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Abstract—In modern computer systems, user processes are
isolated from each other by the operating system and the
hardware. Additionally, in a cloud scenario it is crucial that the
hypervisor isolates tenants from other tenants that are co-located
on the same physical machine. However, the hypervisor does not
protect tenants against the cloud provider and thus the supplied
operating system and hardware. Intel SGX provides a mechanism
that addresses this scenario. It aims at protecting user-level
software from attacks from other processes, the operating system,
and even physical attackers.

In this paper, we demonstrate fine-grained software-based
side-channel attacks from a malicious SGX enclave targeting
co-located enclaves. Our attack is the first malware running
on real SGX hardware, abusing SGX protection features to
conceal itself. Furthermore, we demonstrate our attack both
in a native environment and across multiple Docker containers.
We perform a Prime+Probe cache side-channel attack on a co-
located SGX enclave running an up-to-date RSA implementation
that uses a constant-time multiplication primitive. The attack
works although in SGX enclaves there are no timers, no large
pages, no physical addresses, and no shared memory. In a semi-
synchronous attack, we extract 96 % of an RSA private key
from a single trace. We extract the full RSA private key in an
automated attack from 11 traces within 5 minutes.

I. INTRODUCTION

Modern operating systems isolate user processes from each
other to protect secrets in different processes. Such secrets
include passwords stored in password managers or private
keys to access company networks. Leakage of these secrets
can compromise both private and corporate systems. Similar
problems arise in the cloud. Therefore, cloud providers use
virtualization as an additional protection using a hypervisor.
The hypervisor isolates different tenants that are co-located on
the same physical machine. However, the hypervisor does not
protect tenants against a possibly malicious cloud provider.

Although hypervisors provide functional isolation, side-
channel attacks are often not considered. Consequently, re-
searchers have demonstrated various side-channel attacks, es-
pecially those exploiting the cache [If]. Cache side-channel
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attacks can recover cryptographic secrets, such as AES [2],
[3 and RSA [4] keys, across virtual machine boundaries.

Intel introduced a new hardware extension SGX (Software
Guard Extensions) [3]] in their CPUs, starting with the Skylake
microarchitecture. SGX is an isolation mechanism, aiming at
protecting code and data from modification or disclosure even
if all privileged software is malicious [6]. This protection
uses special execution environments, so-called enclaves, which
work on memory areas that are isolated from the operating sys-
tem by the hardware. The memory area used by the enclaves
is encrypted to protect the application’s secrets from hardware
attackers. Typical use cases include password input, password
managers, and cryptographic operations. Intel recommends
storing cryptographic keys inside enclaves and claims that
side-channel attacks “are thwarted since the memory is pro-
tected by hardware encryption” [[7].

Apart from protecting software, the hardware-supported
isolation led to fear of super malware inside enclaves.
Rutkowska [8] outlined a scenario where a benign-looking
enclave fetches encrypted malware from an external server and
decrypts and executes it within the enlave. In this scenario,
it is impossible to debug, reverse engineer, or in any other
way analyze the executed malware. Aumasson et al. [9]] and
Costan et al. [6] eliminated this fear by arguing that enclaves
always run with user space privileges and can neither issue
syscalls nor perform any I/O operations. Moreover, SGX
is a highly restrictive environment for implementing cache
side-channel attacks. Both state-of-the-art malware and side-
channel attacks rely on several primitives that are not available
in SGX enclaves. Consequently, no enclave malware has been
demonstrated on real hardware so far.

In this paper, we show that it is very well possible for
enclave malware to attack its hosting system. We demonstrate
a cache attack from within a malicious enclave that is ex-
tracting secret keys from co-located enclaves. Our proof-of-
concept malware is able to recover RSA keys by monitoring
cache access patterns of an RSA signature process in a semi-



synchronous attack. The malware code is completely invisible
to the operating system and cannot be analyzed due to the
isolation provided by SGX. In an even stronger attack scenario,
we show that an additional isolation using Docker containers
does not protect against this kind of attack.

We make the following contributions:

1) We demonstrate that, despite the restrictions of SGX,
cache attacks can be performed from within an enclave
to attack a co-located enclave.

2) By combining DRAM and cache side channels, we
present a novel approach to recover physical address bits
even if 2 MB pages are unavailable.

3) We show that it is possible to have highly accurate
timings within an enclave without access to the native
timestamp counter, which is even more accurate than the
native one.

4) We demonstrate a fully automated end-to-end attack on
the RSA implementation of the wide-spread mbedTLS
library. We extract 96 % of an RSA private key from
a single trace and the full key from 11 traces within 5
minutes.

Section [II| presents the background required for our work.
Section [[II] outlines the threat model and our attack scenario.
Section [[V| describes the measurement methods and the online
phase of the malware. Section [V| explains the key recovery
techniques used in the offline phase. Section [VI| evaluates the
attack against an up-to-date RSA implementation. Section
discusses several countermeasures. Section [VIII] concludes our
work.

II. BACKGROUND

A. Intel SGX in Native and Virtualized Environments

Intel Software Guard Extensions (SGX) are a new set of x86
instructions introduced with the Skylake microarchitecture.
SGX allows protecting the execution of user programs in so-
called enclaves. Only the enclave can access its own memory
region, any other access to it is blocked by the CPU. As SGX
enforces this policy in hardware, enclaves do not need to rely
on the security of the operating system. In fact, with SGX the
operating system is generally not trusted. By doing sensitive
computation inside an enclave, one can effectively protect
against traditional malware, even if such malware has obtained
kernel privileges. Furthermore, it allows running secret code
in a cloud environment without trusting the cloud provider’s
hardware and operating system.

An enclave resides in the virtual memory area of an ordinary
application process. When creating an enclave, a virtual mem-
ory region is reserved for the enclave. This virtual memory
region can only be backed by physically protected pages
from the so-called Enclave Page Cache (EPC). In SGX, the
operating system is in charge of mapping EPC pages correctly.
However, any invalid or malicious page mapping is detected
by the CPU to maintain enclave protection. The EPC itself
is a contiguous physical block of memory in DRAM that is
transparently encrypted using a dedicated hardware encryption

module. This protects enclaves against hardware attacks trying
to read or manipulate enclave content in DRAM.

Creation and loading of enclaves are done by the oper-
ating system. To protect the integrity of enclave code, the
loading procedure is measured by the CPU. If the resulting
measurement does not match the value specified by the enclave
developer, the CPU will refuse to run the enclave. During
enclave loading, the operating system has full access to the
enclave binary. At this point anti-virus scanners can hook in
to analyze the enclave binary before it is executed. Enclave
malware will attempt to hide from anti-virus scanners by
encrypting malicious payload.

Since enclave code is known to the (untrusted) operating
system, it cannot carry hard-coded secrets. Any secret informa-
tion might only be provisioned to the enclave during runtime.
Before giving secrets to an enclave, a provisioning party has
to ensure that the enclave has not been tampered with. SGX
therefore provides remote attestation, which proves correct
enclave loading via the aforementioned enclave measurement.

SGX comes in two versions. SGX1 specifies basic enclave
operation. Moreover, all enclave memory pages have to be
allocated at enclave creation. To account for limited memory
resources, enclave pages can be swapped out and in at runtime.
SGX2 extends SGX with dynamic memory management,
allowing to allocate new enclave pages at runtime. However,
we do not use SGX2 features and thus presume that our attack
is applicable to SGX2 as well.

At the time of writing, no hypervisor with SGX support
was available to us. However, Docker [10] has support for
Intel’s SGX. Docker is an operating-system-level virtualization
software that allows applications with all their dependencies
to be packed into one container. It has emerged as a standard
runtime for containers on Linux and can be used on multiple
cloud providers. Unlike virtual machines, Docker containers
share the kernel and other resources with the host system,
requiring fewer resources than a virtual machine. Docker
isolates processes from each other but does not give a full
isolation guarantee such as virtual machines. Arnautov et al.
[11] proposed to combine Docker containers with SGX to
create secure containers.

B. Microarchitectural Attacks

Microarchitectural attacks exploit hardware properties that
allow inferring information on other processes running on the
same system. In particular, cache attacks exploit the timing
difference between the CPU cache and the main memory. They
have been the most studied microarchitectural attacks for the
past 20 years, and were found to be powerful attacks able to
derive cryptographic secrets [[12]]—[15].

While early attacks focused on the L1 caches, more modern
attacks target the last-level cache, which is shared among all
CPU cores. Last-level caches (LLC) are usually built as n-way
set-associative caches. They consist of S cache sets and each
cache set consists of n cache ways with a size of 64 B. The
physical address determines to which cache set and byte offset
a variable maps. The lowest 6 bits determine the byte offset
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Fig. 1. The access pattern to the eviction set. Addresses 0 to n map to the
same cache set.

within a cache way, the following log, S bits starting with bit
6 determine the cache set. Only the cache way is not derived
from the physical address but chosen by the CPU using its
cache replacement policy.

Prime+Probe is a cache attack technique that has first
been used by Osvik et al. [16]]. In a Prime+Probe attack,
the attacker constantly primes (i.e., evicts) a cache set and
measures how long this step took. The amount of time the
prime step took is correlated to the number of cache ways in
this cache set that have been replaced by other programs. This
allows deriving whether or not a victim application performed
a specific secret-dependent memory access. Recent work has
shown that this technique can even be used across virtual
machine boundaries [[17]-[21].

To prime (i.e., evict) a cache set, the attacker needs n
addresses that map to the same cache set (i.e., an eviction
set), where n depends on the cache replacement policy and the
number of ways of the last-level cache. On Intel CPUs before
Ivy Bridge, the cache replacement policy was Least-Recently
Used (LRU), and thus it was sufficient to access n addresses
for an n-way cache. However, on newer microarchitectures,
the exact cache replacement policy is unknown. To minimize
the amount of time the prime step takes, it is necessary to
find a minimal n combined with a fast access pattern (i.e.,
an eviction strategy). Gruss et al. [22] experimentally found
efficient eviction strategies with high eviction rates and a small
number of addresses. We use their eviction strategy on our
Skylake test machine throughout the paper. Figure [I] shows
the eviction set access pattern of this eviction strategy.

A more powerful cache attack technique is Flush+Reload
by Yarom and Falkner [23|]. For a Flush+Reload attack,
attacker and victim need to share memory (i.e., a shared
library or page deduplication). The attacker flushes a shared
memory line from the cache to then measure the amount of
time it takes to reload the cache line. This reveals whether or
not another program reloaded this exact cache line. Although
Flush+Reload attacks have been studied extensively [2[], [3],
[20], [24]-[29] they are now considered impractical in the
cloud as most cloud providers disabled page deduplication and
thus disabled the only way to obtain shared memory in the
cloud.

Pessl et al. [30] found another attack vector that can yield
an accuracy close to a Flush+Reload attack without requiring
shared memory. They attack the DRAM modules that are
shared by all virtual machines running on the same host sys-
tem. Each DRAM module has a row buffer that holds the most
recently accessed DRAM row. While accesses to this buffer
are fast, accesses to other memory locations in DRAM are

input : base b, exponent e, modulus n
output: b¢ mod n

X+ 1;

for i < bitlen(e) downto O do
X + multiply(X, X);
if ¢; = 1 then

| X« multiply(X, b);

end

end

return X;

much slower. This timing difference can be exploited to obtain
fine-grained information across virtual machine boundaries.

C. Side-Channel Attacks on SGX

There have been speculations that SGX could be vulnerable
to cache side-channel attacks [6]. In fact, Intel does not
consider side channels as part of the SGX threat model and
thus states that SGX does not provide any specific mechanisms
to protect against side-channel attacks [31]. However, they
also explicitly state that SGX features still impair side-channel
attacks. Intel recommends using SGX enclaves to protect pass-
word managers and cryptographic keys against side channels
and advertises this as a feature of SGX [7]. Indeed, SGX
does not provide special protection against microarchitectural
attacks, its focus lies on new attack vectors arising from
an untrusted operating system. Xu et al. [32] show that
SGX is vulnerable to controlled channel attacks in which a
malicious operating system triggers and monitors enclave page
faults [|33]]. Both attacks rely on a malicious or compromised
operating system to break into an enclave.

SGX enclaves generally do not share memory with other
enclaves, the operating system or other processes. Thus,
Flush+Reload attacks on SGX enclaves are not possible. Also,
DRAM-based attacks cannot be performed from a malicious
operating system, as the hardware prevents any operating sys-
tem accesses to DRAM rows in the EPC. However, enclaves
can mount DRAM-based attacks on other enclaves because all
enclaves are located in the same physical EPC.

D. Side-Channel Attacks on RSA

RSA is widely used to create asymmetric signatures, and is
implemented by virtually every TLS library, such as OpenSSL
or mbedTLS, formerly known as PolarSSL. mbedTLS is used
in many well-known open source projects such as cURL and
OpenVPN. The small size of mbedTLS is well suitable for the
size-constrained enclaves of Intel SGX.

RSA essentially involves modular exponentiation with a pri-
vate key, where the exponentiation is typically implemented as
square-and-multiply, as outlined in Algorithm|[I] The algorithm
sequentially scans over all exponent bits. Squaring is done
in each step while multiplication is only carried out if the



corresponding exponent bit is set. An unprotected implemen-
tation of square-and-multiply is vulnerable to a variety of side-
channel attacks, in which an attacker learns the exponent by
distinguishing the square step from the multiplication step []1]],
[23]].

mbedTLS uses a windowed square-and-multiply routine for
the exponentiation. To minimize the memory footprint of the
library, the official knowledge base suggests setting the win-
dow size to 1 [34]. With a fixed upper enclave memory limit
in current microarchitectures, it is reasonable to follow this
recommendation. However, a window size of 1 is equivalent
to the basic square-and-multiply exponentiation, as shown in
Algorithm E} Liu et al. [[19] showed that if an attack on a
window size of 1 is possible, the attack can be extended to
arbitrary window sizes.

Earlier versions of mbedTLS were vulnerable to a timing
side-channel attack on RSA-CRT [35]]. Due to this attack,
current versions of mbedTLS implement a constant-time Mont-
gomery multiplication for RSA. Additionally, instead of using
a dedicated square routine, the square operation is carried out
using the multiplication routine as illustrated in Algorithm [I]
Thus, there is no leakage from a different square and multipli-
cation routine as exploited in previous attacks on square-and-
multiply algorithms [19], [23]], [36], [37]. However, Liu et al.
[19] showed that the secret-dependent accesses to the buffer
b still leak the exponent.

Boneh et al. [38]] and Blomer et al. [[39] showed that it is
feasible to recover the full RSA private key if only some of
either the most significant or least significant bits are known.
Halderman et al. [40]] showed that it is even possible to recover
a full RSA key if up to 12% of random bits are corrupted.
Heninger et al. [41] improved these results and recovered a
full key for random unidirectional corruptions of up to 46 %.

III. THREAT MODEL AND ATTACK SETUP

In this section, we present our threat model. We demonstrate
a malware that circumvents SGX’s and Docker’s isolation
guarantees. We successfully mount a Prime+Probe attack
on an RSA signature computation running inside a different
enclave, on the outside world, and across container boundaries.

A. High-Level View of the Attack

In our threat model, both the attacker and the victim are
running on the same physical machine. The machine can either
be a user’s local computer or a host in the cloud. In the
cloud scenario, the victim has its enclave running in a Docker
container to provide services to other applications running on
the host. Docker containers are well supported on many cloud
providers, e.g., Amazon [42] or Microsoft Azure [43]]. As these
containers are more lightweight than virtual machines, a host
can run up to several hundred containers simultaneously. Thus,
the attacker has good chances to get a co-located container on
a cloud provider.

Figure [2] gives an overview of our native setup. The victim
runs a cryptographic computation inside the enclave to protect
it against any attacks. The attacker tries to stealthily extract
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Fig. 2. The threat model: both attacker and victim run on the same physical
machine in different SGX enclaves.

secrets from this victim enclave. Both the attacker and the
victim use Intel’s SGX feature and are therefore subdivided
into two parts, the enclave and loader, i.e., the main program
that instantiates the enclave.

The attack is a multi-step process that can be divided into an
online and an offline phase. Section [[V| describes the online
phase, in which the attacker first locates the victim’s cache
sets that contain the secret-dependent data of the RSA private
key. The attacker then monitors the identified cache sets while
triggering a signature computation. Section [V] gives a detailed
explanation of the offline phase in which the attacker recovers
a private key from collected traces.

B. Victim

The victim is an unprivileged program that uses SGX to
protect an RSA signing application from both software and
hardware attackers. Both the RSA implementation and the
private key reside inside the enclave, as suggested by Intel [7].
Thus, they can never be accessed by system software or
malware on the same host. Moreover, information leakage
from the enclave should not be possible due to hardware
isolation and memory encryption. The victim uses the RSA
implementation of the widely deployed mbedTLS library, that
relies on constant-time Montgomery multiplications. The vic-
tim application provides an API to compute a signature for
provided data.

C. Attacker

The attacker runs an unprivileged program on the same host
machine as the victim. The goal of the attacker is to stealthily
extract the private key from the victim enclave. Therefore,
the attacker uses the API provided by the victim to trigger
signature computations.

The attacker targets the exponentiation step of the RSA
implementation. To perform the exponentiation in RSA,
mbedTLS uses a windowed square-and-multiply algorithm in
Montgomery domain. The window size is fixed to 1, as



suggested by the official knowledge base [34]. If successful,
the attack can be extended to arbitrary window sizes [19].

To prevent information leakage from function -calls,
mbedTLS uses the same function (mpi_montmul) for both
the square and the multiply operation (see Algorithm [I).
The mpi_montmul takes two parameters that are multiplied
together. For the square operation, the function is called
with the current buffer as both arguments. For the multiply
operation, the current buffer is multiplied with a buffer holding
the multiplier. This buffer is allocated in the calling function
mbedtls_mpi_exp_mod using calloc. Due to the de-
terministic behavior of the tlibc’s calloc implementation,
the used buffers always have the same virtual and physical
addresses. Thus the buffers are always in the same cache sets.
The attacker can therefore mount a Prime+Probe attack on
the cache sets containing the buffer.

In order to remain stealthy, all parts of the malware that
contain attack code reside inside an SGX enclave. The enclave
can protect the encrypted real attack code by only decrypting
it after a successful remote attestation after which the enclave
receives the decryption key. As pages in SGX can be mapped
as writable and executable, self-modifying code is possible and
therefore code can be encrypted. Consequently, the attack is
completely stealthy and invisible from anti-virus software and
even from monitoring software running in ring 0. Note that our
proof-of-concept implementation does not encrypt the attack
code as this has no impact on the attack.

The loader does not contain any suspicious code or data,
it is only required to start the enclave. The exfiltrated data
from inside the malicious enclave will only be handed to the
loader in an encrypted form. The loader may also provide a
TLS endpoint through which the enclave can send encrypted
data to an attacker’s server.

D. Operating System and Hardware

Previous work was mostly focused on attacks on enclaves
from untrusted cloud operating systems [6], [9], [44]-[46].
However, in our attack we do not make any assumptions on
the underlying operating system, i.e., we do not rely on a
malicious operating system. Both the attacker and the victim
are unprivileged user space applications. Our attack works on a
fully-patched recent operating system with no known software
vulnerabilities, i.e., the attacker cannot elevate its privileges.

Our only assumption on the hardware is that attacker and
victim run on the same host system. This is the case on both
personal computers as well as on co-located Docker instances
in the cloud. As SGX is currently only available on Intel’s
Skylake microarchitecture, it is valid to assume that the host
is a Skylake system. Consequently, we know that the last-level
cache is shared between all CPU cores.

E. Malware Detection

We expect the cloud provider to run state-of-the-art mal-
ware detection software. We assume that malware detection
software is able to monitor the behavior of containers or even
inspect the content of containers. Moreover, the user can run

anti-virus software and monitor programs inside the container.
This software can either protect the data from infections or the
infrastructure from attacks.

Standard malware detection methods are either signature-
based, behavioral-based or heuristics-based [47]]. Signature-
based detection is used by virus scanners to match byte
sequence insides executables against a list of such sequences
extracted from known malware. This method is fast and
rarely causes false-positives, but can only detect known mal-
ware [48]]. In addition to signature-based detection, modern
virus scanners implement behavior-based analysis. Behavior-
based analysis has the potential to detect new malware by mon-
itoring system activity, API calls, and user interactions [48].

We also assume the presence of detection mechanisms using
performance counters, to detect malware [49]] and microarchi-
tectural attacks [50], which are more targeted to our attack.

IV. EXTRACTING PRIVATE KEY INFORMATION

In this section, we describe the online phase of our attack.
We first build primitives necessary to mount this attack. Then
we show in two steps how to locate and monitor cache sets
to extract private key information.

A. Attack Primitives in SGX

Successful Prime+Probe attacks require two primitives: a
high-resolution timer to distinguish cache hits and misses and
a method to generate an eviction set for an arbitrary cache
set. Due to the restrictions of SGX enclaves, we cannot rely
on existing Prime+Probe implementations, and therefore we
require new techniques to build a malware from within an
enclave.

High-resolution Timer. The unprivileged rdtsc and
rdtscp instructions, which read the timestamp counter, are
usually used for fine-grained timing outside enclaves. In
SGX1, these instructions are not permitted inside an SGX
enclave, as they might cause a VM exit [51]]. Therefore, we
have to rely on a different timing source.

Lipp et al. [26] demonstrated a counting thread as a high-
resolution alternative on ARM where no unprivileged high-
resolution timer is available. The idea is to have a dedicated
thread incrementing a global variable in an endless loop. As
the attacks only rely on accurate timing differences and not
on absolute timestamps, this global variable serves directly as
the timing source.

We require a minimum resolution in the order of 10 cycles to
reliably distinguish cache hits from misses as well as DRAM
row hits from row conflicts. To achieve the highest number
of increments, we handcraft the counter increment in inline
assembly. According to Intel [52], the fastest instructions on
the Skylake microarchitecture are inc and add with both a
latency of 1 cycle and a throughput of 0.25 cycles/instruction
when executed with a register as an operand. The counter
variable has to be accessible across threads, thus it is necessary
to store the counter variable in memory. Memory addresses as
operands incur an additional cost of approximately 4 cycles
due to L1 cache access times [52]. To reduce the cost of
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mov &counter , %rcx
1: incl (%rex)
jmp 1b

Listing 1: A counting thread that emulates rdtsc.

the jmp instruction, we tried to unroll the loop up to the
point where we get the most increments per CPU cycle.
However, our experiments showed that the unrolling tends
to rather have negative effects on the performance. On our
test machine, the code from Listing |1{ achieves one increment
every 4.7 cycles, which is an improvement of approximately
2% over the assembly code generated by gcc on the highest
optimization level (-03).

We can improve the performance—and thus the
resolution—further, by exploiting the fact that only the
counting thread is writing to the counter variable. Reading the
counter variable from memory is therefore never necessary
as the value will not be changed by any other thread. To
gain a higher performance from this observation, we have
to eliminate the CPU’s read access to the counter variable.
Executing arithmetic operations directly on the memory
location is thus not an option anymore, and it is necessary
to perform any operation with data dependency on a CPU
register. Therefore, we introduce a “‘shadow counter variable”
which is always held in a CPU register. The arithmetic
operation (either add or inc) is performed using this register
as the operand, unleashing the low latency and throughput
of these instructions. As registers cannot be shared across
threads, the shadow counter has to be moved to memory
using the mov instruction after each increment. Similar to the
inc and add instruction, the mov instruction has a latency
of 1cycle and a throughput of 0.5 cycles/instruction when
copying a register to a memory location. Listing [2| shows the
improved counting thread. This counting thread is capable of
incrementing the variable by one every 0.87 cycles, which is
an improvement of 440 % over the code in Listing [1] In fact,
this version is even 15% faster than the native timestamp
counter, thus giving us a reliable timing source that even
has a higher resolution. This new method might open new
possibilities of side-channel attacks that leak information
through timing on a sub-rdtsc level. Figure [3] shows the
performance comparison of the C version, the assembly
version, the optimized assembly version, and the native
timestamp counter as a baseline. Although the method with
the shadow counter has the most instructions in the loop body,
and an increase of 100 % in code size compared to Listing
it has the best performance. Due to multiple execution units,
pipelining, and the absence of memory dependencies, one
increment can be carried out in less than 1cycle on the
Skylake microarchitecture even though each instruction has a
latency of 1cycle [53].

Eviction Set Generation. Prime+Probe relies on eviction
sets, i.e., we need to find virtual addresses that map to the same
cache set. An unprivileged process cannot translate virtual

N

mov &counter , %rcx
1: inc %rax

mov %rax, (%rcx)
jmp 1b

Listing 2: The improved fast counting thread that acts as the
emulation of rdtsc.

cycles/increment
w
T
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Fig. 3. Comparisons of different variants for the counter thread to Intel’s
native timestamp counter as the baseline.

to physical addresses and therefore cannot simply search for
virtual addresses that fall into the same cache set. This limita-
tion also applies to enclaves, as they are always unprivileged.
Liu et al. [[19] and Maurice et al. [21] demonstrated algorithms
to build eviction sets using large pages by exploiting the fact
that the virtual address and the physical address have the same
lowest 21 bits. At least in the current version, SGX does
not support large pages, making this approach inapplicable.
Oren et al. [54] and Gruss et al. [22] demonstrated fully
automated methods to generate an eviction sets for a given
virtual address. However, the method of Oren et al. [54]
uses a slow pointer-chasing approach and needs to find an
eviction set without any assumptions, consuming more time.
The method by Gruss et al. [22] has the overhead of finding
an eviction strategy and eviction set without any assumptions.
Thus, applying their approach for our purposes would consume
multiple hours on average before even starting the actual
Prime+Probe attack.

We propose a new method to recover the cache set
from a virtual address without relying on large pages. The
method requires that an array within an SGX enclave is
backed by physically contiguous pages. We verified that
we have contiguous pages by inspecting Intel’s SGX driver
for Linux [55]. When initializing a new enclave, the func-
tion isgx_page_cache_init creates a list of avail-
able physical pages for the enclave. These pages start at
a base physical address and are contiguous. If a physical
page is mapped, e.g., due to a page fault, the function
isgx_alloc_epc_page_fast removes and returns the
head of the list.

The idea is to exploit the DRAM timing differences that are
due to the DRAM organization and to use the DRAM mapping
functions [30]] to recover physical address bits. Alternately
accessing two virtual addresses that map to the same DRAM
bank but a different row is significantly slower than any other




TABLE I
REVERSE-ENGINEERED DRAM MAPPING FUNCTIONS USING THE
METHOD FROM PESSL ET AL. [30].
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combination of virtual addresses. For the first address of a
DRAM row, the least-significant 18 bits of the physical ad-
dress are ‘0’, because the row index only uses physical address
bits 18 and upwards. Thus, we scan memory sequentially for
an address pair in physical proximity that causes a row conflict.
As SGX enclave memory is allocated in a contiguous way we
can perform this scan on virtual addresses.

A virtual address pair that causes row conflicts at the
beginning of a row satisfies the following constraints:

1) The bank address (BA), bank group (BG), rank, and
channel must be the same for both virtual addresses.
Otherwise, a row conflict is not possible.

2) The row index must be different for both addresses.

3) The difference of the two physical addresses (of the
virtual addresses) has to be at least 64 B (the size of one
cache line) but should not exceed 4 kB (the size of one
page).

4) Physical address bits 6 to 22 have the same known value,
all 0 for the higher address and all 1 for the lower
address, as only bits in this range are used by the mapping
function.

For all virtual addresses satisfying these constraints, bits 6 to
22 have a known value. Thus, we know the exact cache set
for these virtual addresses.

Table |l| shows the reverse-engineered DRAM mapping func-
tion for our test machine, an Intel Core 15-6200U with 12 GB
main memory. The row index is determined by the physical
address bits starting from bit 18.

To find address pairs fulfilling the aforementioned con-
straints, we modeled the mapping function and the constraints
as an SMT problem and used the Z3 theorem prover [50]
to provide models satisfying the constraints. The model we
found yields pairs of physical addresses where the upper
address is 64 B apart from the lower one. There are four such
address pairs within every 4 MB block of physical memory
such that each pair maps to the same bank but a different
row. The least-significant bits of the physical address pairs are
either (0x3£££fc0, 0x400000), (0x7ff££c0, 0x800000),
(Oxbfffc0, 0xc00000) or (Oxffffc0, 0x1000000) for
the lower and higher address respectively. Thus, at least 22 bits
of the higher addresses least-significant bits are 0.

Figure [ shows the average access time for address pairs
when iterating over a 2 MB array. The highest two peaks show
row conflicts, i.e., the row index changes while the bank, rank,
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Fig. 4. Access times when alternately accessing two addresses which are
64 B apart. The (marked) high access times indicate row conflicts.

and channel stay the same. As the cache set is determined by
the bits 6 to 17, the higher address has the cache set index 0 at
these peaks. Based on the assumption of contiguous memory,
we can generate addresses mapping to the same cache set by
adding multiples of 256 KB to the higher address.

As the last-level cache is divided into multiple parts called
cache slices, there is one cache set per slice for each cache set
index. Thus, we will inherently add addresses to our generated
eviction set that have no influence on the eviction although
they have the correct cache set index. For the eviction set, it
is necessary to only use addresses that map to the same cache
slice. However, to calculate the cache slice from a physical
address, all bits of the physical address are required [57].

As we are not able to directly calculate the cache slice, we
use another approach. We add our calculated addresses from
the correct cache set to our eviction set until the eviction rate
is sufficiently high. Then, we try to remove single addresses
from the eviction set as long as the eviction rate does not drop.
Thus, we remove all addresses that do not contribute to the
eviction, and the result is a minimal eviction set. Algorithm E]
shows the full algorithm to generate a minimal eviction set.
Our approach takes on average 2 seconds per cache set, as
we already know that our addresses map to the correct cache
set. This is nearly three orders of magnitude faster than the
approach of Gruss et al. [22].

B. Identifying Vulnerable Sets

Now that we have a reliable high-resolution timer and a
method to generate eviction sets, we can mount the first
stage of the attack and identify the vulnerable cache sets. As
we do not have any information on the virtual or physical
addresses of the victim, we have to scan the last-level cache for
characteristic patterns that correspond to the signature process.
We consecutively mount a Prime+Probe attack on every cache
set while the victim is executing the exponentiation step. This
allows us to log cache misses due to a victim’s activity inside
the monitored cache set.



Algorithm 2: Generating the eviction set

input : memory: char[8 x 1024 x 1024], set: int
output: eviction_set: char*[n]

border < 0;
border_index < 0;
for i + 0xFCO to 4 x 1024 x 1024 step 4096 do
time < hammer(memory(i], memory[i + 64]);
if time > border then
border < time;
border_index < i + 64;
end
end
addr <+ (&memory|border_indez]) + set < 6;
n < 0;
repeat
full_setn] « addr +n x 256 KB;
eviction < evict(full_set, n);
n<n-+1;
until eviction > 99%;
for i < 0 to n do
removed < full_set[i];
full_set[i] < NULL;
if evict(full_set, n) < 99% then
full_set[i] < removed;

end
len <+ 0;
for i < 0 to n do
if full_set[i] # NULL then
eviction_set[len] + full_set][i];
len + len +1;
end
end
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Fig. 5. Histogram showing the runtime of the prime step for cache activity
in the same set and no cache activity in the same set.

First, we fill the cache lines of this cache set with the
eviction set using the access pattern shown in Algorithm [3]
This step is called the prime step. We expect our addresses to
stay in the cache if the victim has no activity in this specific
cache set. Second, we measure the runtime of this algorithm

to infer information about the victim. We refer to this step as
the probe step. Figure [5] shows the timings of a probe step
with and without cache activity of the victim. If there was
no activity of the victim inside the cache set, the probe step
is fast as all addresses of the eviction set are still cached. If
we encounter a high timing, we know that there was activity
inside the cache set and at least one of our addresses was
evicted from the cache set. For all following measurements,
the probe step also acts as the prime step. The measurement
ensures that the eviction set is cached again for the next round.

We can identify multiple cache sets showing this distinctive
pattern which consists of three parts. The start of an exponen-
tiation is characterized by a high usage of the cache set due to
clearing and initialization of the used buffers. It is followed by
the actual exponentiation that depends on the secret exponent.
The exponentiation ends with another high peak where the
buffer is cleared, followed by no cache misses anymore, i.e.,
it is only influenced by background noise.

To automatically find these sets, we apply a simple peak
detection to find the rightmost peak. If we can identify another
peak before that within a certain range, we assume that this
cache set is used by our target buffer. Depending on the size
of the RSA exponent, we get multiple cache sets matching
this pattern. Our experiments showed that using identified
sets which are neither at the beginning nor at the end yields
good results in the actual attack. The first and last cache set
might be used by neighboring buffers and they are more likely
to be prefetched [23|], [24]. Thus, they are more prone to
measurement errors.

C. Monitoring Vulnerable Sets

Once we have identified a cache set which is used by the
exponentiation, we can collect the actual traces. The measure-
ment method is the same as for detecting the vulnerable cache
sets, i.e., we again use Prime+Probe. Due to the deterministic
behavior of the heap allocation, the address of the attacked
buffer does not change on consecutive exponentiations. Thus,
we can collect multiple traces of the signature process.

To maintain a high sampling rate, we keep the post-
processing during the measurements to a minimum. Moreover,
it is important to keep the memory activity at a minimum to
not introduce additional noise on the cache. Thus, we only save
the timestamps of the cache misses for further post-processing.

Figure[6] shows the measurement for one run of the signature
algorithm. We can see intervals with multiple cache misses and
intervals without cache misses, corresponding to high cache
usage and no cache usage of the victim, respectively. As a
cache miss takes longer than a cache hit, the effective sampling
rate varies depending on the number of cache misses. We have
to consider this effect in the post-processing as it induces a
non-constant sampling interval.

V. RECOVERING THE PRIVATE KEY

In this section, we describe the offline phase of our attack:
recovering the private key from the recorded traces of the
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Fig. 6. Dense areas indicate a high cache-hit rate, white areas are intervals
with cache misses.

Algorithm 3: Attacker accessing a set.

input: n: int,
addrs: int[n]

for i < 0 ton—2do
*addrs|[i];
*addrs[i+1];
*addrs[i+2];
*addrs|i];
*addrs[i+1];
*addrs[i+2];

end

victim enclave. This can either be done inside the malware’s
enclave or on the attacker’s server.

Ideally, one would combine multiple traces by aligning
them and averaging out noise. The more traces are combined,
the more noise is eliminated. From the resulting averaged
trace one can easily extract the private key. However, the
traces obtained in our attack are affected by several noise
sources. Most of them alter the timing, making trace alignment
difficult. Among them are interrupts which lead to context
switches and therefore descheduling of the attacker or the
victim. Other sources of noise include unrelated activity on
the enclave’s cache sets and varying CPU clock frequency due
to power management. Although methods exist for aligning
such traces [58]], [S9]], we opt for a different strategy. Instead
of attempting to align traces beforehand, we pre-process all
traces individually and extract a partial key out of each trace.
These partial keys likely suffer from random insertion and
deletion errors as well as from bit flips. To eliminate those
errors, multiple partial keys are combined in the key recovery
phase. This approach has much lower computational overhead
than trace alignment since key recovery is performed on partial
keys of length 4 KB instead of full traces containing several
thousand measurements.

Key recovery comes in three steps. First, traces are pre-
processed. Second, a partial key is extracted from each trace.
Third, the partial keys are merged to recover the private key.

A. Pre-processing

In the pre-processing step we filter and resample raw
measurement data. Figure [/| shows a trace segment before
(top) and after pre-processing (bottom). High values in the

raw measurement data correspond to cache misses whereas
low values indicate cache hits. Timing measurements have a
varying sample rate. This is because a cache miss delays the
next measurement while cache hits allow more frequent mea-
surements. To simplify the subsequent steps, we convert the
measurements to a constant sampling rate. Therefore, we spec-
ify sampling points 1000 cycles apart. At each sampling point
we compute the normalized sum of squared measurements
within a 10 000 cycle window. Squaring the measurements is
necessary to account for the varying sampling rate. If the
measurements exceed a certain threshold, they are considered
as noise and are discarded. If too few measurements are
available within a window, e.g., due to an interrupt, we apply
linear interpolation. The resulting resampled trace shows high
peaks at locations of cache misses, indicating a ‘1’ in the RSA
exponent, as shown in Figure [7] on the bottom.

B. Partial Key Extraction

To automatically extract a partial key from a resampled
trace, we first run a peak detection algorithm. We delete
duplicate peaks, e.g., peaks where the corresponding RSA
multiplications would overlap in time. We also delete peaks
that are below a certain adaptive threshold, as they do not
correspond to actual multiplications. Using an adaptive thresh-
old is necessary since neither the CPU frequency nor our
timing source (the counting thread) is perfectly stable. The
varying peak height is shown in the right third of Figure
The adaptive threshold is the median over the 10 previously
detected peaks. If a peak drops below 90 % of this threshold,
it is discarded. The remaining peaks correspond to the ‘1’s in
the RSA exponent and are highlighted in Figure [7] ‘0’s can
only be observed indirectly in our trace as square operations
do not trigger cache activity on the monitored sets. ‘0’s appear
as time gaps in the sequence of ‘1’ peaks, thus revealing all
partial key bits. Note that since ‘0’s correspond to just one
multiplication, they are roughly twice as fast as ‘1’s.

A partial key might suffer from bit flips, random insertions,
and deletions, when compared to the correct key. When a
correct peak is falsely discarded, the corresponding ‘1’ is
interpreted as two ‘0’s. Likewise, if noise is falsely interpreted
as a ‘1’°, this cancels out two ‘0’s. Moreover, if the attacker
is not scheduled, we miss certain key bits in the trace. If the
victim is not scheduled, we see a region of cache inactivity in
the measurement that cannot be distinguished from true ‘0’s.
Finally, if both the attacker and the victim are descheduled,
this gap does not show up prominently in the trace since the
counting thread is also suspended by the interrupt. This is in
fact an advantage of a counting thread over the use of the
native timestamp counter. The remaining errors in the partial
keys are corrected in the final key recovery.

C. Final Key Recovery

In the final key recovery, we merge multiple partial keys to
obtain the full key. We quantify partial key errors using the
edit distance [60]. The edit distance between a partial key and
the correct key gives the number of bit insertions, deletions
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Fig. 7. On top is one trace’s raw measurement over 4 000 000 cycles. The peaks in the resampled trace on the bottom clearly indicate ‘1’s.

TABLE I
BIT-WISE KEY RECOVERY OVER FIVE PARTIAL KEYS.

No. | Recovered key

10111110001100110010111101010000100...
10111011000111001100101101101010000...
10111110001110011001011110101000010...
10111110001110001100101111010100001...
10111110001110011001011100010100001...

| B W 1 —

and flips necessary to transform the partial key into the correct
key.

Algorithm [ shows the pseudo code for the final key
recovery. The full key is recovered bitwise, starting from the
most-significant bit. The correct key bit is the result of the
majority vote over the corresponding bit in all partial keys.
Before proceeding to the next key bit, we correct all wrong
partial keys which did not match the recovered key bit. To
correct the current bit of the wrong partial key, we compute the
edit distance to all partial keys that won the majority vote. To
reduce performance overhead, we calculate the edit distance,
not over the whole partial keys but only over a lookahead
window of a few bits. The output of the edit distance algorithm
is a list of actions necessary to transform one key into the
other. We apply these actions via majority vote until the key bit
of the wrong partial key matches the recovered key bit again.
Table M) gives an example where the topmost 5 bits are already
recovered (underlined). The sixth key bit is recovered as ‘1’,
since all partial key bits—except for the second one—are ‘1’
(bold). The incorrect ‘0’ of the second partial key is deleted
before proceeding to the next bit. This procedure is repeated
for all key bits until the majority of partial keys reached the
last bit.

VI. EVALUATION

In this section, we evaluate the presented methods by
building a malware enclave attacking a co-located enclave
that acts as the victim. As discussed in Section [[II-B}] we
use mbedTLS, in version 2.3.0. The small code and memory
footprint and self-containment of mbedTLS makes it easy to
use in SGX enclaves.

Cache Set Detection (3 min) Pre-Processing (110s)

g -

Prime+Probe (5s)

Key Recovery (20s)

Fig. 8. A high-level overview of the average times for each step of the attack.

A. RSA Key Sizes and Exploitation

For the evaluation, we attack a 4096-bit RSA key as this
provides long-term security, based on the recommendation of
NIST [61]]. Higher bit sizes are rarely used outside tinfoil-hat
environments.

Table [IT]] shows various RSA key sizes and the correspond-
ing buffer sizes in mbedTLS. The runtime of the multiplication
function increases exponentially with the size of the key.
Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]-[64].

B. Native Environment

We use a Lenovo ThinkPad T460s running Ubuntu 16.10.
This computer supports SGX1 using Intel’s SGX driver. The
hardware details for the evaluation are shown in Table [Vl
Both the attacker enclave and the victim enclave are running
on the same machine. We trigger the signature process using
the public API of the victim’s enclave.

Figure 8] gives an overview of how long the individual steps
of an average attack take. The runtime of automatic cache
set detection varies depending on which cache sets are used
by the victim. The attacked buffer spans 9 cache sets, out of
which 6 show low bit-error rate, as shown in Figure E For
the attack we select one of the 6 sets, as the other 3 suffer
from too much noise. The noise is mainly due to the buffer not
being aligned to the cache set. Furthermore, as already known
from previous attacks, the hardware prefetcher can induce a
significant amount of noise [23]], [24].

Detecting one vulnerable cache set within all 2048 cache
sets requires about 340 trials on average. With a monitoring



Algorithm 4: RSA private key recovery.

input : keys: boolean[], lookahead: int
output: key: boolean(]

key < [J;
1+ 0;
while True do
keybit <— majority(keys, 1);
if keybit =1 then
| return key;
end
key[i] < keybit;
correct + {};
wrong < {};
foreach k in keys do
if k[i] = keybit then
| correct < correct U k;
else
| wrong < wrong Uk;

end
foreach kw in wrong do
actions < {};

foreach kc in correct do
actions < actionsU

EditDistance(kw|i : i + lookahead),
ke[i : i + lookahead));
end
at < 0;
while kw(i] # keybit do
action <— majority(actions, ai);
apply action to kw[i];
ar++;
end

end
1++;
end
function majority(set, idz) begin
counter]] « 0;
foreach array in set do
element < arraylidz];
increment counter|element];
end
return element with max. counter;

end

time of 0.21s per cache set, we require a maximum of 72s
to eventually capture a trace from a vulnerable cache set.
Thus, based on our experiments, we estimate that cache set
detection—if successful—always takes less than 3 min.

One trace spans 220.47 million CPU cycles on average.
Typically, ‘0’ and ‘1’ bits are uniformly distributed in the
key. The estimated number of multiplications is therefore
half the bit size of the key. Thus, the average multiplication
takes 107 662 cycles. This differs from the values shown in
Table because the attacker constantly evicts the victim’s

TABLE III
RSA KEY SIZES AND THE CORRESPONDING CPU CYCLES TO EXECUTE
ONE MULTIPLICATION.

Key size  Buffer size  Cache sets CPU cycles
1024 b 136 B 3 1764
2048 b 264 B 5 6624
4096 b 520B 9 25462
8192b 1032B 17 100440
TABLE IV
EXPERIMENTAL SETUP.
Environment ~ CPU model Cores  LLC associativity
Native Core i5-6200U 2 12
Docker Core i5-6200U 2 12

buffer, inherently causing a slowdown. In addition, one could
artificially slow down a victim through constant eviction to
improve the performance of cache attacks. This is known as
performance degradation [65]]. However, as the Prime+Probe
measurement takes on average 734 cycles, we do not have to
artificially slow down the victim and thus remain stealthy.

When looking at a single trace, we can already recover
about 96 % of the RSA private key, as shown in Figure @
For a full key recovery we combine multiple traces using
our key recovery algorithm, as explained in Section [V-C| We
first determine a reasonable lookahead window size. Figure [10]
shows the performance of our key recovery algorithm for
varying lookahead window sizes on 7 traces. For lookahead
windows smaller than 20, bit errors are pretty high. In that
case, the lookahead window is too small to account for all
insertion and deletion errors, causing relative shifts between
the partial keys. The key recovery algorithm is unable to align
partial keys correctly and incurs many wrong “correction”
steps, increasing the overall runtime as compared to a window
size of 20. While a lookahead window size of 20 already
shows a good performance, a window size of 30 or more does
not significantly reduce the bit errors. Therefore, we fixed the
lookahead window size to 20.

To remove the remaining bit errors and get full key recovery,
we have to combine more traces. Figure [T1] shows how the
number of traces affects the key recovery performance. We
can recover the full RSA private key without any bit errors by
combining only 11 traces within just 18.5 sec. This results in
a total runtime of less than 130 sec for the offline key recovery
process.

Generalization. Based on our experiments we can deduce
that the same attacks are also possible in a weaker scenario,
where only the attacker is inside the enclave. On most comput-
ers, applications handling cryptographic keys are not protected
by SGX enclaves. From the attacker’s point of view, attacking
such an unprotected application does not differ from attacking
an enclave. We only rely on the last-level cache, which is
shared among all applications, independently of whether they
run inside an enclave or not. We empirically verified that such
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Fig. 10. Up to a lookahead window size of 30, an increased window size
reduces the number of bit errors while increasing recovery runtime. The
measurement is conducted with 7 traces.

attacks on the outside world are possible and were again able
to recover RSA private keys.

C. Virtualized Environment

We now show that the attack also works in a virtualized
environment.

As described in Section [[I-A] no hypervisor with SGX
support was available at the time of our experiments. Instead
of full virtualization using a virtual machine, we used the
lightweight Docker containers. Docker containers are also used
by large cloud providers, e.g., Amazon [42] or Microsoft
Azure [43]. To enable SGX within a container, the host
operating system has to provide SGX support. The SGX driver
is then simply shared among all containers. Figure [T2] shows
our setup where the SGX enclaves communicate directly with
the SGX driver of the host operating system. Applications
running inside the container do not experience any difference
to running on a native system. They can use any functionality
provided by the host operating system. Consequently, the
unmodified malware also works inside containers.

Considering the performance within Docker, only I/O oper-
ations and network access have a measurable overhead [60].
Operations that only depend on memory and CPU do not
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Fig. 11. With the number of captured traces, the number of bit errors decrease
while the runtime to recover the key increases.
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Fig. 12. Running the SGX enclaves inside Docker containers to provide
further isolation. The host provides both containers access to the same SGX
driver.

see any performance penalty, as these operations are not
virtualized. Thus, caches are also not affected by the container.

We were successfully able to attack a victim from within a
Docker container without any changes in the malware. We can
even perform a cross-container attack, i.e., both the malware
and the victim are running inside different containers, without
any changes. As expected, we require the same number of
traces for a full key recovery. These results confirm that
containers do not provide additional protection against our
malware at all.

Furthermore, we can speculate whether our malware would
also work within virtual machines based on the experimental
KVM support description [67]]. Many cross-VM cache attacks
have been demonstrated in the past years [2], [4], [19], as
the CPU cache is a shared resource in virtual machines. This
does not change with SGX, and thus, enclaves inside virtual
machines will also share the last-level cache. The experimental
implementation for KVM relies on the host system’s SGX
driver to provide memory pages to the enclave inside the
virtual machine. We thus expect that our malware will work



across virtual machines either with only minor changes, or
even without any adaptations.

VII. COUNTERMEASURES

In this section, we discuss advantages and disadvantages of
different countermeasures. Previously presented countermea-
sures mostly cannot be applied to a scenario where a malicious
enclave performs a cache attack and no assumptions about the
operating system are made. We group countermeasures into 3
categories, based on whether they require:

1) a modification of the enclave (source level),

2) a modification of the operating system (OS level) assum-
ing the operating system is benign,

3) a change in hardware (hardware level).

A. Source Level

Exponent Blinding. A generic side-channel protection for
RSA is exponent blinding [12]]. To sign a message m, the
signer generates a random blinding value % for each signa-
ture. The signer then calculates the signature as m®+%¢(N)
mod N where d is the private key and NV is the RSA modulus.

An attacker will only be able to measure the blinded
exponent on every execution. When a single-trace key recovery
is not possible, the attacker has to wait for collisions, ie.,
signatures where the same blinding was used. For a sufficiently
large blinding factor k, e.g., 64 bit, this becomes infeasible in
practice. As the exponent grows with the blinding factor, this
solution is a trade-off between performance and side-channel
resistance. This has no effect if key recovery from a single
trace is possible, only if more than one trace is required.
Furthermore, this countermeasure relies on the presence of
a random number source.

Exponent blinding is specific to certain cryptographic op-
erations, such as RSA signature computations. It will prevent
the proposed attack, but other parts of the signature process
might still be vulnerable to an attack [68].

Bit Slicing. Bit slicing is a technique originally proposed
by Biham [69] to improve the performance of DES. Mat-
sui [70] was the first to show a bit-sliced implementation of
AES. Sudhakar et al. [71] presented a bit-sliced Montgomery
multiplication for RSA and ECC. The main idea of bit slicing
is to use only bit operations for computations throughout the
algorithm. No lookup tables or branches are used in these
algorithms and thus, they are not vulnerable to cache attacks.

Again, this countermeasure is specific to certain crypto-
graphic algorithms. It requires the support of the used cryp-
tography library and hardware support for streaming SIMD
(SSE) instructions is necessary to achieve a reasonable perfor-
mance [[72]]. Bit slicing can be a good software solution while
there is no hardware countermeasure. Other countermeasures
for cryptographic implementations have been discussed by
Ge et al. [[1]].

B. Operating System Level

Implementing countermeasures against malicious enclave
attacks on the operating system level requires trusting the

operating system. This would weaken the trust model of SGX
enclaves significantly and is thus unrealistic. However, we
want to discuss the different possibilities, in order to provide
valuable information for the design process of future enclave
systems.

Eliminating Timers. Removing access to high-resolution
timers [[15], [73] or decreasing the accuracy [74]-[76] is
often discussed as a countermeasure against cache attacks.
However, our results using the timing counter show that
removing precise timers is not a viable countermeasure, as we
are still able to mount a high-resolution Prime+Probe attack.
Moreover, on recent microarchitectures, we can even get a
higher resolution using our timing thread than with the native
high-resolution timestamp counter.

However, it is possible to remove access to high-resolution
timers and all forms of simultaneous multithreading to prevent
this alternative approach. This would effectively eliminate ac-
cess to sufficiently accurate timers and mitigate many attacks.

Detecting Malware. One of the core ideas of SGX is
to remove the cloud provider from the root of trust. If
the enclave is encrypted and only decrypted after successful
remote attestation, the cloud provider has no way to access the
secret code inside the enclave. However, eliminating this core
feature of SGX could mitigate malicious enclaves in practice
as the enclave binary or source code could be read by the
cloud provider and scanned for malicious activities.

Heuristic methods, such as behavior-based detection, are not
applicable, as the malicious enclave does not rely on API calls
or user interaction. Furthermore, for encrypted enclave code,
a signature-based virus scanner has no access to the code,
and the malware can easily change its signature by either re-
encryption or modification of the plaintext. Thus, only the host
binary—which contains no malicious code—can be inspected
by a virus scanner.

Herath and Fogh [50] proposed to use hardware perfor-
mance counters to detect cache attacks. Subsequently, several
other approaches instrumenting performance counters to de-
tect cache attacks have been proposed [77]-[79]. However,
according to Intel, SGX enclave activity is not visible in the
thread-specific performance counters [80]. We verified that
even performance counters for last-level cache accesses are
disabled for enclaves. Figure [13| shows the results of a simple
test program running inside a debug and pre-release enclave,
and without an enclave. The visible cache hits and misses are
caused by the host application only. This makes it impossible
for current anti-virus software and other detection mechanisms
to detect the malware.

Enclave Coloring. We propose enclave coloring as an ef-
fective countermeasure against cross-enclave attacks. Enclave
coloring is a software approach to partition the cache into
multiple smaller parts. Each of the parts spans over multiple
cache sets, and no cache set is included in more than one part.
An enclave gets one or more such cache parts. This assignment
of cache parts is either done by the hardware or by a trusted
operating system.
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Fig. 13. Performance counters for caches are disabled in an enclave. Flush+
Reload of one variable in a loop results in a high cache activity, which can
be seen in native environment, but not on SGX debug or pre-release mode.

If implemented in software, the operating system can split
the last-level cache through memory allocation. The cache set
is determined by bits of the physical address. The lower bits of
the cache set index are below bit 12 and therefore determined
by the page offset, i.e., the data’s position within a 4 KB
page. The upper bits of the cache set are not visible to the
enclave application and can thus be controlled by the operating
system when allocating pages. We call these upper bits a color.
Whenever an enclave requests pages from the operating system
(we consider the SGX driver as part of the operating system),
it will only get pages with a color that is not present in any
other enclave. This coloring ensures, that two enclaves cannot
have data in the same cache set, and thus an eviction of the
data—and therefore a Prime+Probe attack—is not possible
across enclaves. However, attacks on the operating system or
other processes on the same host would still be possible.

Enclave coloring requires a trusted operating system, and is
therefore not always applicable as it contradicts SGX’s idea
of having an untrusted operating system [6]. If the operating
is trusted, this is an effective countermeasure against cross-
enclave cache attacks.

To prevent attacks on the operating system or other pro-
cesses, it would be necessary to partition the rest of the
memory as well, i.e., system-wide cache coloring [81]. God-
frey et al. [82] evaluated a coloring method for hypervisors
by assigning every virtual machine a partition of the cache.
They concluded that this method is only feasible for a small
number of partitions. As the number of simultaneous enclaves
is relatively limited by the available amount of SGX memory,
enclave coloring can be applied to prevent cross-enclave
attacks. Protecting enclaves from malicious applications or
preventing malware inside enclaves is however not feasible
using this method.

Heap Randomization. Our attack relies on the fact, that
the used buffers for the multiplication are always at the same
memory location. This is indeed the case, as the memory
allocator (dlmalloc) has a deterministic behavior and uses
a best-fit approach for moderate buffer sizes as used in the
RSA implementation. Freeing a buffer and allocating it again
will always result in the same memory location for the buffer.

We suggest randomizing the heap allocations for security
relevant data such as the used buffers. A randomization of the
addresses and thus cache sets bears two advantages. First, an
automatic cache set detection is not possible anymore, as the
identified set will change for the next run of the algorithm.
Second, if more than one trace is required to reconstruct the
key, this countermeasure increases the number of required
traces by multiple orders of magnitude as the probability to
measure the correct cache set decreases.

Although not obvious at first glance, this method requires a
certain amount of trust in the underlying operating system. A
malicious operating system could assign only pages mapping
to certain cache sets to the enclave, similar to enclave coloring.
Thus, the randomization is limited to only a subset of cache
sets, increasing the probability for an attacker to measure the
correct cache set from 0.1 % to 7 %.

Intel CAT. Recently, Intel introduced an instruction set
extension called CAT (cache allocation technology) [51]. With
Intel CAT it is possible to restrict CPU cores to one of the
slices of the last-level cache and even to pin cache lines.
Liu et al. [83] proposed a system that uses CAT to protect
general purpose software and cryptographic algorithms. Their
approach can be directly applied to protect against a malicious
enclave. However, this approach also does not allow to protect
enclaves from an outside attacker.

C. Hardware Level

Combining Intel CAT with SGX. Instead of using Intel
CAT on the operating level it could also be used to protect
enclaves on the hardware level. By changing the eenter
instruction in a way that it implicitly activates CAT for this
core, any cache sharing between SGX enclaves and the outside
as well as co-located enclaves could be eliminated. Thus,
SGX enclaves would be protected from outside attackers.
Furthermore, it would protect co-located enclaves as well as
the operating system and user programs against malicious
enclaves.

Secure RAM. To fully mitigate cache- or DRAM-based
side-channel attacks memory must not be shared among pro-
cesses. We propose an additional secure memory element that
resides inside the CPU. Data stored within this memory is
not cachable, thus the memory has to be fast to not incur
performance penalties.

The SGX driver can then provide a special API to ac-
quire this element for temporarily storing sensitive data. A
cryptographic library could use this memory to execute code
which depends on secret keys such as the square-and-multiply
algorithm. Providing such a secure memory element per CPU
core would even allow parallel execution of multiple enclaves.

As data from this element is only accessed by one program
and is never cached, cache attacks and DRAM-based attacks
are not possible anymore. Moreover, if this secure memory
is inside the CPU, it is infeasible for an attacker to mount
physical attacks or to probe the memory bus. It is unclear
whether Intel’s eDRAM implementation can already be abused



as a secure memory to protect applications against cache
attacks.

VIII. CONCLUSION

There have been speculations that SGX could be vulnerable
to cache side-channel attacks and might allow the implemen-
tation of super malware. However, Intel claimed that SGX fea-
tures impair side-channel attacks and recommends using SGX
enclaves to protect cryptographic computations. Furthermore,
it was presumed that they cannot perform harmful operations.

In this paper, we demonstrated the first malware running
in real SGX hardware enclaves. We demonstrated private key
theft in a fully automated end-to-end attack from a co-located
SGX enclave, despite all restrictions of SGX, e.g., no timers,
no large pages, no physical addresses, and no shared memory.

We developed the most accurate timing measurement tech-
nique currently known for Intel CPUs, perfectly tailored to
the hardware. We combined DRAM and cache side channels,
to build a novel approach that recovers physical address
bits without assumptions on the page size. We attack the
RSA implementation of mbedTLS that is used for instance in
OpenVPN. The attack succeeds despite protection against side-
channel attacks using a constant-time multiplication primitive.
We extract 96 % of a 4096-bit RSA private key from a single
Prime+Probe trace and achieve full key recovery from only
11 traces within 5 minutes.

Besides not fully preventing malicious enclaves, SGX pro-
vides protection features to conceal attack code. Even the most
advanced detection mechanisms using performance counters
cannot detect our malware. Intel intentionally does not include
SGX activity in the performance counters for security reasons.
However, this unavoidably provides attackers with the ability
to hide attacks as it eliminates the only known technique
to detect cache side-channel attacks. We discussed multiple
design issues in SGX and proposed countermeasures that
should be considered for future versions.
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