Skip to main content

Polymerization Shrinkage Stress

  • Chapter
  • First Online:
Dental Composite Materials for Direct Restorations

Abstract

Significant or not, polymerization shrinkage stress deserves a special chapter when resin composites are discussed. Subject of numerous publications based on in vitro tests and of intensive debates, the real significance of this phenomenon has been challenged by recently published clinical findings. The aim of this chapter is to present the main outcomes of research papers in the field of polymerization shrinkage stress followed by critical analysis of this complex phenomenon, consequences, clinical significance and education.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ferracane JL. Developing a more complete understanding of stresses produced in dental composites during polymerization. Dent Mater. 2005;21(1):36–42.

    Article  PubMed  Google Scholar 

  2. Ferracane JL. Buonocore Lecture. Placing dental composites – a stressful experience. Oper Dent. 2008;33(3):247–57.

    Article  PubMed  Google Scholar 

  3. Braga RR, Ferracane JL. Alternatives in polymerization contraction stress management. Crit Rev Oral Biol Med. 2004;15(3):176–84.

    Article  PubMed  Google Scholar 

  4. Braga RR, Ballester RY, Ferracane JL. Factors involved in the development of polymerization shrinkage stress in resin-composites: a systematic review. Dent Mater. 2005;21(10):962–70.

    Article  PubMed  Google Scholar 

  5. Ferracane JL, Hilton TJ. Polymerization stress – is it clinically meaningful? Dent Mater. 2016;32(1):1–10.

    Article  PubMed  Google Scholar 

  6. van Dijken JW. Durability of resin composite restorations in high C-factor cavities: a 12-year follow-up. J Dent. 2010;38(6):469–74.

    Article  PubMed  Google Scholar 

  7. Demarco FF, Corrêa MB, Cenci MS, Moraes RR, Opdam NJ. Longevity of posterior composite restorations: not only a matter of materials. Dent Mater. 2012;28(1):87–101.

    Article  PubMed  Google Scholar 

  8. Correa MB, Peres MA, Peres KG, Horta BL, Barros AJ, Demarco FF. Do socioeconomic determinants affect the quality of posterior dental restorations? A multilevel approach. J Dent. 2013;41(11):960–7.

    Article  PubMed  Google Scholar 

  9. van de Sande FH, Opdam NJ, Rodolpho PA, Correa MB, Demarco FF, Cenci MS. Patient risk factors’ influence on survival of posterior composites. J Dent Res. 2013;92(7 Supplement):78S–83S.

    Article  PubMed  Google Scholar 

  10. Opdam NJM, van de Sande FH, Bronkhorst E, Cenci MS, Bottenberg P, Pallesen U, Gaengler P, Lindberg A, Huysmans MCDNJM, van Dijken JWV. Longevity of posterior composite restorations: a systematic review and meta-analysis. J Dent Res. 2014;93(10):943–9.

    Article  PubMed  PubMed Central  Google Scholar 

  11. van Dijken JW, Lindberg A. A 15-year randomized controlled study of a reduced shrinkage stress resin composite. Dent Mater. 2015;31(9):1150–8.

    Article  PubMed  Google Scholar 

  12. Cramer NB, Stansbury JW, Bowman CN. Recent advances and developments in composite dental restorative materials. J Dent Res. 2011;90(4):402–16.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schneider LF, Cavalcante LM, Silikas N. Shrinkage stresses generated during resin-composite applications: a review. J Dent Biomech. 2010:1–14. doi:10.4061/2010/131630.

  14. Loshaek S, Fox TG. Cross-linked polymers. I. Factors influencing the efficiency of cross-linking in copolymers of methyl methacrylate and glycol dimethacrylate. J Am Chem Soc. 1953;75(14):3544–50.

    Article  Google Scholar 

  15. Cunha LG, Alonso RC, Pfeifer CS, Correr-Sobrinho L, Ferracane JL, Sinhoreti MA. Modulated photoactivation methods: influence on contraction stress, degree of conversion and push-out bond strength of composite restoratives. J Dent. 2007;35(4):318–24.

    Article  PubMed  Google Scholar 

  16. Pfeifer CS, Ferracane JL, Sakaguchi RL, Braga RR. Factors affecting photopolymerization stress in dental composites. J Dent Res. 2008;87(11):1043–7.

    Article  PubMed  Google Scholar 

  17. Palin WM, Hadis MA, Leprince JG, Leloup G, Boland L, Fleming GJ, Krastl G, Watts DC. Reduced polymerization stress of MAPO-containing resin composites with increased curing speed, degree of conversion and mechanical properties. Dent Mater. 2014;30(5):507–16.

    Article  PubMed  Google Scholar 

  18. Wang Z, Landis FA, Giuseppetti AA, Lin-Gibson S, Chiang MY. Simultaneous measurement of polymerization stress and curing kinetics for photo-polymerized composites with high filler contents. Dent Mater. 2014;30(12):1316–24.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Feilzer AJ, De Gee AJ, Davidson CL. Setting stress in composite resin in relation to configuration of the restoration. J Dent Res. 1987;66(11):1636–9.

    Article  PubMed  Google Scholar 

  20. Watts DC, Satterthwaite JD. Axial shrinkage-stress depends upon both C-factor and composite mass. Dent Mater. 2008;24(1):1–8.

    Article  PubMed  Google Scholar 

  21. Wang Z, Chiang MY. Correlation between polymerization shrinkage stress and C-factor depends upon cavity compliance. Dent Mater. 2016;32(3):343–52.

    Article  PubMed  Google Scholar 

  22. Wang Z, Chiang MY. System compliance dictates the effect of composite filler content on polymerization shrinkage stress. Dent Mater. 2016;32(4):551–60.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Han SH, Sadr A, Tagami J, Park SH. Internal adaptation of resin composites at two configurations: influence of polymerization shrinkage and stress. Dent Mater. 2016;32(9):1085–94.

    Article  PubMed  Google Scholar 

  24. Bicalho AA, de Souza SJ, de Rosatto CM, Tantbirojn D, Versluis A, Soares CJ. Effect of temperature and humidity on post-gel shrinkage, cusp deformation, bond strength and shrinkage stress – construction of a chamber to simulate the oral environment. Dent Mater. 2015;31(12):1523–32.

    Article  PubMed  Google Scholar 

  25. Bicalho AA, Tantbirojn D, Versluis A, Soares CJ. Effect of occlusal loading and mechanical properties of resin composite on stress generated in posterior restorations. Am J Dent. 2014;27(3):129–33.

    PubMed  Google Scholar 

  26. Suiter EA, Watson LE, Tantbirojn D, Lou JS, Versluis A. Effective expansion: balance between shrinkage and hygroscopic expansion. J Dent Res. 2016;95(5):543–9.

    Article  PubMed  Google Scholar 

  27. Sarrett DC. Clinical challenges and the relevance of materials testing for posterior composite restorations. Dent Mater. 2005;21(1):9–20.

    Article  PubMed  Google Scholar 

  28. Cenci MS, Tenuta LM, Pereira-Cenci T, Del Bel Cury AA, ten Cate JM, Cury JA. Effect of microleakage and fluoride on enamel-dentine demineralization around restorations. Caries Res. 2008;42(5):369–79.

    Article  PubMed  Google Scholar 

  29. Cenci MS, Pereira-Cenci T, Cury JA, Ten Cate JM. Relationship between gap size and dentine secondary caries formation assessed in a microcosm biofilm model. Caries Res. 2009;43(2):97–102.

    Article  PubMed  Google Scholar 

  30. Nedeljkovic I, Teughels W, De Munck J, Van Meerbeek B, Van Landuyt KL. Is secondary caries with composites a material-based problem? Dent Mater. 2015;31:e247–77.

    Article  PubMed  Google Scholar 

  31. Jokstad A. Secondary caries and microleakage. Dent Mater. 2016;32:11–25.

    Article  PubMed  Google Scholar 

  32. Ferracane JL, Mitchem JC. Relationship between composite contraction stress and leakage in Class V cavities. Am J Dent. 2003;16(4):239–43.

    PubMed  Google Scholar 

  33. Heintze SD, Rousson V, Hickel R. Clinical effectiveness of direct anterior restorations – a meta-analysis. Dent Mater. 2015;31(5):481–95.

    Article  PubMed  Google Scholar 

  34. Rosatto CM, Bicalho AA, Veríssimo C, Bragança GF, Rodrigues MP, Tantbirojn D, Versluis A, Soares CJ. Mechanical properties, shrinkage stress, cuspal strain and fracture resistance of molars restored with bulk-fill composites and incremental filling technique. J Dent. 2015;43(12):1519–28.

    Article  PubMed  Google Scholar 

  35. Alvanforoush N, Palamara J, Wong R, Burrow MF. A Comparison between published clinical success of direct resin composite restorations in vital posterior teeth in 1995–2005 and 2006–2016 periods. Aust Dent J. 2017;62(2):132–45. doi:10.1111/adj.12487.

    Article  PubMed  Google Scholar 

  36. Demarco FF, Collares K, Coelho-de-Souza FH, Correa MB, Cenci MS, Moraes RR, Opdam NJ. Anterior composite restorations: a systematic review on long-term survival and reasons for failure. Dent Mater. 2015;31(10):1214–24.

    Article  PubMed  Google Scholar 

  37. Da Rosa Rodolpho PA, Donassollo TA, Cenci MS, Loguércio AD, Moraes RR, Bronkhorst EM, Opdam NJ, Demarco FF. 22-year clinical evaluation of the performance of two posterior composites with different filler characteristics. Dent Mater. 2011;27(10):955–63.

    Article  PubMed  Google Scholar 

  38. Pallesen U, van Dijken JW. A randomized controlled 30 years follow up of three conventional resin composites in Class II restorations. Dent Mater. 2015;31(10):1232–44.

    Article  PubMed  Google Scholar 

  39. Laske M, Opdam NJ, Bronkhorst EM, Braspenning JC, Huysmans MC. Longevity of direct restorations in Dutch dental practices. Descriptive study out of a practice based research network. J Dent. 2016;46:12–7.

    Article  PubMed  Google Scholar 

  40. de Gee AJ, Davidson CL, Smith A. A modified dilatometer for continuous recording of volumetric polymerization shrinkage of composite restorative materials. J Dent. 1981;9(1):36–42.

    Article  PubMed  Google Scholar 

  41. Watts DC, Cash AJ. Determination of polymerization shrinkage kinetics in visible-light-cured materials: methods development. Dent Mater. 1991;7(4):281–7.

    Article  PubMed  Google Scholar 

  42. Sakaguchi RL, Sasik CT, Bunczak MA, Douglas WH. Strain gauge method for measuring polymerization contraction of composite restoratives. J Dent. 1991;19(5):312–6.

    Article  PubMed  Google Scholar 

  43. Sakaguchi RL, Peters MC, Nelson SR, Douglas WH, Poort HW. Effects of polymerization contraction in composite restorations. J Dent. 1992;20(3):178–82.

    Article  PubMed  Google Scholar 

  44. de Gee AF, Feilzer AJ, Davidson CL. True linear polymerization shrinkage of unfilled resins and composites determined with a linometer. Dent Mater. 1993;9(1):11–4.

    Article  PubMed  Google Scholar 

  45. Li J, Li H, Fok SL. A mathematical analysis of shrinkage stress development in dental composite restorations during resin polymerization. Dent Mater. 2008;24(7):923–31.

    Article  PubMed  Google Scholar 

  46. Miletic V, Manojlovic D, Milosevic M, Mitrovic N, Stankovic TS, Maneski T. Analysis of local shrinkage patterns of self-adhering and flowable composites using 3D digital image correlation. Quintessence Int. 2011;42(9):797–804.

    PubMed  Google Scholar 

  47. Fok AS. Shrinkage stress development in dental composites – an analytical treatment. Dent Mater. 2013;29(11):1108–15.

    Article  PubMed  Google Scholar 

  48. Sato T, Miyazaki M, Rikuta A. Real-time dimensional change in light-cured composites at various depths using laser speckle contrast analysis. Eur J Oral Sci. 2004;112(6):538–44.

    Article  PubMed  Google Scholar 

  49. Sakaguchi RL, Wiltbank BD, Murchison CF. Prediction of composite elastic modulus and polymerization shrinkage by computational micromechanics. Dent Mater. 2004;20(4):397–401.

    Article  PubMed  Google Scholar 

  50. Atai M, Watts DC. A new kinetic model for the photopolymerization shrinkage-strain of dental composites and resin-monomers. Dent Mater. 2006;22(8):785–91.

    Article  PubMed  Google Scholar 

  51. Kakaboura A, Rahiotis C, Watts DC, Silikas N, Eliades G. 3D-marginal adaptation versus setting shrinkage in light-cured microhybrid resin composites. Dent Mater. 2007;23(3):272–8.

    Article  PubMed  Google Scholar 

  52. Sun J, Eidelman N, Lin-Gibson S. 3D mapping of polymerization shrinkage using X-ray micro-computed tomography to predict microleakage. Dent Mater. 2009;25(3):314–20.

    Article  PubMed  Google Scholar 

  53. Van Ende A, Van de Casteele E, Depypere M, De Munck J, Li X, Maes F, Wevers M, Van Meerbeek B. 3D volumetric displacement and strain analysis of composite polymerization. Dent Mater. 2015;31(4):453–61.

    Article  PubMed  Google Scholar 

  54. Kweon HJ, Ferracane J, Kang K, Dhont J, Lee IB. Spatio-temporal analysis of shrinkage vectors during photo-polymerization of composite. Dent Mater. 2013;29(12):1236–43.

    Article  PubMed  Google Scholar 

  55. Tantbirojn D, Pfeifer CS, Amini AN, Versluis A. Simple optical method for measuring free shrinkage. Dent Mater. 2015;31(11):1271–8.

    Article  PubMed  Google Scholar 

  56. Park JW, Ferracane JL. Measuring the residual stress in dental composites using a ring slitting method. Dent Mater. 2005;21(9):882–9.

    Article  PubMed  Google Scholar 

  57. Park JW, Ferracane JL. Residual stress in composites with the thin-ring-slitting approach. J Dent Res. 2006;85(10):945–9.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ernst CP, Meyer GR, Klöcker K, Willershausen B. Determination of polymerization shrinkage stress by means of a photoelastic investigation. Dent Mater. 2004;20(4):313–21.

    Article  PubMed  Google Scholar 

  59. Kinomoto Y, Torii M. Photoelastic analysis of polymerization contraction stresses in resin composite restorations. J Dent. 1998;26(2):165–71.

    Article  PubMed  Google Scholar 

  60. Versluis A, Douglas WH, Cross M, Sakaguchi RL. Does an incremental filling technique reduce polymerization shrinkage stresses? J Dent Res. 1996;75(3):871–8.

    Article  PubMed  Google Scholar 

  61. Versluis A, Tantbirojn D, Douglas WH. Do dental composites always shrink toward the light? J Dent Res. 1998;77(6):1435–45.

    Article  PubMed  Google Scholar 

  62. Davidson CL, de Gee AJ. Relaxation of polymerization contraction stresses by flow in dental composites. J Dent Res. 1984;63(2):146–8.

    Article  PubMed  Google Scholar 

  63. Condon JR, Ferracane JL. Assessing the effect of composite formulation on polymerization stress. J Am Dent Assoc. 2000;131(4):497–503.

    Article  PubMed  Google Scholar 

  64. Watts DC, Marouf AS, Al-Hindi AM. Photo-polymerization shrinkage-stress kinetics in resin-composites: methods development. Dent Mater. 2003;19(1):1–11.

    Article  PubMed  Google Scholar 

  65. Braga RR, Ferracane JL. Contraction stress related to degree of conversion and reaction kinetics. J Dent Res. 2002;81(2):114–8.

    Article  PubMed  Google Scholar 

  66. Braga RR, Boaro LC, Kuroe T, Azevedo CL, Singer JM. Influence of cavity dimensions and their derivatives (volume and ‘C’ factor) on shrinkage stress development and microleakage of composite restorations. Dent Mater. 2006;22(9):818–23.

    Article  PubMed  Google Scholar 

  67. Yamamoto T, Ferracane JL, Sakaguchi RL, Swain MV. Calculation of contraction stresses in dental composites by analysis of crack propagation in the matrix surrounding a cavity. Dent Mater. 2009;25(4):543–50.

    Article  PubMed  Google Scholar 

  68. Yamamoto T, Kubota Y, Momoi Y, Ferracane JL. Polymerization stresses in low-shrinkage dental resin composites measured by crack analysis. Dent Mater. 2012;28(9):e143–9.

    Article  PubMed  Google Scholar 

  69. Yamamoto T, Hanabusa M, Momoi Y, Sakaguchi RL. Polymerization stress of dental resin composite continues to develop 12 hours after irradiation. J Esthet Restor Dent. 2015;27(1):44–54.

    Article  PubMed  Google Scholar 

  70. Witzel MF, Ballester RY, Meira JB, Lima RG, Braga RR. Composite shrinkage stress as a function of specimen dimensions and compliance of the testing system. Dent Mater. 2007;23(2):204–10.

    Article  PubMed  Google Scholar 

  71. Gonçalves F, Pfeifer CS, Ferracane JL, Braga RR. Contraction stress determinants in dimethacrylate composites. J Dent Res. 2008;87(4):367–71.

    Article  PubMed  Google Scholar 

  72. Miguel A, de la Macorra JC. A predictive formula of the contraction stress in restorative and luting materials attending to free and adhered surfaces, volume and deformation. Dent Mater. 2001;17(3):241–6.

    Article  PubMed  Google Scholar 

  73. Lu H, Stansbury JW, Bowman CN. Towards the elucidation of shrinkage stress development and relaxation in dental composites. Dent Mater. 2004;20(10):979–86.

    Article  PubMed  Google Scholar 

  74. Boaro LC, Gonçalves F, Guimarães TC, Ferracane JL, Versluis A, Braga RR. Polymerization stress, shrinkage and elastic modulus of current low-shrinkage restorative composites. Dent Mater. 2010;26(12):1144–50.

    Article  PubMed  Google Scholar 

  75. Bacchi A, Feitosa VP, da Silva Fonseca AS, Cavalcante LM, Silikas N, Schneider LF. Shrinkage, stress, and modulus of dimethacrylate, ormocer, and silorane composites. J Conserv Dent. 2015;18(5):384–8.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Park J, Chang J, Ferracane J, Lee IB. How should composite be layered to reduce shrinkage stress: incremental or bulk filling? Dent Mater. 2008;24(11):1501–5.

    Article  PubMed  Google Scholar 

  77. Kim YJ, Kim R, Ferracane JL, Lee IB. Influence of the compliance and layering method on the wall deflection of simulated cavities in bulk-fill composite restoration. Oper Dent. 2016;41(6):e183–94.

    Article  PubMed  Google Scholar 

  78. Bicalho AA, Pereira RD, Zanatta RF, Franco SD, Tantbirojn D, Versluis A, Soares CJ. Incremental filling technique and composite material – part I: cuspal deformation, bond strength, and physical properties. Oper Dent. 2014;39(2):E71–82.

    Article  PubMed  Google Scholar 

  79. Bicalho AA, Valdívia AD, Barreto BC, Tantbirojn D, Versluis A, Soares CJ. Incremental filling technique and composite material – part II: shrinkage and shrinkage stresses. Oper Dent. 2014;39(2):E83–92.

    Article  PubMed  Google Scholar 

  80. Abbas G, Fleming GJ, Harrington E, Shortall AC, Burke FJ. Cuspal movement and microleakage in premolar teeth restored with a packable composite cured in bulk or in increments. J Dent. 2003;31(6):437–44.

    Article  PubMed  Google Scholar 

  81. Loguercio AD, Reis A, Ballester RY. Polymerization shrinkage: effects of constraint and filling technique in composite restorations. Dent Mater. 2004;20(3):236–43.

    Article  PubMed  Google Scholar 

  82. Lee MR, Cho BH, Son HH, Um CH, Lee IB. Influence of cavity dimension and restoration methods on the cusp deflection of premolars in composite restoration. Dent Mater. 2007;23(3):288–95.

    Article  PubMed  Google Scholar 

  83. Frauscher KE, Ilie N. Depth of cure and mechanical properties of nano-hybrid resin-based composites with novel and conventional matrix formulation. Clin Oral Investig. 2012;16(5):1425–34.

    Article  PubMed  Google Scholar 

  84. Sakaguchi RL, Berge HX. Reduced light energy density decreases post-gel contraction while maintaining degree of conversion in composites. J Dent. 1998;26(8):695–700.

    Article  PubMed  Google Scholar 

  85. Sakaguchi RL, Wiltbank BD, Murchison CF. Contraction force rate of polymer composites is linearly correlated with irradiance. Dent Mater. 2004;20(4):402–7.

    Article  PubMed  Google Scholar 

  86. Pfeifer CS, Braga RR, Ferracane JL. Pulse-delay curing: influence of initial irradiance and delay time on shrinkage stress and microhardness of restorative composites. Oper Dent. 2006;31(5):610–5.

    Article  PubMed  Google Scholar 

  87. Lu H, Stansbury JW, Bowman CN. Impact of curing protocol on conversion and shrinkage stress. J Dent Res. 2005;84(9):822–6.

    Article  PubMed  Google Scholar 

  88. Oberländer H, Friedl KH, Schmalz G, Hiller KA, Kopp A. Clinical performance of polyacid-modified resin restorations using “softstart-polymerization”. Clin Oral Investig. 1999;3(2):55–61.

    Article  PubMed  Google Scholar 

  89. Brackett WW, Covey DA, St Germain HA Jr. One-year clinical performance of a self-etching adhesive in class V resin composites cured by two methods. Oper Dent. 2002;27(3):218–22.

    PubMed  Google Scholar 

  90. Chan DC, Browning WD, Frazier KB, Brackett MG. Clinical evaluation of the soft-start (pulse-delay) polymerization technique in Class I and II composite restorations. Oper Dent. 2008;33(3):265–71.

    Article  PubMed  Google Scholar 

  91. van Dijken JW, Pallesen U. A 7-year randomized prospective study of a one-step self-etching adhesive in non-carious cervical lesions. The effect of curing modes and restorative material. J Dent. 2012;40(12):1060–7.

    Article  PubMed  Google Scholar 

  92. Oliveira LC, Duarte S Jr, Araujo CA, Abrahão A. Effect of low-elastic modulus liner and base as stress-absorbing layer in composite resin restorations. Dent Mater. 2010;26(3):e159–69.

    Article  PubMed  Google Scholar 

  93. Choi KK, Condon JR, Ferracane JL. The effects of adhesive thickness on polymerization contraction stress of composite. J Dent Res. 2000;79(3):812–7.

    Article  PubMed  Google Scholar 

  94. Braga RR, Hilton TJ, Ferracane JL. Contraction stress of flowable composite materials and their efficacy as stress-relieving layers. J Am Dent Assoc. 2003;134(6):721–8.

    Article  PubMed  Google Scholar 

  95. Cara RR, Fleming GJ, Palin WM, Walmsley AD, Burke FJ. Cuspal deflection and microleakage in premolar teeth restored with resin-based composites with and without an intermediary flowable layer. J Dent. 2007;35(6):482–9.

    Article  PubMed  Google Scholar 

  96. van Dijken JW, Pallesen U. Clinical performance of a hybrid resin composite with and without an intermediate layer of flowable resin composite: a 7-year evaluation. Dent Mater. 2011;27(2):150–6.

    Article  PubMed  Google Scholar 

  97. Daronch M, Rueggeberg FA, De Goes MF. Monomer conversion of pre-heated composite. J Dent Res. 2005;84(7):663–7.

    Article  PubMed  Google Scholar 

  98. Tauböck TT, Tarle Z, Marovic D, Attin T. Pre-heating of high-viscosity bulk-fill resin composites: effects on shrinkage force and monomer conversion. J Dent. 2015;43(11):1358–64.

    Article  PubMed  Google Scholar 

  99. Jongsma LA, Kleverlaan CJ. Influence of temperature on volumetric shrinkage and contraction stress of dental composites. Dent Mater. 2015;31(6):721–5.

    Article  PubMed  Google Scholar 

  100. Schneider LF, Consani S, Sakaguchi RL, Ferracane JL. Alternative photoinitiator system reduces the rate of stress development without compromising the final properties of the dental composite. Dent Mater. 2009;25(5):566–72.

    Article  PubMed  Google Scholar 

  101. Gonçalves F, Pfeifer CC, Stansbury JW, Newman SM, Braga RR. Influence of matrix composition on polymerization stress development of experimental composites. Dent Mater. 2010;26(7):697–703.

    Article  PubMed  Google Scholar 

  102. Gonçalves F, Kawano Y, Braga RR. Contraction stress related to composite inorganic content. Dent Mater. 2010;26(7):704–9.

    Article  PubMed  Google Scholar 

  103. Gonçalves F, Azevedo CL, Ferracane JL, Braga RR. BisGMA/TEGDMA ratio and filler content effects on shrinkage stress. Dent Mater. 2011;27(6):520–6.

    Article  PubMed  Google Scholar 

  104. Satterthwaite JD, Maisuria A, Vogel K, Watts DC. Effect of resin-composite filler particle size and shape on shrinkage-stress. Dent Mater. 2012;28(6):609–14.

    Article  PubMed  Google Scholar 

  105. Podgórski M, Becka E, Claudino M, Flores A, Shah PK, Stansbury JW, Bowman CN. Ester-free thiol-ene dental restoratives – Part A: Resin development. Dental Materials. 2015;31:1255–62.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Podgórski M, Becka E, Claudino M, Flores A, Shah PK, Stansbury JW, Bowman CN. Ester-free thiol-ene dental restoratives – Part B: composite development. Dent Mater. 2015;31(11):1263–70.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Bacchi A, Consani RL, Martim GC, Pfeifer CS. Thio-urethane oligomers improve the properties of light-cured resin cements. Dent Mater. 2015;31(5):565–74.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Bacchi A, Nelson M, Pfeifer CS. Characterization of methacrylate-based composites containing thio-urethane oligomers. Dent Mater. 2016;32(2):233–9.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Heintze SD, Rousson V. Clinical effectiveness of direct class II restorations - a meta-analysis. J Adhes Dent. 2012;14(5):407–31.

    PubMed  Google Scholar 

  110. Almeida e Silva JS, Rolla JN, Baratieri LN, Monteiro S Jr. The influence of different placement techniques on the microtensile bond strength of low-shrink silorane composite bonded to Class I cavities. Gen Dent. 2011;59(6):e233–7.

    PubMed  Google Scholar 

  111. Arrais CA, Oliveira MT, Mettenburg D, Rueggeberg FA, Giannini M. Silorane- and high filled-based “low-shrinkage” resin composites: shrinkage, flexural strength and modulus. Braz Oral Res. 2013;27(2):97–102.

    Article  PubMed  Google Scholar 

  112. Magno MB, Nascimento GC, Rocha YS, Ribeiro BD, Loretto SC, Maia LC. Silorane-based composite resin restorations are not better than conventional composites – a meta-analysis of clinical studies. J Adhes Dent. 2016;18(5):375–86.

    PubMed  Google Scholar 

  113. Yamasaki LC, De Vito Moraes AG, Barros M, Lewis S, Francci C, Stansbury JW, Pfeifer CS. Polymerization development of “low-shrink” resin composites: reaction kinetics, polymerization stress and quality of network. Dent Mater. 2013;29(9):e169–79.

    Article  PubMed  Google Scholar 

  114. Kim RJ, Kim YJ, Choi NS, Lee IB. Polymerization shrinkage, modulus, and shrinkage stress related to tooth-restoration interfacial debonding in bulk-fill composites. J Dent. 2015;43(4):430–9.

    Article  PubMed  Google Scholar 

  115. Guo Y, Landis FA, Wang Z, Bai D, Jiang L, Chiang MY. Polymerization stress evolution of a bulk-fill flowable composite under different compliances. Dent Mater. 2016;32(4):578–86.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Al Sunbul H, Silikas N, Watts DC. Polymerization shrinkage kinetics and shrinkage-stress in dental resin-composites. Dent Mater. 2016;32(8):998–1006.

    Article  PubMed  Google Scholar 

  117. Kalliecharan D, Germscheid W, Price RB, Stansbury J, Labrie D. Shrinkage stress kinetics of bulk fill resin-based composites at tooth temperature and long time. Dent Mater. 2016;32(11):1322–31.

    Article  PubMed  Google Scholar 

  118. van Dijken JW, Pallesen U. Posterior bulk-filled resin composite restorations: a 5-year randomized controlled clinical study. J Dent. 2016;51:29–35.

    Article  PubMed  Google Scholar 

  119. van Dijken JW, Pallesen U. Bulk-filled posterior resin restorations based on stress-decreasing resin technology: a randomized, controlled 6-year evaluation. Eur J Oral Sci. 2017;125 (4):303–309

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Felipe Schneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schneider, L.F., Moraes, R.R. (2018). Polymerization Shrinkage Stress. In: Miletic, V. (eds) Dental Composite Materials for Direct Restorations. Springer, Cham. https://doi.org/10.1007/978-3-319-60961-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60961-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60960-7

  • Online ISBN: 978-3-319-60961-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics