/s10646-010-0487-y

    Article  PubMed  Google Scholar 

  • Peñuelas J, Fillela I (2002) Metal pollution in Spanish terrestrial ecosystems during the twentieth century. Chemosphere 46:501–505

    Article  PubMed  Google Scholar 

  • Petänen T, Virta M, Karp M (2001) Construction and use of broad host range mercury and arsenite sensor plasmids in the soil bacterium Pseudomonas fluorescens OS8. Microb Ecol 41:360–368

    PubMed  Google Scholar 

  • Preston S, Coad N, Townend J et al (2000) Biosensing the acute toxicity of metal interactions: are they additive, synergistic or antagonistic? Environ Toxicol Chem 19:775–780

    Article  CAS  Google Scholar 

  • Roda A, Roda B, Cevenin IL et al (2011) Analytical strategies for improving the robustness and reproducibility of bioluminescent microbial bioreporters. Anal Bioanal Chem 401:201–211. doi:10.1007/s00216-011-5091-3

    Article  CAS  PubMed  Google Scholar 

  • Riether KB, Dollard MA, Billard P (2001) Assessment of heavy metal bioavailability using Escherichia coli zntAp:lux and copAp:lux-based biosensors. Appl Microbiol Biotechnol 57:712–716

    Article  CAS  PubMed  Google Scholar 

  • Samphao A, Rerkchai H, Jitcharoen J et al (2012) Indirect determination of mercury by inhibition of glucose oxidase immobilizated on carbon paste electrode. Int J Electrochem 7:1001–1010

    CAS  Google Scholar 

  • Selifonova O, Burlage R, Barkay T (1993) Bioluminescent sensors for detection of bioavailable Hg(II) in the environment. Appl Environ Microbiol 59:3083–3090

    CAS  PubMed  PubMed Central  Google Scholar 

  • Souiri M, Gammoudi I, Mora L et al (2012) A novel 3-D nano-assembly bacteria based biosensor for enhanced detection of heavy metal pollutants. J Environ Sci Eng A 1:924–935

    CAS  Google Scholar 

  • Shetty RS, Deao SK, Shah P et al (2003) Luminescen-based whole cell sensing systems for cadmium and lead using genetically engineered bacteria. Anal Bioanal Chem 376:11–17

    Article  CAS  PubMed  Google Scholar 

  • Shetty RS, Deo SK, Liu Y et al (2004) Fluorescence-based sensing system for copper using genetically engineered living yeast cells. Biotechnol Bioeng 88:664–670

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Mittal SK (2012) Chlorella sp. based biosensor for selective determination of mercury in presence of silver ions. Sens Actuators B Chem 165:48–52

    Article  CAS  Google Scholar 

  • Shing WL, Surif S, Heng LY (2008) Toxicity biosensor for the evaluation of cadmium toxicity based on photosynthetic behaviour of cyanobacteria Anabaena torulosa. Asian J Biochem 3:162–168

    Article  CAS  Google Scholar 

  • Shitanda I, Takada K, Sakai Y et al (2005) Amperometric biosensing systems based on motility and gravitaxis of flagellate algae for aquatic risk assessment. Anal Chem 77:6715–6718. doi:10.1021/ac050894b

    Article  CAS  PubMed  Google Scholar 

  • Sperling L, Dessen P, Zagulski M et al (2002) Random sequencing of paramecium somatic DNA. Eukaryot Cell 1:341–352. doi:10.1128/EC.1.3.341-352.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tag K, Riedel K, Bauer HJ et al (2007) Amperometric detection of Cu2+ by yeast biosensors using flow injection analysis (FIA). Sens Act B Chem 122:403–409

    Article  CAS  Google Scholar 

  • Tauriainen S, Karp M, Chang W et al (1998) Luminescent bacterial sensor for cadmium and lead. Biosens Bioelectron 13:931–938

    Article  CAS  PubMed  Google Scholar 

  • Tauriainen S, Virta M, Chang E et al (1999) Measurement of firefly luciferase reporter gene activity from cells and lysates using Escherichia coli arsenite and mercury sensors. Anal Biochem 272:191–198

    Article  CAS  PubMed  Google Scholar 

  • Terziyska A, Waltschewa L, Venkov P (2000) A new sensitive test based on yeast cells for studying environmental pollution. Environ Pollut 109:43–52. doi:10.1016/S0269-749(99)00237-7

    Article  CAS  PubMed  Google Scholar 

  • Tibazarwa C, Wuertz S, Mergeay M et al (2000) Regulation of the cnr cobalt and nickel resistance determinant of Ralstonia eutropha (Alcaligenes eutrophus) CH34. J Bacteriol 182:1399–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tibazarwa C, Corbisier P, Mench M et al (2001) A microbial biosensor to predict bioavailable nickel in soil and its transfer to plants. Environ Pollut 113:19–26

    Article  CAS  PubMed  Google Scholar 

  • Tom-Petersen A, Hosbond C, Nybroe O (2001) Identification of copper-induced genes in Pseudomonas fluorescens and use of a reporter strain to monitor bioavailable copper in soil. FEMS Microbiol Ecol 38:59–65. doi:10.1111/j.1574-6941.2001.tb00882.x

    Article  CAS  Google Scholar 

  • Van der Meer JR, Belkin S (2010) Where microbiology meets microengineering: design and applications of reporter bacteria. Nat Rev Microbiol 8:511–522

    Article  PubMed  Google Scholar 

  • Van der Meer JR, Tropel D, Jasper M (2004) Iluminating the detection chain of bacterial bioreporters. Environ Microbiol 6:1005–1020. doi:10.1111/j.1462-2920.2004.00655.x

    Article  PubMed  Google Scholar 

  • Vel Krawczyk TK, Moszcynska M, Trojanowicz M (2000) Inhibitive determination of mercury and other metal ions by potentiometric urea biosensor. Biosens Bioelectron 15:681–691

    Article  Google Scholar 

  • Verma N, Singh M (2005) Biosensors for heavy metals. Biometals 18:121–129. doi:10.1007/s.10534-004-5787-3

    Article  CAS  PubMed  Google Scholar 

  • Verma N, Singh M (2006) A Bacillus sphaericus based biosensor for monitoring nickel ions in industrial effluents and foods. J Anal Methods Chem 83427:1–4. doi:10.1155/JAMMC/2006/83427

    Article  Google Scholar 

  • Virta M, Lampinen J, Karp M (1995) A luminescence based mercury biosensor. Anal Chem 67:667–669

    Article  CAS  Google Scholar 

  • Walmsley RM, Keenan P (2000) The eukaryotic alternative: advantages of using yeasts in place of bacteria in microbial biosensor development. Biotechnol Bioprocess Eng 5:387–394. doi:10.1007/BF02931936

    Article  CAS  Google Scholar 

  • Wong L S, Lee Y H, Surif S (2013) Whole cell biosensor using Anabaena torulosa with optical transduction for environmental toxicity evaluation. J Sens 567272. doi:10.1155/2013/567272

  • Yagi K (2007) Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl Microbiol Biotechnol 73:1251–1258. doi:10.1007/s00253-006-0718-6

    Article  CAS  PubMed  Google Scholar 

  • Yoon KP, Misra TK, Silver S (1991) Regulation of the cadA cadmium resistance determinant of Staphylococcus aureus plasmid pI258. J Bacteriol 173:7643–7649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yüce M, Nazir H, Dönmez G (2010a) An advanced investigation on a new algal sensor determining Pb(II) ions from aqueous media. Biosens Bioelecron 26:321–326

    Article  Google Scholar 

  • Yüce M, Nazir H, Dönmez G (2010b) A voltammetric Rhodotorula mucilaginosa modified microbial biosensor for Cu(II) determination. Bioelectrochemistry 79:66–70

    Article  PubMed  Google Scholar 

  • Zlatev R, Magnin JP, Ozil P et al (2006) Bacterial sensors based on Acidithiobacillus ferrooxidans: part II. Cr (VI) determination. Biosens Bioelectron 21:1501–1506

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Gutiérrez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gutiérrez, J.C., Amaro, F., Martín-González, A. (2017). Microbial Biosensors for Metal(loid)s. In: Cravo-Laureau, C., Cagnon, C., Lauga, B., Duran, R. (eds) Microbial Ecotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-61795-4_13

Download citation

Publish with us

Policies and ethics