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Towards a fractal cohomology: Spectra of
Polya–Hilbert operators, regularized

determinants and Riemann zeros

Tim Cobler and Michel L. Lapidus ∗

Abstract

Emil Artin defined a zeta function for algebraic curves over finite fields and made

a conjecture about them analogous to the famous Riemann hypothesis. This and

other conjectures about these zeta functions would come to be called the Weil con-

jectures, which were proved by Weil in the case of curves and eventually, by Deligne

in the case of varieties over finite fields. Much work was done in the search for a

proof of these conjectures, including the development in algebraic geometry of a

Weil cohomology theory for these varieties, which uses the Frobenius operator on a

finite field. The zeta function is then expressed as a determinant, allowing the prop-

erties of the function to relate to the properties of the operator. The search for a

suitable cohomology theory and associated operator to prove the Riemann hypoth-

esis has continued to this day. In this paper we study the properties of the derivative

operator D = d
dz

on a particular family of weighted Bergman spaces of entire func-

tions on C. The operator D can be naturally viewed as the ’infinitesimal shift of

the complex plane’ since it generates the group of translations of C. Furthermore,

this operator is meant to be the replacement for the Frobenius operator in the gen-

eral case and is used to construct an operator associated to any given meromorphic

function. With this construction, we show that for a wide class of meromorphic

functions, the function can be recovered by using a regularized determinant involv-

ing the operator constructed from the meromorphic function. This is illustrated in

some important special cases: rational functions, zeta functions of algebraic curves

(or, more generally, varieties) over finite fields, the Riemann zeta function, and cul-
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minating in a quantized version of the Hadamard factorization theorem that applies

to any entire function of finite order. This shows that all of the information about the

given meromorphic function is encoded into the special operator we constructed.

Our construction is motivated in part by work of Herichi and the second author on

the infinitesimal shift of the real line (instead of the complex plane) and the asso-

ciated spectral operator, as well as by earlier work and conjectures of Deninger on

the role of cohomology in analytic number theory, and a conjectural ’fractal coho-

mology theory’ envisioned in work of the second author and of Lapidus and van

Frankenhuijsen on complex fractal dimensions.
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1 Introduction

Riemann’s famous paper, [31], opened up the use of complex analysis to study

the prime numbers. This approach has yielded many great results in number theory,

including, but certainly not limited to, the Prime Number Theorem. Riemann also

3



4 Contents

made his well-known conjecture that stands to this very day. We will refer to this as

(RH) in this paper.

Conjecture. (RH) The only nontrivial zeros of ζ (s) occur when s satisfies ℜ(s) = 1
2
.

For further reading about ζ (s), see [37], [30], and [13]. However, despite (RH)

remaining unsolved over 150 years after it was made, there is an analogue for zeta

functions of algebraic varieties over finite fields that has been proven. The develop-

ment of this theory also introduced new techniques to number theory. We will begin

with a short history of this result.

1.1 The Weil Conjectures

Using the Euler product representation of the Riemann zeta function in terms of

the rational primes,

ζ (s) = ∏
p

(1− p−s)−1, (1)

as a template, it is possible to define the zeta function of an algebraic curve over a

finite field as follows.

Definition 1. Let Y be a smooth, geometrically connected curve over Fq, the finite

field with q elements. Then the zeta function of Y is given by

ζY (s) = ∏
y∈|Y |

(1−|ky|−s)−1, (2)

where |Y | is the set of closed points of Y and |ky| is the size of the residue field of y.

This formulation of the zeta function of an algebraic curve over a finite field

shows the analogy with Riemann’s zeta function, but we will prefer the following

equivalent expression ζY (s) = exp
(

∑∞
n=1

Yn
n

q−ns
)

, where Yn is the number of points

of Y defined over Fqn , the degree n extension of Fq. The study of these zeta functions

began in 1924 in Emil Artin’s PhD thesis, [1]. These were further studied by F. K.

Schmidt, who proved, in 1931, that ζY (s) was a rational function of q−s in [34], and

H. Hasse, who showed, in 1934, in [18], that if Y is an elliptic curve, then the zeros

of ζY (s) satisfy ℜ(s) = 1
2
. Thus, the corresponding version of (RH) holds for these

zeta functions of elliptic curves over finite fields. Furthering this idea, A. Weil then

proved, in 1946–1948, that this same version of (RH) holds for algebraic curves

of arbitrary genus and for abelian varieties in [40]. (See also [38], [39] and [41].)

Below we present a sketch of some of the ideas contained in a modern proof of

these results, which are based on Weil’s ideas, and will motivate the work contained

in this paper.

First, a sequence of so-called ”Weil cohomology” groups for the curve Y are

formed, in particular H0,H1,H2 are the only nontrivial groups, with dimH0 =
dimH2 = 1 and dimH1 = 2g where g denotes the genus of Y . Then the Frobenius
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map F which sends y → yq acts on the space Fqn for any n and therefore induces a

morphism of the curve Y over Fq (the algebraic closure of Fq) as well as, in fact,

also induces a linear map on the cohomology groups F∗ : H j →H j, for j ∈ {0,1,2}.

Next, consider the Lefschetz fixed point formula from topology.

Theorem 1. (Lefschetz Fixed Point Formula) Let Y be a closed smooth mani-

fold and let f : Y → Y be a smooth map with all fixed points nondegenerate. Then

∑∞
j=0(−1) jTr( f ∗|H j) is equal to the number of fixed points of f .

Note that in Theorem 1, since Y is finite-dimensional, only finitely many of the

cohomology spaces H j are nontrivial.

We apply the topological version of this result to the nth power of the Frobenius

map, Fn, whose fixed points are exactly the points on the curve Y defined over Fqn .

That is, all those points with every coordinate in Fqn . This gives

2

∑
j=0

(−1) jTr(F∗n |H j) = Yn, (3)

where F∗|H j (for j = 0,1,2) denotes the linear operator induced on the cohomology

space H j by the Frobenius morphism F .

To proceed further, we need the next result from linear algebra.

Theorem 2. If f is an endomorphism of a finite dimensional vector space V , then

for |t| sufficiently small, exp
(

∑∞
n=1

1
n
tnTr( f n|V )

)

= det(I − f · t|V)−1.

Applying this result to the Frobenius operator F , we can proceed with the fol-

lowing calculation:

ζY (s) = exp

(

∞

∑
n=1

Yn

n
q−ns

)

= exp

(

∞

∑
n=1

1

n

2

∑
j=0

(−1) jTr(F∗n |H j)q−ns

)

=
2

∏
j=0

(

exp

(

∞

∑
n=1

1

n
Tr(F∗n |H j)q−ns

))(−1) j

=
2

∏
j=0

(

det(I −F∗q−s|H j)
)(−1) j+1

=
det(I −F∗q−s|H1)

det(I −F∗q−s|H0)det(I −F∗q−s|H2)
. (4)

This enables us to express the zeta function of a curve Y as an alternating product

of characteristic polynomials of the Frobenius operators, or more precisely, of de-

terminants of I − q−sF∗ over the cohomology spaces. Since these spaces are finite-

dimensional, this equation further shows that ζY (s) is a rational function of q−s,

which yields Schmidt’s result. We also see that the zeros of ζY (s) are given from the
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eigenvalues of the operator F∗ on H1, while the poles are given from the eigenvalues

on H0 and H2. To complete the proof, it was shown by Weil using the intersection

theory of divisors to show that the intersection is positive definite that the eigen-

values of F∗ on H j have absolute value q
j
2 and thus the zeros of ζ (Y,s) satisfy

ℜ(s) = 1
2
.

Weil then conjectured that all of the above and more could be generalized to any

non-singular, projective variety of dimension d, defined over Fq. About a decade

later, Alexander Grothendieck announced he would be revamping algebraic geom-

etry with the goal of proving these Weil conjectures. Several attempts to construct a

proper ”Weil cohomology” were incomplete, but eventually these provided the key

idea to the proof of the Weil conjectures. Grothendieck even came up with more

general conjectures based on this study of what properties a ”Weil cohomology”

must possess. The version of (RH) sought after would then follow from these. Some

of his work outlining these ideas are [14], [15], and [16]. However, Pierre Deligne, a

student of Grothendieck, would go on to prove, in 1973, this version of (RH) with-

out proving Grothendieck’s ’standard conjectures’, which are still unproven today.

See [8] and [9] for Deligne’s work. Thus, Weil’s conjectures were completed as a re-

sult of the introduction of, or at the very least, expansion of, the use of topology and

cohomology in number theory. For a more complete history of the Weil conjectures,

see [12], [24] and [29].

1.2 Polya–Hilbert Operators and a Cohomology Theory in

Characteristic Zero

As seen in the previous section, the Frobenius operator became fundamental to

the resolution of the version of (RH) dealing with algebraic varieties (or even with

curves) over finite fields. The eigenvalues of this operator on different cohomology

groups gave us the zeros and poles of the zeta function of the variety. If such an op-

erator could be found for the Riemann zeta function, then perhaps this work would

extend and help one to prove (RH). However, if you instead consider the function

ζ ( 1
2
+ it) as a function of t, then (RH) is equivalent to all the nontrivial (or crit-

ical) zeros of this function being real. This then leads into what is known as the

Polya–Hilbert conjecture.

Conjecture. (Polya–Hilbert Conjecture) The critical zeros of ζ ( 1
2
+ it) correspond

to the eigenvalues of an unbounded self-adjoint operator on a suitable Hilbert space.

Since then, motivated in part by the above reformulation, many physicists, math-

ematicians and mathematical physicists have been looking for a convincing physical

reason why (RH) should be true. In particular, it has been conjectured by Michael

Berry in [3] (and several other papers) that a trace formula for a suitable (classically

chaotic) quantum-mechanical Hamiltonian could formalize this connection between

the spectrum of an operator and the Riemann zeros. See also [4] for a discussion of

these ideas. In fact, Alain Connes, in [6], conjectured the existence of a suitable non-
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commutative version of such a trace formula. However, as in every other approach

to proving (RH), the search for the correct way to make this potential approach work

continues to this day.

Building on Alexander Grothendieck’s ideas, Christopher Deninger has postu-

lated in [11], [10] (and other papers) that the cohomology theory used to prove the

Weil conjectures could be extended to eventually prove the Riemann hypothesis. In

particular, he envisions a cohomology theory of algebraic schemes over Spec(Z)
that would conjecturally help prove the Riemann hypothesis and solve other im-

portant problems in analytic number theory. In his papers, he lays out some of the

difficulties in doing so as well as some of the properties that such a theory would

need to satisfy.

We also mention that Shai Haran [17] has obtained interesting trace formulas

yielding Weil’s explicit formula: that is, of Weil’s interpretation in [42] of Riemann’s

explicit formula ([31], [13], [37], [30], [25], [28]).

1.3 Fractal Cohomology

All of the previous ideas as well as separate connections between fractals and the

Riemann zeta function ζ (s) discussed in [27] and [28], motivated the second author

to pursue a fractal cohomology to try to tie together all of the ideas presented so far.

The text, [25], outlines his ideas for how the theory of fractals might give informa-

tion about the Riemann zeta function. See also Section 12.4 of [28] for a discussion

of the main properties that such a fractal cohomology theory should satisfy, by anal-

ogy with the case of varieties over finite fields and self-similar strings.

In search of the elusive ’Frobenius operator in characteristic 0’, the second au-

thor worked with H. Herichi to develop a ’Quantized Number Theory’ in [23], [20],

[21], [22], [26]. Here, they used an operator they denoted ∂ , which was the derivative

operator on a suitable family of Hilbert spaces. This operator had many nice prop-

erties, including being a generator for the infinitesimal shift group on these spaces

as well as having a spectrum consisting of a single vertical line in the complex

plane. This allowed them to focus on the values of ζ (s) on ℜ(s) = c for c ∈ (0, 1
2
)

or for c ∈ ( 1
2
,1) and obtain a reformulation of (RH) within this theory. This in-

volved studying an operator-valued version of ζ (s), which they called a quantized

zeta function. An overview of these ideas and results can be found in [26], while a

detailed exposition of the theory is provided in [23].

This paper then continues this search of an appropriate substitute for Frobenius

in characteristic zero. In an attempt to further localize the spectrum of the deriva-

tive operator, we turn to a family of weighted Bergman spaces, which provide the

basis for our construction. We will begin by recalling some needed functional anal-

ysis building up to the regularized determinants that we will need. Then we discuss

the family of Bergman spaces and the needed properties of the derivative operator

on them, which allows our construction to work. At this point, we will detail our

construction to create a Frobenius replacement. This provides a general framework
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to find a substitute for the Frobenius operator which will be shown to apply to any

entire function of finite order as well as certain meromorphic functions of interest

such as ζ (s). However, there is still much to be done. We do not have a true coho-

mology theory as we do not have a suitable notion for how to define the geometry

in our context. We will finish with a discussion of what is lacking from this theory

and where to go from here.

2 Background

This section loosely follows [36] in developing the necessary theory for trace

ideals and regularized determinants to be used in this paper. See [35, 36] for detailed

historical notes and references, along with a discussion of the many contributions to

this subject.

To describe what trace ideals are, we recall some standard facts about compact

operators on a separable Hilbert space H.

Theorem 3. Let A be a compact operator on H. Then there are orthonormal sets

{ψn} and {φn} and positive real numbers µn(A), with µ1(A) ≥ µ2(A) ≥ ·· · , such

that A = ∑n µn(A)(ψn, ·)φn. Moreover, the numbers µn(A) are uniquely determined.

The positive real numbers µn(A) from the previous theorem are called the singu-

lar values of A. We can actually describe {µn(A)} in another way. Given an operator

A, the operator A∗A is a nonnegative operator, so that |A| :=
√

A∗A makes sense. The

µn(A)
′s are exactly the (nonzero) eigenvalues of |A|. We can now turn to Calkin’s

theory of operator ideals. We begin by setting up a relationship between ideals in

B(H) and certain sequence spaces.

Definition 2. Fix an orthonormal set {φn} in H. Given an ideal J 6= B(H); we define

the sequence space associated to J by

S(J) = {a = (a1,a2, ...)|∑
n

an(φn, ·)φn ∈ J}. (5)

On the other hand, given a sequence space s, let I(s) be the family of compact

operators A with (µ1(A),µ2(A), ...) ∈ s.

In order for this correspondence between sequence spaces and ideals to be one-

to-one, we need to restrict our sequence spaces to Calkin spaces. We then need the

following operator on sequences.

Definition 3. Given an infinite sequence, (an), of numbers with an → 0 as n → ∞,

a∗n is the sequence defined by a∗1 = maxi |ai|, a∗1+a∗2 = maxi6= j(|ai|+ |a j|), etc. Thus

a∗1 ≥ a∗2 ≥ ·· · , and the sets of a∗i and |ai| are identical, counting multiplicities.

This operator allows us to make the following definition.
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Definition 4. A Calkin space is a vector space, s, of sequences (an) with lim
n→∞

an = 0,

and the so-called Calkin property: a ∈ s and b∗n ≤ a∗n implies b ∈ s.

With these definitions in mind, we can use the following theorem to see a relation

between two-sided ideals and Calkin spaces.

Theorem 4. [36] If s is a Calkin space, then I(s) is a two-sided ideal of operators

and S(I(s)) = s. Furthermore, if J is a two-sided ideal, then S(J) is a Calkin space

and I(S(J)) = J.

We will now use this relation to define the ideals in the space of compact opera-

tors that we will be working with.

Definition 5. A compact operator A is said to be in the trace ideal Jp, for some

p ≥ 1, if ∑n µn(A)
p < ∞. That is, Jp is the ideal which is associated to the Calkin

space lp. An element A of J1 is called a trace class operator. For A ∈ J1, we define

Tr(A) = ∑n(φn,Aφn) for any choice of orthonormal basis {φn}. If A ∈ J2, then we

say that A is Hilbert–Schmidt.

Trace class operators, A, are precisely those operators for which the expres-

sion Tr(A) = ∑n(φn,Aφn) is absolutely convergent and independent of the choice

of orthonormal basis. Similarly, Hilbert–Schmidt operators are those for which

∑n(Aφn,Aφn) = ‖Aφn‖2 is convergent and independent of the choice of orthonor-

mal basis. If A is a trace class operator, then there is a method to define a so-called

Fredholm determinant, det(I+zA), which defines an entire function on C. Operators

of the form I+ zA for a trace class operator A are called Fredholm. This determinant

can be defined in several equivalent ways. We list them here for trace class A and

z ∈ C:

det(I+ zA) := eTr(log(I+zA)) (6)

for small |z| and then analytically continued to the whole complex plane,

det(I + zA) =
∞

∑
k=0

zkTr(∧k(A)) (7)

with ∧k(A) defined in terms of alternating algebras, and

det(I + zA) =
N(A)

∏
k=1

(1+ zλk(A)), (8)

where the complex numbers λk(A) are the nonzero eigenvalues of A and N(A) is

the number of such eigenvalues, which can be infinite. In the latter case, the corre-

sponding infinite product is convergent.

A discussion concerning which of the above equations should be taken as a def-

inition and which are to be proven appears briefly in Chapter 3 of [36] and in more

detail in [35]. For the work here, (8) will be the most convenient choice. One thing
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to note at this time though is that det(I + zA) does define an entire function by any

of the above definitions, when A is trace class. This then shows why one cannot

hope to recover a meromorphic function by simply taking the determinant of a suit-

able operator without taking the quotient of such determinants as was seen in the

discussion of the Weil conjectures.

Although some of the operators we will consider will not be trace class, they will

at least be in one of the other trace ideals Jn, for some n ∈ N. In this case, we can

define a regularized determinant that will allow us to get a determinant formula for

the operator. We start by considering an expression of the form det(I + zA)e−zTr(A).

For trace class operators A, both det(I + zA) and e−zTr(A) are convergent, but for

Hilbert–Schmidt operators neither is necessarily well defined. And yet, when you

consider the two factors together as a possibly infinite product over the eigenvalues

of A,
N(A)

∏
k=1

((1+ zλk(A))exp(−λk(A)z) ,

the combined term does converge for Hilbert–Schmidt operators. This idea can in

fact be extended to get a convergent infinite product expression for operators in any

Jn, which will be called the regularized determinant of A. First we need a lemma.

Lemma 1. [36] For A ∈ B(H), let

Rn(A) =

[

(I +A)exp

(

n−1

∑
j=1

(−1) j j−1A j

)]

− I. (9)

Then if A ∈ Jn, we have Rn(A) ∈ J1.

This associates a trace class operator to any given A ∈ Jn and allows us to define

the regularized determinant of A as follows:

Definition 6. [36] For A ∈ Jn, define detn(I+A) = det(I +Rn(A)).

Note that this definition implies that det1(I + A) = det(I +A), the usual Fred-

holm determinant. We will use these two notations interchangeably from here on.

Also with this definition, we can now give a very similar product formula for the

regularized determinant of a Hilbert–Schmidt operator, with each term having an

exponential factor to help convergence along with some other interesting properties.

This corresponds to the n = 2 case of the following result.

Theorem 5. [36] For A ∈ Jn, we have

detn(I + µA) =
N(A)

∏
k=1

[

(1+ µλk(A))exp

(

n−1

∑
j=1

(−1) j j−1λk(A)
jµ j

)]

. (10)

These regularized determinants are related to the usual Fredholm determinant of

1+A for trace class operators A in the following fashion.
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Theorem 6. [36] For A ∈ J1, we have

detn(I + µA) = det(I +A)exp

(

n−1

∑
j=1

(−1) j j−1Tr(A j)

)

. (11)

These “regularized determinants”, just as the Fredholm determinants, define an

entire function and will be key to the precise formulation of our results. This will

be because our construction will not always create a trace class operator for which

the standard Fredholm determinant would apply. This will be the case, in particular,

for the Riemann zeta function, for which the regularized determinant det2 will be

needed; see Theorems 27 and 28 in Section 5.4 below. However, we will show that

for any entire function of finite order and for many meromorphic functions, our

construction will give an operator that is at least in some Jp and thus the regularized

determinant will apply to it.

3 Derivative Operator on Weighted Bergman Spaces

The search for an operator to possibly take the place of the Frobenius in the

proof of the Weil conjectures led us to consider the derivative operator. A treatment

examining the derivative operator on L2(R,e−2ctdt) and its use to create a ‘quantized

number theory’ can be found in the research monograph [23], as well as in the

accompanying articles [20], [21], [22] and [26].

This paper takes a different direction with the derivative operator. We begin by

following the treatment in [2] in developing properties of the derivative operator on

a certain family of weighted Bergman spaces. We will then continue beyond their

results and use all of this to create an operator that might properly take the place

of the Frobenius. We begin by recalling the definitions of the spaces we will be

working with. (See, e.g., [19], for a general reference about Bergman spaces.)

Definition 7. We define a weight function to be a positive continuous function w on

C. Then, for 1 ≤ p ≤ ∞, we define the weighted Lp spaces to be L
p
w(C), the space of

functions on C such that f w ∈ Lp(C,dλ ), where λ is the Lebesgue measure on R2,

and equipped with the norm ‖ f‖L
p
w
= ‖ f w‖Lp(R2). Next, denote by B

p
w the subspace

of entire functions in L
p
w; then, B

p
w is called a weighted Bergman space of entire

functions.

Note that the convention above for functions f ∈ L
p
w would be those for which

∫

C
| f |pwpdλ <∞ instead of

∫

C
| f |pwdλ < ∞. Then we have the following basic fact

about these spaces.

Theorem 7. For p ≥ 1, B
p
w is a closed subspace of L

p
w and hence is a Banach space.

Also, for p = 2, B2
w is a Hilbert space.

Now we consider the differential operator D = d
dz

on the space B
p
w and examine

its properties; including for particular choices of w and p.
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Consider the following types of weight functions: w(z) = e−φ(|z|), where φ is

a nonnegative, concave, monotone (i.e., nondecreasing), subadditive function on

R+ = [0,∞) such that w(0) = 0 and

lim
t→+∞

φ(t)

logt
=+∞. (12)

We next define

a = lim
t→+∞

φ(t)

t
. (13)

We then have the following results in this situation (with N0 := {0,1,2, ...}).

Theorem 8. [2] Let 1 ≤ p ≤ ∞ and w be a weight function with constant a, as in

(13) above. Then,

1) The differentiation operator D = d
dz

is a bounded linear operator on B
p
w;

2) For all r > 0, and for n ∈ N0, we have the bound ‖Dn‖ ≤ n!r−neφ(r).

Proof. We will prove 2) noting that 1) follows from it. Suppose that f ∈ Bw
p and

r > 0. Cauchy’s formula for the nth derivative of f reads as

Dn f (z0) =
n!

2π i

∫

|z|=r

f (z0 + z)

zn+1
dz. (14)

We now consider the case p = ∞. Let z0,z ∈ C with |z| = r. Then since φ is subad-

ditive and monotonic, we have: φ(|z0 + z|) ≤ φ(|z0|+ |z|) ≤ φ(|z0|)+φ(|z|). Also,

‖ f‖∞,w = supz∈C | f (z)|e−φ(|z|) ≥ | f (z0 + z)|e−φ(|z0+z|) by the definition of the norm.

This leads to: | f (z0 + z)| ≤ ‖ f‖∞,weφ(|z0+z|) ≤ ‖ f‖∞,weφ(|z0|)eφ(|z|). Then by (14), we

have for any z ∈ C that

|Dn f (z)| ≤ n!r−n sup
|z|=r

| f (z0 + z)| ≤ n!r−n‖ f‖∞,weφ(|z|)eφ(r).

Thus ‖Dn f‖∞,w = sup
z∈C

|Dn f (z)|e−φ(|z|) ≤ n!r−neφ(r)‖ f‖∞,w. Therefore, we have that

‖Dn‖ ≤ n!r−neφ(r). Next, we turn to the case 1 ≤ p < ∞. Let z ∈ C. Applying

Hölder’s inequality in (14) yields

|Dn f (z)| ≤ n!

(2π)
1
p rn

(

∫ 2π

0
| f (z+ reiθ )|pdθ

)
1
p

.

This leads to

∫

C

|Dn f (z)|pe−pφ(|z|)dλ (z)≤ n!p

2πrpn

∫ 2π

0

(

∫

C

| f (z+ reiθ )|pe−pφ(|z|)dλ (z)

)

dθ .

By making a change of variable, we can rewrite this as
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∫

C

|Dn f (z)|pe−pφ(|z|)dλ (z)≤ n!p

2πrpn

∫ 2π

0

(

∫

C

| f (z)|pe−pφ(|z−reiθ |)dλ (z)

)

dθ .

(15)

Using the triangle inequality for φ ,

|φ(|z|)−φ(|z− reiθ |)| ≤ φ(|reiθ |) = φ(r),

in the inner integral on the right-hand side of (15), we obtain that

∫

C

| f (z)|pe−pφ(|z−reiθ |)dλ (z) =

∫

C

| f (z)|pe−pφ(|z|)ep(φ(|z|)−φ(|z−reiθ |))dλ (z)

≤ epφ(r)
∫

C

| f (z)|pe−pφ(|z|)dλ (z)≤ epφ(r)‖ f‖p
p,w.

Applying this estimate to (15) then yields

∫

C

|Dn f (z)|pe−pφ(|z|)dλ (z)≤ n!p

2πrpn

∫ 2π

0
epφ(r)‖ f‖p

p,wdθ =
n!pepφ(r)

rpn
‖ f‖p

p,w.

Thus ‖Dn f‖p,w ≤ n!r−neφ(r)‖ f‖p,w, and it follows that ‖Dn‖≤ n!r−neφ(r). This con-

cludes the proof of the theorem. ⊓⊔ ⊓⊔

We also have the following result about the spectrum, σ(D), of D. (See, e.g., [32]

for a discussion of spectral theory and the functional calculus in this context.)

Theorem 9. [2] Under the conditions of Theorem 8, the spectrum σ(D) is given for

any a ≥ 0 by

σ(D) = ∆a := {z ∈ C : |z| ≤ a}. (16)

In particular, if a = 0, then ∆a = {0}.

Proof. Let eλ (z) = eλ z for λ ∈ C. Clearly, we have Deλ = λ eλ and so eλ is an

eigenvector of the operator D with eigenvalue λ , as long as eλ ∈ B
p
w. However, if

|λ |< a and we write z = reiθ and λ = |λ |eiβ , we have the following:

|eλ (z)e
−φ(|z|)|= |e|λ |rei(β+θ )−φ(r)|= e|λ |r cos(β+θ)−φ(r) ≤ e

r
(

|λ |− φ (r)
r

)

. (17)

But by (13), then this function is integrable, so eλ ∈ B
p
w for |λ | < a. Thus we have

∆a ⊆ σ(D). To complete the proof we will show that r(D), the spectral radius of

D, satisfies the inequality r(D) ≤ a. It suffices to show that r(D) ≤ a+ ε for any

ε > 0; so let us fix ε > 0. Then again using (13), we see that there is t0 > 0 such

that φ(t) ≤ (a+ ε)t for t ≥ t0. Thus by part 2 of Theorem 8 we have that ‖Dn‖ ≤
Cn!r−ne(a+ε)r for any r > 0, n = 1,2, ..., where C is a constant depending only on

ε . Minimizing this expression with respect to r yields the critical value r = n
a+ε .

Substituting this choice of r gives ‖Dn‖ ≤C
n!en(a+ε)n

nn . Applying Stirling’s formula

gives that ‖Dn‖ ≤ f (n), where f (n) is asymptotic to a constant times
√

n(a+ ε)n.
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Thus we have r(D) = lim
n→∞

‖Dn‖ 1
n ≤ a+ ε . We conclude that r(D) = a and σ(D) =

∆a, as desired. ⊓⊔ ⊓⊔

To further study this operator, we restrict our attention to the special case when

p = 2, where we actually have a Hilbert space with inner product given by ( f ,g) =
∫

R2 f ge−2φ(|z|)dλ . It is convenient to have a particular simple orthonormal basis to

deal with, and, since we are dealing with entire functions that are guaranteed to

have convergent power series, it makes sense to look at polynomials to try to find

this orthonormal basis. It turns out that all we need are monomials.

Theorem 10. [2] There exist constants cn such that {un(z)}, where un(z) = cnzn,

for n ∈N0, forms an orthonormal basis for B2
w.

Proof. First note that (zn,zm) = 0 if n 6= m. This follows from a simple calculation

using the fact that the weight function is radial, so that using polar coordinates, we

have

(zn,zm) =
∫ 2π

0

∫ ∞

0
rne−inθ rmeimθ e−2φ(r)rdrdθ

=

∫ 2π

0
ei(m−n)θ dθ

∫ ∞

0
rn+m+1e−2φ(r)dr

= 0

if n 6= m. Note that the integral on r converges for any n,m ∈ N0 by the properties

of our weight function. Thus the monomials form an orthogonal set. This orthog-

onal set is complete because every entire function has a convergent power series

on C. Thus, if we choose cn =
1

‖zn‖ , we normalize our set and, hence, the resulting

sequence {un} is an orthonormal basis for B2
w. ⊓⊔ ⊓⊔

Now we specialize further by choosing the family of weight functions given by

w(z) = e−|z|α for α ∈ R with 0 < α ≤ 1. (Note that in the notation of (13) and of

Theorem 9 above, we then have a = 1 if α = 1 and a = 0 if 0 < α < 1.) We will call

the resulting Hilbert space Hα := B2
w. In this case, we can actually find the constants

cn explicitly.

Theorem 11. [2] If 0 < α ≤ 1, then for n ∈ N0, we have that

‖zn‖2
Hα

=
2π

α
2−

2
α (n+1)Γ

[

2

α
(n+ 1)

]

.

Proof. Computing the norm in Hα gives

‖zn‖2
Hα

=

∫

C

|z|ne−2rα
dz =

∫ 2π

0
1dθ

∫ ∞

0
r2n+1e−2rα

dr.

For the integral over r, we make the change of variable x = 2rα , which changes the

integral into
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‖zn‖2
Hα

= 2π

∫ ∞

0

(

( x

2

)
1
α

)2n+1

e−x 1

2α( x
2
)

α−1
α

dx=
2π

α
2−

2
α (n+1)

∫ ∞

0
x

2(n+1)
α −1e−xdx.

However, the final integral is simply Γ ( 2
α (n+ 1)). ⊓⊔ ⊓⊔

Thus we can simply take the normalizing constants cn to be the square root of

the reciprocal of the formula for ‖zn‖2 given above. Namely,

cn =

(

2π

α

)− 1
2

2
n+1

α

(

Γ

(

2

α
(n+ 1)

))− 1
2

for every n ∈ N0. Now examining the action of D on a typical basis element un(z),
we see that: Dun = D(cnzn) = ncnzn−1 = ncn

cn−1
un−1. We thus obtain the following

representation of D:

Theorem 12. The operator D is isomorphic to a weighted backward shift on Hα tak-

ing a sequence of coefficients (an) in l2(C), where f (z) = ∑∞
n=0 anun(z), to (γnan+1)

in l2(C), where for n ∈N0, γn > 0 and γn is given by γ2
n = 2

2
α
(n+1)2Γ ( 2

α (n+1))

Γ ( 2
α (n+2))

.

Proof. Using the last calculation and writing f (z) = ∑∞
n=0 anun, we obtain:

D f (z) =
∞

∑
n=0

an
ncn

cn−1

un−1 =
∞

∑
n=0

(n+ 1)cn+1

cn

an+1un =
∞

∑
n=0

γnan+1un,

where γn =
(n+1)cn+1

cn
. It follows, using the previously calculated formula for cn, that

γ2
n =

(n+ 1)2c2
n+1

c2
n

=
(n+ 1)2‖zn‖2

‖zn+1‖2
= 2

2
α
(n+ 1)2Γ ( 2

α (n+ 1))

Γ ( 2
α (n+ 2))

,

as desired. ⊓⊔ ⊓⊔

The last fact we will need from [2] is to apply the standard asymptotic for the

Gamma function to obtain that γn ∼ c ·n1− 1
α as n→∞, where c is a positive constant.

Thus if 0 < α < 1, then γn → 0 as n → ∞.

Continuing beyond the results from [2], we start by calculating the adjoint D∗.

Theorem 13. Given f ∈ Hα , let f = ∑∞
n=0 anun be its expansion in terms of the

orthonormal basis. The adjoint of D∗ is isomorphic to a weighted forward shift

given by the equation D∗(an) = (γn−1an−1).

Proof. To calculate D∗, write D∗ f = ∑∞
n=0 bnun. Since {un} is an orthonormal basis

we find the nth, for n≥ 1, coefficient of D∗ f : (D∗ f ,un)= ( f ,Dun)= ( f ,γn−1un−1)=
γn−1an−1. Thus we have bn = γn−1an−1 for each n ≥ 1. For b0, we calculate

(D∗ f ,u0) = ( f ,Du0) = ( f ,0) = 0. Thus, D∗ acts on the sequence of coefficients

(an) as a weighted forward shift (an) 7→ (γn−1an−1), with the new 0th coefficient

being 0. ⊓⊔ ⊓⊔
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Now that we have the adjoint, we can immediately see that D is not self-adjoint as

D is a backward shift and D∗ is a forward shift. Moreover, the following calculation

with f (z)≡ 1 shows that it is not even normal: Indeed, D∗D f =D∗0= 0, but, on the

other hand, DD∗ f = D(γ0z) = γ0. This shows that we cannot apply the functional

calculus for unbounded normal operators that was used in [20]–[23]. Instead we use

the Riesz functional calculus, which is valid for bounded operators like D.

Next, we will use the asymptotic γn ∼ c ·n1− 1
α to determine which trace ideals D

will belong to, depending on α .

Theorem 14. The operator D is compact on Hα for any 0 < α < 1, trace class

for any 0 < α < 1
2
, Hilbert–Schmidt for any 0 < α < 2

3
, and, in general, D ∈ Jp if

α < p
p+1

for any p ∈N, where Jp is the trace ideal defined in the previous section.

Proof. Let 0 < α < 1, and let EN : Hα → Hα that takes a power series ∑∞
n=1 anun 7→

∑N
n=1 anλn−1un−1, which is the composition DPN of the derivative operator D with

the projection onto the subspace of polynomials at most degree N, PN . Each EN is

of finite rank, in fact, the range of EN has dimension N. We claim that the norm

limit of EN is D = d
dz

. Note that ‖D−EN‖= supn>N{λn−1}. But λn ∼ c ·n1− 1
α → 0,

as n → ∞, for any 0 < α < 1. Thus EN converges to D in norm and therefore D is

compact. Furthermore, we can write D = ∑∞
n=1 λn−1(un, ·)un−1 so λ ∗

n−1 are the sin-

gular values of D. To determine when λ ∗
n−1 are in lp, we use the Limit Comparison

Test to compare ∑∞
n=1(λ

∗
n−1)

p with ∑∞
n=1 (n

1− 1
α )p, which converges if and only if

p
(

1− 1
α

)

< −1. Solving this gives α < p
p+1

. Therefore D ∈ Jp if α < p
p+1

and, in

particular, is trace class if p < 1
2

and Hilbert–Schmidt if p < 2
3
. (Here, we have used

the notation of Definition 5.) ⊓⊔ ⊓⊔

From now on, we will fix an α with 0 < α < 1
2

and simply refer to Hα as H. In

this case, we have the following spectrum for D.

Theorem 15. We have σ(D) = σp(D) = {0} and 0 is a simple eigenvalue of D with

eigenfunction f (z) ≡ 1, the constant function equal to 1.

Proof. We know from Theorem 9 that σ(D) = ∆a, where a = lim
t→∞

φ(t)

t
, as in (13).

Here we have φ(t) = tα for 0 < α < 1
2
. Thus we have that lim

t→∞

tα

t
= lim

t→∞
tα−1 = 0.

It follows that a = 0 and hence, by Theorem 9, σ(D) = ∆0 = {0}. However, we

also know that f (z) ≡ 1 ∈ H, so that D has the eigenvector f corresponding to the

eigenvalue 0 and the point spectrum of D is also σp(D) = {0}. ⊓⊔ ⊓⊔

Finally, we turn to considering the set of operators {e−sD}s∈C. We compare this

to the result for ∂c obtained in [23] and mentioned in Section 1. This theorem will

show that D is the infinitesimal shift (of the complex plane).

Theorem 16. The family {e−sD}s∈C gives the group of translation operators on H.
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Proof. First note that since any f ∈ H is an entire function, we have the convergent

power series representation: f (z− s) = ∑∞
n=0

f (n)(z)
n!

(−s)n for any z,s ∈ C. Thus

e−sD f (z) =
∞

∑
n=0

1

n!
(−sD)n f (z) =

∞

∑
n=0

1

n!
(−s)n dn

dzn
f (z) = f (z− s).

This shows that e−sD just acts as translation by s on the space H. From this expres-

sion we also see that lim
s→0

‖e−sD f − f‖= 0. ⊓⊔ ⊓⊔

4 The Construction

With the results about D in hand, we turn to constructing an operator that might

play the role of Frobenius when dealing with the Riemann zeta function or other en-

tire or meromorphic functions of interest in number theory, analysis or mathematical

physics.

We begin by considering a particular choice of the family of analytic functions

φτ (z) = z+ τ . This gives us operators

Dτ := φτ(D) = D+ τI, (18)

for which the following lemma holds. (Recall that α has been fixed once for all to

satisfy 0 < α < 1
2

and hence, that Theorem 15 applies.)

Lemma 2. For any τ ∈ C, Dτ ∈ B(H) with spectrum σ(Dτ) = {τ}. If τ 6= 0, then

Dτ is invertible and D−1
τ ∈ B(H).

Proof. Applying the functional calculus on bounded operators along with the Spec-

tral Mapping Theorem to the operator D and the function φτ(z) gives a bounded

operator Dτ with spectrum σ(Dτ) = φτ({0}) = {τ}, where we have used Theorem

15 according to which σ(D) = {0}. Furthermore, if τ 6= 0, then 0 /∈ σ(Dτ) and it

follows that Dτ has a bounded inverse. ⊓⊔ ⊓⊔

This gives us a family of operators, each of whose spectra are each a single

point, which can be any complex number. Recall that in the situation of the coho-

mology theory that helped prove the Weil conjectures, we would like an operator

whose eigenvalues on different cohomology spaces are the zeros and poles of the

zeta function we are interested in. In order to obtain an operator whose spectrum

can represent the zero or pole set of a meromorphic function, we use the following

construction. If Z = {z1,z2, ...} is a (finite or countable) multiset of complex num-

bers, let Hn be a copy of the weighted Bergman space H and associate an operator

Dn to be Dzn on Hn. (Here and thereafter, a multiset is a set with integer multiplici-

ties.) Finally, define the Hilbert space HZ =
⊕

n Hn with operator DZ =
⊕

n Dn. This

gives:
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Theorem 17. For Z = {z1,z2, ...}, the operator DZ , constructed above, has spec-

trum σ(DZ) = {z1,z2, ...}. Furthermore, for each i ∈ N, zi is an eigenvalue of DZ

and the number of linearly independent eigenvectors of zi for DZ in HZ is equal to

the number of times zi occurs in the multiset Z = {z1,z2, ...}.

Proof. For each n ∈ N, let en ∈ HZ be the element which is the constant function,

with value 1 in the nth component, and 0 in every other component. Then DZen =
znen and so zn is an eigenvalue with eigenvector en. Suppose zn1

= zn2
= · · ·= znk

= z.

Then z is an eigenvalue with eigenvectors en1
,en2

, ...enk
and so there are at least

as many linearly independent eigenvectors of z for DZ as the multiplicity of z in

the multiset. Next, recall that the only eigenvalue of d
dz

on H is 0. Thus, the only

eigenvalue of Dzn is zn. Suppose now that DZx = zx for some x, we must either have

the nth component of x being 0 or z = zn and so there cannot be any more linearly

independent eigenvectors of z for DZ . Now that we know zi is an eigenvalue of DZ

for each i, we know that {z1,z2, ...} ⊂ σ(DZ). Next, let λ ∈ C−{z1,z2, ...}. Then

d = infn≥0 |λ − zn| > 0. Since D = d
dz

is quasinilpotent, r(D) = 0 and so there is a

positive integer N such that for every integer k ≥N, we have ‖Dk‖<
(

d
2

)k
. Then, on

the nth component of HZ , we have that ∑∞
k=0

Dk

|λ−zn| is absolutely convergent because

∞

∑
k=N

‖Dk‖
|λ − zn|

≤
∞

∑
k=N

(

d
2

)k

dk
=

1

2N−1
.

Then we can calculate the inverse on the nth component via the absolutely conver-

gent series:

(λ I−Dzn)
−1 = ((λ − zn)I −D)−1 =

1

λ − zn

∞

∑
k=0

Dk

λ − zn

.

Further, by the same estimate ‖(λ I−Dzn)
−1‖ ≤C uniformly in n, where

C =
N

∑
k=0

‖Dk‖
dk

+ 21−N. (19)

Therefore,
⊕

n(λ I −Dzn)
−1 ∈ B(HZ) and so (λ I −DZ)

−1 exists and is bounded.

That is, λ ∈ ρ(DZ), the resolvent set of DZ; recall that by definition, σ(DZ) is the

complement of ρ(DZ) in C. Hence, σ(DZ) = {z1,z2, ...}. ⊓⊔ ⊓⊔

Corollary 1. If Z = {z1,z2, ...} is either the zero or pole set of a meromorphic func-

tion f (z), then Z is a discrete set and so we have exactly σ(DZ) = Z counting multi-

plicity. Moreover, each zi in Z is an eigenvalue of DZ , with multiplicity equal to the

multiplicity of zi in the multiset Z.

Thus, DZ has all of the information from the multiset {z1,z2, ...} contained in

its spectrum. If we then consider the multiset to be the zeros and poles of a mero-

morphic function f (z), then the operator DZ contains these pieces of information
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of this function. This was, in fact, the original goal of this direction. In [23] (also

[20], [21], and [22]) the spectrum of the operators studied there were vertical lines

in the complex plane and the values of ζ (s) on these lines. This work was meant to

approach the problem in a similar, but different, way and isolate out the zeros and

poles of certain meromorphic functions. Theorem 17 gives a positive result that we

have created such an operator. However, we wanted to go further and find a way to

use determinant formulas to fully recover all of the values of the desired function

as was done in the Weil conjectures. Unfortunately, we cannot use the determinant

formulas for operators given in Section 2 for the operator DZ to recover f (z) as a

whole, because with this formulation DZ is not trace class. Even looking at just a

single one of the terms, Dτ = D+ τI, with τ 6= 0, is not compact, let alone trace

class (or, consequently, in any of the operator ideals Jp), because our Hilbert space

is infinite dimensional. (Indeed, in a Banach space, the identity operator, like the

closed unit ball, is compact if and only if the space is finite-dimensional.)

The first such modification we will make is to restrict each Dτ to its eigenspace,

E , the space of constant functions. This restriction is then a compact operator. We

also need to make a second adjustment from the original idea. Any zero or pole set

of a meromorphic function will be a discrete set, and hence if there are infinitely

many zeros or poles, they must tend to ∞. This would then imply that the operator

DZ described here is unbounded. What allows us to repair this problem and simul-

taneously recover the given function f (z) using determinants, is to have our set Z

consist of the reciprocals of the zeros rather than of the zeros themselves, and simi-

larly for the poles. (In each case, the multiplicities of the zeros or the poles are taken

into account.) The set of reciprocals will not necessarily be discrete as if the set is

infinite, the sequence will tend to 0. However, rather than being a problem, this is

actually completely required. Indeed, a compact operator on an infinite dimensional

space cannot have a bounded inverse and so 0 must be in the spectrum of any such

compact operator. Combining this observation with the fact that regularized deter-

minants apply only to trace ideals of compact operators, we see that having 0 in the

closure of the set of reciprocals is necessary to apply the determinant theory to DZ .

One comment to make about the restriction of the operator DZ to its total

eigenspace, EZ , is that it simplifies the operator to a multiplication operator because

the derivative on constant functions is just the zero operator. This is unfortunate as

we do lose some of the rich setting of the Bergman space that has been used thus

far. We are currently exploring alternative constructions in [5] that would allow us

to remove this restriction and work on all of H. However, as we will see in the next

section, the new version of the operator obtained by restriction will retain the desired

spectrum from Theorem 17.

In addition, we observe that in some sense, by analogy with what happens for

curves over finite fields for Weil-type cohomologies and with what is expected in

more general situations associated with the Riemann zeta function and other L-

functions (see, e.g., [11, 12] and [25, esp. Appendix B]), EZ (the total eigenspace of

DZ) is the counterpart in our context of the total cohomology space (or, in the termi-

nology of [25, 28], the total “fractal cohomology space”) and correspondingly, the

restriction of the original (generalized) Polya–Hilbert operator DZ to its eigenspace



20 Contents

EZ is the counterpart of the linear endomorphism induced by the Frobenius mor-

phism on the (total) cohomology space. (See Section 1.1 above.) Therefore, this

modification of the original operator seems natural (and perhaps unavoidable) in or-

der to obtain a suitable determinant formula, of the type obtained in Section 4.1 and

Section 5 below.

4.1 Refining the Operator of a Meromorphic Function

First, let Z = (zn) be a sequence of complex numbers. Let Dn := D+ znI be the

operator in the previous section restricted to the subspace of constant functions E .

(It is clear that Dn is normal.) Let DZ =
⊕

n Dn act on the space EZ =
⊕

n E which is

a closed subspace of the Hilbert space HZ from the last section. So in actuality, this

new definition of DZ is just the restriction to the Hilbert space EZ of the operator

given in the previous section. First we note that this restriction still retains the main

property from the last section.

Theorem 18. For each n ∈ N, each zn is an eigenvalue of DZ and the number of

linearly independent eigenvectors associated to zn is equal to the number of times

zn occurs in the sequence Z. Furthermore, σ(DZ) = {zn : n = 1,2,3, ...}.

Proof. Let en be the eigenfunctions from the previous proof. Then since en is

constant in each coordinate, en ∈ EZ . Thus when restricted to the space of func-

tions constant on each coordinate, DZ retains all of its eigenvalues and eigenvec-

tors from before. Finally, we note that σ(Dzn) = {zn} from which it follows that

σ(DZ) = {zn : n = 1,2,3, ...} as in the proof of Theorem 17. ⊓⊔ ⊓⊔

Remark 1. Note that in the case when Z = (zn) is the sequence of the reciprocals of

the nonzero elements in the zero set or the pole set of a given meromorphic function

(as in Section 5 below), then σ(DZ) = Z if Z is finite and σ(DZ) = Z
⋃{0} if Z is

infinite.

The next theorem shows that this restriction of the operator will truly give us

what we need for our quantized number theory framework.

Theorem 19. We have the following relationships between an infinite sequence

Z = (zn) and the associated operator DZ .

1) DZ is bounded iff (zn) is a bounded sequence.

2) DZ is self-adjoint iff zn ∈ R for all n.

3) DZ is compact iff lim
n→∞

zn = 0.

4) DZ is Hilbert–Schmidt iff ∑∞
n=1 |zn|2 < ∞.

5) DZ is trace class iff ∑∞
n=1 |zn|< ∞.

6) For p ≥ 1, DZ ∈ Jp iff ∑∞
n=1 |zn|p < ∞.

If (zn) is a finite sequence, then DZ is bounded, compact, and in Jp for each p ≥ 1.
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Proof. Since ‖Dn‖ = |zn|, for each n ∈ N, we have ‖DZ‖ = supn |zn|. Then DZ is

bounded iff (zn) is a bounded sequence. For 2), consider the sequence of operators

DN =
⊕N

n=1 Dn, for N ∈ N, as an operator on EZ by letting it act as multiplica-

tion by 0 on the remaining components. Thus DN is a finite rank operator on EZ

for each N. Then ‖DZ −DN‖ = supk>N |zk| and so if limn→∞ zn = 0, we then have

that DZ is the norm limit of finite rank operators and thus is compact. On the other

hand, if limn→∞ zn 6= 0 then {en} is a bounded sequence of vectors such that {DZen}
has no convergent subsequence. Thus, DZ is not compact. For 3) and 4), assume

that DZ is compact. Then since DZen = znen and the fact that {en} forms an or-

thonormal basis for EZ we know the singular values of EZ are {z∗n}, which is just

the sequence of numbers |zn| arranged in nonincreasing order. Thus EZ is Hilbert–

Schmidt iff ∑∞
n=1 |zn|2 < ∞, and, trace class iff ∑∞

n=1 |zn|< ∞ and, more generally, in

Jp iff ∑∞
n=1 |zn|p < ∞. Finally, if (zn) is a finite sequence, then DZ is actually a finite

rank operator and is trivially bounded, compact, and in Jp for each p ≥ 1. ⊓⊔ ⊓⊔

Note that the above result is well known from the theory of multiplication opera-

tors on sequence spaces and is just translated here in our setting. Now that we have

a formulation that can indeed give us a trace class operator, we can state the result

we will use to fully recover certain functions of interest.

Corollary 2. If {zn} is a sequence of complex numbers satisfying ∑∞
n=1 |zn| < ∞,

then we have det(I− zDZ) = ∏n(1− znz).

Proof. This is a direct consequence of Equation (8) for trace class operators of

which DZ is one when the series is absolutely summable. ⊓⊔ ⊓⊔

By the previous corollary, we can now see that we will be getting an entire func-

tion out of our construction. Thus if we want to handle meromorphic functions, we

will need to handle zeros and poles separately. Also, we will want to choose our

sequence (zn) to be the reciprocals of the zeros and, separately, of the poles. With

this in mind, we make the following final construction for our operator associated

with a meromorphic function.

First, let f (z) be an entire function on C with z = 0 not a zero of f . Let {an} be

a sequence of the zeros of f (z), counting multiplicity. Define the sequence Z = (zn)
where zn =

1
an

. Define DZ as before and call this D f . Now given an integer m ≥ 1, if

we have D f ∈ Jm \ Jm−1, then detm(I − zDZ) is well defined, where the regularized

determinant detm was defined in Section 2. (See, especially, Definition 6 and Theo-

rem 5.) Finally, we note that if we are dealing with a meromorphic function instead

of an entire function, we follow the lead from the proof of the Weil conjectures

to simply take the ratio of these regularized determinants, with possibly the opera-

tor associated to the numerator being in different trace classes (that is, in different

operator ideals) than that of the denominator.

In the next section, we will examine what this construction accomplishes for

several classically important functions in number theory.
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5 Applications of the Construction

In this section, we apply our construction to some special meromorphic functions

of interest and conclude with showing that this construction does indeed give a

suitable replacement for the Frobenius for any entire function of finite order.

5.1 Rational Functions

To begin, we look at the simplest type of meromorphic functions: the rational

functions. Let f (z) be a rational function. Then, we can write f (z) = zkg(z) for some

k ∈Z and further g(z)= g(0)
h(z)

k(z)
, where h(z) =

s

∏
n=1

(1− z

an

) and k(z) =
t

∏
n=1

(1− z

bn

)

for some finite set {a1,a2, ...,as,b1,b2, ...,bt}. Construct the operator Dh(z) and Dk(z)

as given in the previous chapter. The following theorem tells us that the determinant

exactly recovers the given function f .

Theorem 20. If f (z) is a rational function as above, then

f (z) = zkg(0)
det1(I − zDh(z))

det1(I− zDk(z))
. (20)

Proof. Write out f (z) as given in the preceding paragraph. Then consider the finite

sequences Z = { 1
a1
, 1

a2
, ..., 1

as
} and P = { 1

b1
, 1

b2
, ..., 1

bt
}. The operators DZ and DP are

both trivially trace class since both are created from finite sequences. Hence, we may

apply the 1-regularized determinant (really, just the normal Fredholm determinant

since both operators are trace class) we defined to obtain

det1(I − zDh(z))

det1(I− zDk(z))
=

∏s
n=1(1− z

an
)

∏t
n=1(1− z

bn
)
=

g(z)

g(0)
(21)

and thus, f (z) = zkg(0)
det1(I−zDh(z))

det1(I−zDk(z))
. ⊓⊔ ⊓⊔

We consider Dh(z) to be the analog of Frobenius for h(z) (zeros) whereas Dk(z)

would be the analog for k(z) (poles). Then this ratio of determinants would be con-

sidered a graded determinant associated with the Frobenius of the divisor (zeros

minus poles) of g(z).
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5.2 Zeta Functions of Curves Over Finite Fields

Recall that the zeta function of a (smooth, algebraic) curve Y over the finite

field Fq is defined as ζY (s) = exp

(

∞

∑
n=1

Yn

n
q−ns

)

. The proof of the Weil conjectures

expressed this function as an alternating product of determinants as follows:

ζY (s) =
det(I−F∗q−s|H1)

det(I−F∗q−s|H0)det(I−F∗q−s|H2)
.

One of the Weil conjectures, that ζY (s) is a rational function of q−s, then followed

from this formula. Thus we may apply the result in the previous section about ratio-

nal functions to obtain the following theorem.

Theorem 21. Let Y be a smooth, projective, geometrically connected curve over

Fq, the field with q elements. Write ζY (s) =
f (q−s)
g(q−s)

with f (z),g(z) both polynomials.

Then

ζY (s) =
det1

(

I − q−sD f

)

det1 (I− q−sDg)
. (22)

Proof. We have that
f (z)
g(z) is a rational function of z. Thus by the rational function re-

sult:
f (z)
g(z)

=
det1(I−zD f (z))

det1(I−zDg(z))
and so replacing with z = q−s gives: ζY (s) =

det1(I−q−sD f )
det1(I−q−sDg)

,

as desired. ⊓⊔ ⊓⊔

Note that the results in this subsection can be extended in a straightforward man-

ner to the zeta function of a (smooth, algebraic) d-dimensional variety over Fq,

where the integer d ≥ 1 is arbitrary.

5.3 The Gamma Function

The next meromorphic function that we will turn our attention to is the Gamma

function, defined initially by Γ (z) =
∫ ∞

0
xz−1e−xdx for ℜ(z)> 1. This function has

numerous applications in many branches of mathematics, including our focus - num-

ber theory. One point of interest is that this function gives a meromorphic continua-

tion to all of C of the factorial function on integers. It also appears in the functional

equation for the Riemann zeta function. We have the following well-known proper-

ties of the Gamma function:

Theorem 22. For z ∈C, z /∈ {0,−1,−2, ...}, we have

1) Γ (z+ 1) = zΓ (z).
2) Γ (n) = (n− 1)! for n ∈N.

3) Γ (z) =
e−γz

z

∞

∏
n=1

(

(

1+
z

n

)−1

e
z
n

)

.
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This infinite product representation for Γ (z) allows us to now show that we can

recover the function from the determinant of the operator construction we have laid

out.

Theorem 23. We have that for all z ∈C,

Γ (z) =
e−γz

z

1

det2(I − zDzΓ (z))
. (23)

Proof. We will apply our construction to the function g(z) = 1
zΓ (z) . This function

is entire and has a simple zero at each negative integer. Note that the residue of

Γ (z) at z = 0 is 1; so that g(0) = 1. Now if we consider the sequence, Z = (− 1
n
),

of reciprocals of zeros of g(z), we see that it is not a summable series but that it

is square summable. This means the associated operator DZ is not trace class, but

only Hilbert–Schmidt. This forces us to use det2 in our definition of the regularized

determinant. In fact,

det2(I− zDZ) =
∞

∏
n=1

[

(1+
z

n
)e−

z
n

]

. (24)

This then leads to the following computation:

1
det2(I−zDzΓ (z))

= det2(I − zDZ)
−1

=

(

∞

∏
n=1

[(

1+
z

n

)

e−
z
n

]

)−1

=
∞

∏
n=1

[

(

1+
z

n

)−1

e
z
n

]

= zeγzΓ (z).

Therefore, we conclude that Γ (z) is given by Equation (23), as desired. ⊓⊔ ⊓⊔

5.4 The Riemann Zeta Function

Next, we turn our attention to another important example, the Riemann zeta func-

tion. First, we will consider the well-known Euler product expression for ζ (s).

Theorem 24. For s ∈C, with ℜ(s)> 1,

ζ (s) = ∏
p

(1− p−s)−1,

where the product is taken over all prime numbers p.
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To use our formulation, let φ(z) = 1−z. Then, by the result for rational functions

in Section 5.1 (Theorem 20), we have that φ(z) = det(I − zDφ ), which is true for

every value of z 6= 1. Letting z = p−s then gives (1− p−s)−1 = (det(I− p−sDφ ))
−1

for s 6= 2π ik
log p

, k ∈ Z. This leads to the following operator based Euler product:

Theorem 25. For s ∈C, with ℜ(s)> 1,

ζ (s) = ∏
p

(det(I− p−sDφ ))
−1, (25)

where the product is taken over the primes p.

Proof. We simply apply the determinant equality to each term in the infinite product

and then use the standard Euler product convergence. Note that for ℜ(s) > 1, we

never have s = 2π ik
log p

for any integer k; so that the determinant equality does apply at

each prime p. ⊓⊔ ⊓⊔

The completed zeta function, ξ (s) = 1
2
π− s

2 s(s− 1)Γ
(

s
2

)

ζ (s), is an entire func-

tion whose zeros all lie in the critical strip {s ∈C : 0 < ℜ(s)< 1} and coincide with

the critical zeros of ζ (s). We have the following well-known product representation

for ξ (s).

Theorem 26. For s ∈C with ℜ(s)> 1,

ξ (s) =
1

2
π− s

2 e(log(2π)−1− γ
2 )s ∏

ρ

[(

1− s

ρ

)

e
s
ρ

]

, (26)

where γ denotes Euler’s constant and the infinite product over ρ is taken over all of

the zeros of ξ (s), which are the nontrivial (or critical) zeros of ζ (s).

Now if we wish to express ξ (s) by using the determinant construction in this

paper, we need to consider Z = { 1
ρ } and the convergence of ∑ρ

1
ρ p . It is proven in

[13] that this series converges for p = 1, but only conditionally and so we will need

p = 2 to get the absolute convergence needed for DZ ∈ J2. Thus we must consider

the determinant det2(I − sDξ (s)). This suggests the following theorem.

Theorem 27. For all s ∈ C,

ξ (s) =
1

2
π− s

2 e(log(2π)−1− γ
2 )s det2(I − sDξ ). (27)

Proof. From the preceding discussion, we begin by defining Z = { 1
ρ }, and con-

structing Dξ (s) = DZ . Then we calculate:
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det2(I − sDξ (s)) = det2(I − sDZ)

= ∏
ρ

[(

1− s

ρ

)

e
s
ρ

]

=
2ξ (s)

π− s
2 e(log(2π)−1− γ

2)s
.

Thus, ξ (s) = 1
2
π− s

2 e(log(2π)−1− γ
2 )s det2(I − sDξ ), as desired. This result is first ob-

tained for ℜ(s)> 1, and then upon analytic continuation, for all s ∈C. Indeed, both

ξ (s) and the regularized determinant define entire functions of s. ⊓⊔ ⊓⊔

We can then combine the results for ξ (s) and Γ (s) to give an expression for ζ (s)
in a similar spirit to the representation of zeta functions of curves over finite fields,

as follows.

Theorem 28. For all s ∈ C,

ζ (s) =−e(log(2π)−1)s

2

det2(I − s
2
D s

2 Γ ( s
2 )
))det2(I − sDξ )

det1(I − sDφ )
, (28)

where det2(I − s
2
D s

2 Γ ( s
2 )
)) gives the trivial zeros of ζ (s), det2(I − sDξ ) gives the

critical zeros of zeta, and det1(I − sDφ ) gives the single pole at s = 1 with φ(s) :=
1− s.

Proof. We first recall the following three equations (see, in particular, Theorems 23

and 27), valid for all s ∈C:

Γ
( s

2

)

=
2e−γ s

2

s

1

det2(I − s
2
D s

2 Γ ( s
2 )
)
,

ξ (s) =
1

2
π− s

2 s(s− 1)Γ
( s

2

)

ζ (s),

and

ξ (s) =
1

2
π− s

2 e(log(2π)−1− γ
2 )s det2(I − sDξ ).

We then solve for ζ (s) in the middle equation and substitute the other two to obtain

successively:

ζ (s) =
2π

s
2 ξ (s)

s(s− 1)Γ ( s
2
)

= 2π
s
2 ·

1
2
π− s

2 elog(2π)−1− γ
2 s det2(I − sDξ )

s(s− 1) 2e−γs

s
(det2(I − s

2
D s

2 Γ ( s
2 )
))−1

=
e(log(2π)−1)s

2

det2(I − s
2
D s

2 Γ ( s
2 )
))det2(I − sDξ )

(s− 1)
.
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Finally, letting φ(s) = 1− s and using Theorem 20, since φ is a rational function,

we can replace s− 1 =−det1(I− sDφ ) and obtain the desired equation. ⊓⊔ ⊓⊔

We will conclude this section with a different approach that gives an equivalent

criterion for the Riemann Hypothesis. Let Z be the set of zeros of the function

defined by ξ̂ (s) = ξ
(

1
2
+ is

)

. Construct the operator DZ = D
ξ̂

. This leads to the

following result.

Theorem 29. The operator D
ξ̂

is self-adjoint if and only if the Riemann hypothesis

is true.

Proof. This follows directly from part (2) of Theorem 19 and the fact that the Rie-

mann Hypothesis says that the zeros of ξ
(

1
2
+ is

)

must all be real. ⊓⊔ ⊓⊔

It should be stressed that Theorem 29 does not as yet provide an approach to the

Riemann hypothesis, for some of the reasons outlined in Section 6. We also note

that Theorem 27 is potentially more useful than Theorem 28 (in part because it does

not involve a determinant associated with the gamma function).

5.5 Hadamard’s Factorization Theorem of Entire Functions

In this section, we observe that the theory presented here is quite general. It will

apply to all entire functions of finite order. We will begin with an overview of the

concepts of rank, genus and order of an entire function as described in [7].

Definition 8. Let f be an entire function with (nonzero) zeros {a1,a2, ...}, repeated

according to multiplicity and arranged such that |a1| ≤ |a2| ≤ · · · . Then f is said to

be of finite rank if there is a nonnegative integer p such that ∑∞
n=1 |an|−(p+1) < ∞.

If p is the smallest integer such that this occurs, then f is said to be of rank p; a

function with only a finite number of zeros has rank 0. A function is said to be of

infinite rank if it is not of finite rank.

In order to define the genus of an entire function, we need to define what it means

for an entire function to be written in standard form, which will require the following

definition.

Definition 9. For n ∈ N0, define the elementary factor

En(z) =

{

(1− z), if n = 0,

(1− z)exp( z
1
+ z2

2
+ · · · zn

n
), if n ≥ 1.

To justify the definition of elementary factor, simply note that if ∑∞
n=1 |an|−(p+1)<

∞, then the infinite product ∏∞
n=1 Ep(

z
an
) converges uniformly on compact subsets

of C and defines an entire function with (nonzero) zeros at the complex numbers an,

n ≥ 1. The exponential factor is what is needed to ensure convergence of the infinite
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product. With this definition in hand, we can, in turn, define the genus of an entire

function:

Definition 10. An entire function f has finite genus if the following statements hold:

1) f has finite rank p and 2) f (z) = zmeg(z) ∏∞
n=1 Ep

(

z
an

)

, where g(z) is a polynomial

of degree q. In this case, the genus of f is defined by µ = max(p,q).

We now define the order of an entire function:

Definition 11. An entire function f is said to be of finite order if there is a nonneg-

ative constant a and and r0 > 0 such that | f (z)| < exp(|z|a) for |z| > r0. If f is not

of finite order, then f is said to be of infinite order. If f is of finite order, then the

number λ = inf{a : | f (z)| < exp(|z|a) for |z| sufficiently large} is called the order

of f .

Thus the order of an entire function f is a measure of the growth of | f (z)| as

|z| → ∞ whereas the rank of f is based on the growth of the nth smallest zero as n →
∞. From the definitions, there is no inherent relationship between the two concepts,

but with the following version of the Hadamard factorization theorem, we see that

they are in fact closely related:

Theorem 30. (Hadamard’s Factorization Theorem) If f (z) is an entire function of

finite order λ , then f has finite genus µ ≤ λ and f admits the following factoriza-

tion:

f (z) = zmeg(z)
∞

∏
n=1

Ep

(

z

an

)

, (29)

where g(z) is a polynomial of degree q ≤ λ and p = [λ ], the integer part of λ . In

particular, f is of rank not exceeding p.

Now when we apply our operator construction to a given entire function of finite

order we obtain a Quantized Hadamard Factorization Theorem.

Theorem 31. (Quantized Hadamard Factorization Theorem) If f (z) is an entire

function of finite order λ , then f admits the following factorization:

f (z) = zmeg(z) detp+1(I − zD f (z)), (30)

where g(z) is a polynomial of degree q ≤ λ , and p = [λ ].

Proof. By the standard Hadamard factorization theorem, we can write

f (z) = zmeg(z)
∞

∏
n=1

Ep(
z

an

), (31)

where g(z) is a polynomial of degree q ≤ λ and p = [λ ], with the rank of f not

exceeding p. That is, if {a1,a2, ...} is the multiset of zeros of f (z) including mul-

tiplicity, then ∑∞
n=1

1
|an|p+1 < ∞. Thus if Z = { 1

a1
, 1

a2
, ...}, the associated operator

DZ ∈ Jp+1. Then we can calculate successively:
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detp+1(I − zD f (z)) = detp+1(I − zDZ)

=
∞

∏
n=1

[

(

1− z

an

)

exp

(

p

∑
j=1

z j

ja
j
n

)]

=
∞

∏
n=1

Ep

(

z

an

)

=
f (z)

zmeg(z)
.

Thus we have that f (z) = zmeg(z)detp+1(I− zD f (z)), as desired. ⊓⊔ ⊓⊔

In the above proof, we see that the extra convergence factor in the regularized

determinants is exactly the same as the one for the elementary factor in the infinite

product representation of entire functions, which validates, in some sense, the choice

in this paper for the type of regularized determinants as those based on trace ideals.

Thus the convergence factors needed in the usual Hadamard Factorization Theorem

have an interpretation here relating to Tr(Dn).

6 Conclusion

We ended the previous section by giving what we called the Quantized Hadamard

Factorization Theorem. This showed that the construction given in this paper can ap-

ply to any entire function of finite order and then, by taking ratios of determinants,

can be extended to any meromorphic function which is a ratio of two such entire

functions. This was worked out explicitly for the Riemann zeta function (see The-

orems 27 and 28 above), and it has also been worked out by the authors for zeta

functions of self-similar strings, both in the lattice and nonlattice case. (See [28,

Chapters 2 and 3] for background on self-similar fractal strings.) However, there

was nothing in the construction preventing us from applying our results to even

more general number-theoretic functions. In particular, a natural idea would be to

try to extend our determinant formulas to other L-functions (see [33]). Could we

then apply this construction to any zeta function (or, at least, to most zeta functions)

from arithmetic geometry? This would require, essentially, knowledge about the ex-

istence of suitable meromorphic extensions of such functions, as well as about the

asymptotic behavior of the zeros and poles of such extensions. Phrased differently,

the L-functions for which our methods could be applied are those which can be suit-

ably completed to become entire functions of finite order (or ratios of such entire

functions). Furthermore, this naturally brings the consideration of the Selberg class

of functions. See [33] or [25, Appendix E] (and the many references therein) for a

discussion of these functions.

Another direction to take is to further justify why using ratios of these determi-

nants is the correct method for handling meromorphic functions. In [25], the second

author considers the properties of the Riemann zeta function as related to super-
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symmetric theory in physics and this ratio of determinants can be explained as a

(regularized) Berezinian determinant from the theory of super linear algebra. How-

ever, this will not be further discussed here, but could be crucial for expanding upon

the ideas presented in this work.

In this paper, we obtained a quantized version of the Hadamard factorization

theorem, Theorem 31, but we expect to be able to generalize this result to obtain a

quantized Weierstrass product formula; see [5].

With all of the successes obtained here, we must also admit the failures of this

theory, at least in its present stage of its development. The construction of the oper-

ator for ζ (s) explicitly assumed knowledge of the zeros of ζ (s) and thus one could

never hope to prove (RH) directly with this method. However, if we could find a

different way to obtain the same function, by comparison you could extrapolate the

zeros as was done with the Weil conjectures. That is, we need a suitable geome-

try and cohomology theory that would result in the same ratios of determinants of

these operators. In the Weil conjectures, the geometry or points on the curve (over

Fq, the algebraic closure of Fq) corresponded to the fixed points of powers (or it-

erates) of the Frobenius operator. (Recall from our discussion just prior to Section

4.1 that in our context, the “fractal cohomology space” would seem to be the total

eigenspace EZ to which we restricted the original generalized Polya–Hilbert opera-

tor, viewed as Frobenius acting on an appropriate analog of the underlying “curve”.)

Could we then consider the fixed points of the operator constructed in this paper?

Analytically, this can be done by considering a suitable notion of generalized eigen-

functions (viewed as generalized tempered distributions). Thus far, however, this

idea has not led to the development of a suitable working theory for the geometry

underlying ζ (s). Providing an appropriate geometric framework is one of our main

long-term objectives for future research on this subject.

Another interesting and related question (connected, in particular, to our discus-

sion in Sections 1.1 and 1.3) is whether the still conjectural fractal cohomology

theory satisfies a suitable analogue of the Lefschetz Fixed Point Formula (as stated

in Theorem 1) for the counterpart of Frobenius.

One additional plan that we are currently working on is to rephrase the con-

struction we have described here as a cohomology of sheaves in order to properly

transition from the local setup given in this paper to a more global approach that

might give new and useful information.
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Exp. 279:41–55, 1964–1966.

16. A. Grothendieck. Standard conjectures on algebraic cycles. Algebraic Geometry (Internat.

Colloq., Tata Inst. Fund. Res., Bombay, 1968), pages 193–199, 1969.

17. S. Haran. The Mysteries of the Real Prime, volume 25 of London Math. Soc. Monographs,

New Ser. Oxford Science Publications, Oxford Univ. Press, Oxford, 2001.

18. H. Hasse. Abstrakte Begründung der komplexen Multiplikation und Riemannsche Vermutung

in Funktionenkörpern. Anh. Math. Sem. Hamburg, 10:325–348, 1934.

19. H. Hedenmalm, B. Korenblum, and K. Zhu. Theory of Bergman Spaces. Graduate Texts in

Mathematics, volume 199. Springer, New York, 2000.

20. H. Herichi and M. L. Lapidus. Riemann zeros and phase transitions via the spectral operator

on fractal strings. J. Phys. A: Math. Theor., 45, 374005, 23pp., 2012.

21. H. Herichi and M. L. Lapidus. Fractal complex dimensions, Riemann hypothesis and in-

vertibility of the spectral operator, volume 600 of Contemporary Mathematics, pages 51–89.

Amer. Math. Soc., Providence, R. I., 2013.

22. H. Herichi and M. L. Lapidus. Truncated infinitesimal shifts, spectral operators and quantized

universality of the Riemann zeta function. Annales de la Faculté des Sciences de Toulouse,
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