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Abstract. Proton magnetic resonance spectroscopic imaging (1H-MRSI)
provides noninvasive information regarding metabolic activity within the
tissues. One of the main problems of MRSI is low spatial resolution due
to clinical scan time limitations. Advanced post-processsing algorithms,
like convolutional neural networks (CNN) might help with generation of
super resolution MR spectroscopic images. In this study, the application
of super resolution convolutional neural networks (SRCNN) for increas-
ing the MRSI spatial resolution is presented. FLAIR, T1 weighted and
T2 weighted MR images were used in training the SRCNN scheme. The
spatial resolution of MRSI images were increased by using the model
trained with the anatomical MR images. The results of the proposed
technique were compared with bicubic resampling in terms of peak sig-
nal to noise ratio, structure similarity index, root mean square error,
relative polar edge coherence, and visual information fidelity pixel. Our
results indicated that SRCNN would contribute to reconstructing higher
resolution MRSI.

Keywords: convolutional neural network, super resolution, proton mag-
netic resonance spectroscopic imaging

1 Introduction

Proton magnetic resonance spectroscopic imaging (1H-MRSI) is commonly used
in clinical settings for obtaining information about brain tissue metabolism. Ac-
quisition of 1H-MRSI in addition to standard anotomical MR images, like T1
weighted MRI (T1w MRI), T2 weighted MRI (T2w MRI), and fluid attenuated
inversion recovery (FLAIR) MRI, helps in better defining disease characteristics,
including multiple sclerosis, brain tumors and Parkinson’s disease [1–5]. For in-
stance, studies reported that there was lower N-acetyl aspartate to creatine ra-
tio (NAA/Cr) in occipital lobe of patients diagnosed with Parkinson’s disease
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with mild cognitive impairment [4, 5], and brain tumors with a mutation in isoci-
trate dehyrogenase (IDH) have been observed to have higher 2-hydroxyglutarate
(2HG) [6–8]. 1H-MRSI detects a number of metabolites present in the tissue in
relatively much lower concentrations than water. As a result, higher voxel sizes
are employed for 1H-MRSI to increase signal to noise ratio (SNR). Typical 1H-
MRS images have a spatial resolution that is 10 times lower than anatomical
MR images. A region of 10 by 10 pixels from an anatomical MRI scan shows the
tissue imaged in details, whereas the same region often gets represented as a sin-
gle voxel in 1H-MRSI. Additionally, obtaining high resolution 1H-MRSI would
require a long scan time unless scan time reducing imaging strategies are em-
ployed [9]. An alternative approach that would result in higher spatial resolution
1H-MRSI without a scan time cost is advanced post-processing methods.

One of such post-processing techniques is convolutional neural network (CNN),
which dates back to the 1980s [10]. CNN has been applied in many fields includ-
ing handwriting [21] or face recognition [20], and object recognition [23] and
classification [24]. Additionally, super-resolution CNN (SRCNN) has more re-
cently been proposed to generate higher resolution images out of low resolution
versions [11–13]. To our knowledge, SRCNN has not been applied to increase
the spatial resolution of anatomical MRI or 1H-MRSI. In this study, we propose
to increase the spatial resolution of 1H-MRSI using SRCNN. For this purpose,
we present a SRCNN pipeline for post-processing 1H-MRS images using the
anatomical information present in T1w, T2w and FLAIR MRI.

2 Materials and Methods

2.1 MR Data Acquisition and Preprocessing

Three healthy subjects, who provided written informed consent before the data
acquisition, were included in this study. The imaging experiments were per-
formed on a 3T clinical MR scanner (Philips Medical Systems, Best, Holland)
with a 32-channel head coil. For each subject, MRI data acquisition frames
were aligned parallel to the anterior commissure (AC) - posterior commissure
(PC) line. First, T1w MR (TR/TE=8.3/3.8 ms, FOV=250x250x180 mm, voxel
size=1x1x1 mm), T2w MR (TR/TE=10243/80 ms, 90 degree flip angle, FOV=
240x240x180 mm, voxel size=2x2x2 mm), and FLAIR MR (TR/TE=4800/1650
ms, FOV= 250x250x180 mm, voxel size=1x1x3 mm) images were obtained.
Afterwards, three dimensional 1H-MRSI data was acquired by using Point-
RESolved Spectroscopy (PRESS) sequence (TR/TE=1000/52 ms, FOV=140
mm, voxel size= 10x10x10 mm, 14x14x3 voxels, scan time=8min). T2w MR
images were used as the reference images for defining 1H-MRSI region of inter-
ests (ROI).

Raw 1H-MRSI data was exported out and the spectra were quantified by us-
ing LCModel program [14]. Metabolite concentrations including total N-acetyl
aspartate (tNAA) were quantified for each voxel. An in-house software writ-
ten in MATLAB (The Mathworks Inc., Natick, MA) was used to combine the
metabolite concentrations of each voxel into a single tNAA map for each slice.
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T1w and FLAIR MR images were rigidly registered to reference T2w MR
images using FSL-FIRST [19] so as all anatomical scans were aligned (Figure
1). Additionally, a fused RGB MR image (Fused MRI) was formed by placing
T1w, T2w, and FLAIR MR images into three distinct channels of an RGB image
using the MCMxxxVI-RGBExplorer tool3.

Fig. 1. A schematic of MR image registration and fusion of T1w, T2w, and FLAIR
MRI

The spatial resolution of tNAA maps were upscaled by a factor of 1.87 using
nearest neighbor interpolation to match the T2w MR image resolution. T1w,
T2w, and FLAIR, and Fused MR image regions that have the same spatial
coordinates with the tNAA maps were extracted (Figure 2).

2.2 SRCNN Post-Processing

Caffe [15] was installed as a deep learning framework for SRCNN to train super-
resolution models. SRCNN structure included three convolutional layers. The
weight filler type was set as Gaussian, base learning rate was set as 0.0001,
and the learning policy was fixed. As per the training/testing strategy from

3 https://sourceforge.net/projects/bric1936/files/MATLAB/
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Fig. 2. A schematic pipeline of ROI extraction and training of anatomical MRI
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[22], the extracted regions of the structural MR images and Fused MRI were
downsampled and fed into the SRCNN to train four separate models (Figure 2).
tNAA maps were used as the testing dataset, and the four distinct models trained
on different structural MR images or Fused MRI were employed in SRCNN to
upscale the spatial resolution of tNAA maps by a factor of three. Three iteration
levels, which were 10.000, 100.000, and 1.000.000 iterations, were employed to
determine the number of necessary iterations for good spatial resolution. The
results of the SRCNN were compared with bicubic interpolation.

2.3 Image Quality Evaluation Metrics

Peak to noise ratio (PSNR), root mean square error (RMSE), structural simi-
larity index (SSIM) [16], relative polar edge coherence (RECO)[18], and visual
information fidelity pixel (VIFP) [17] were used as evaluation metrics of accu-
racy on all experiments in our study. The tNAA map that was upsampled by
nearest neighbor interpolation was used as the reference image for comparison
purposes.

3 Results

SRCNN was first applied to increase the spatial resolution of anatomical and
fused MR images by using the corresponding image for both train and test
datasets. SRCNN resulted in higher mean PSNR, and lower RMSE than bicubic
interpolation for all anatomical MR datasets and fused MRI after 10.000 itera-
tions (Table 1). When T2w MRI and Fused MRI were used as SRCNN training
datasets, 10.000 iterations was not sufficient to outperform bicubic interpolation.
For T1w MRI and FLAIR MRI, highest mean PSNR and lowest RMSE values
were obtained when 100.000 iterations were used for SRCNN.

Table 1. The mean PSNR and RMSE of anatomical MRI and Fused MRI datasets

T1w MRI T2w MRI FLAIR MRI Fused MRI

Method # Iteration PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

Bicubic SR - 25.11 14.14 25.11 14.14 27.23 11.09 31.56 6.73

SRCNN 10000 25.21 13.98 24.81 14.64 27.52 10.71 30.67 7.46

SRCNN 100000 25.86 12.98 25.92 12.89 28.13 9.99 32.11 6.32

SRCNN 1000000 25.85 13 26.1 12.63 27.77 10.42 32.36 6.2

Four distinct training models obtained from SRCNN algorithm based on
different anatomical or Fused MRI were applied to tNAA maps to get higher
spatial resolution. Table 2 displays the PSNR and RMSE values when bicubic
interpolation or SRCNN with varying number of iterations were employed for
super-resolution 1H-MRSI. T1w MRI model did not result in higher PSNR or
lower RMSE than bicubic interpolation. FLAIR MRI and Fused MRI models
with 100.000 and 1.000.000 iterations, respectively, resulted in highest PSNR
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and lowest RMSE with good image contrast. Figure 3 shows our SRCNN re-
sults for increasing 1H-MRSI spatial resolution. According to the results, tNAA
maps upscaled by a factor of 3 using Fused MRI filter model with 100.000 itera-
tions qualitatively had the best image contrast. The worst image definition was
observed in tNAA maps using T2w MRI filter model.

Table 2. The mean PSNR and RMSE results of SRCNN for super-resolution MRSI
based on different anatomical MRI training models

T1w MRI T2w MRI FLAIR MRI Fused MRI

Method # Iteration PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

Bicubic SR - 27.01 11.37 27.01 11.37 27.01 11.37 27.01 11.37

SRCNN 10000 26 12.77 23.47 17.09 27.05 11.32 24.015 16.06

SRCNN 100000 26.69 11.79 27.88 10.28 27.58 10.64 27.77 10.41

SRCNN 1000000 25.94 12.86 26.08 12.65 26.29 12.35 28.17 9.95

Figure 4 shows PSNR, RMSE, SSIM, RECO, and VIPF image metric results
of bicubic resampling (starting point) versus SRCNN (endpoint) for increasing
spatial resolution of MRSI using models trained on T1w MRI, T2w MRI, Flair
MRI, and Fused MRI. SRCNN training resulted in a higher RECO and a lower
RMSE value than bicubic interpolation. SSIM, PSNR, and VIFP values were
slightly smaller for SRCNN than bicubic resampling.

4 Conclusion and Discussion

In this paper, we have presented a novel application of SRCNN deep learning
method for increasing spatial resolution of 1H-MRSI based on the anatomical
image definition of T1w, T2w and Flair MRI, and their Fused MR images. We
have used tNAA maps as an example spectral image in this study. Our results
could be similarly applied to increase the spatial resolution of other metabolite
maps that could be obtained by 1H-MRSI. The proposed approach may con-
tribute to clinical 3D 1H-MRSI applications. Future studies will be conducted
to investigate the use of other deep learning methods, like fast SRCNN (FSR-
CNN) and patch-based super-resolution, to increase the spatial resolution of MR
spectroscopic metabolite maps.
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Fig. 3. SRCNN results of an example tNAA map upscaled by using T1w, T2w, FLAIR,
and Fused MRI filter models with 10.000, 100.000, and 1.000.000 iterations
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Fig. 4. Image quality metric results for increasing MRSI spatial resolution using bicubic
interpolation (starting point) or SRCNN models (end point) trained on T1w MRI, T2w
MRI, Flair MRI, and Fused MRI.
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