Skip to main content

Personalized Orthopedic Trauma Surgery by Applied Clinical Mechanics

  • Chapter
  • First Online:
  • 1538 Accesses

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 84))

Abstract

In this study, the concept of applied clinical mechanics is used to present first steps in the direction of personalized orthopedic trauma surgery. As example process, a complex distal tibia fracture treated with an implant is chosen. Based on an automated workflow, routinely acquired tomographic data is segmented, assigned with material parameters and extended to an adaptive volume-mesh with hanging nodes. For the finite element simulations, this bone-implant system is equipped with realistic axial loading conditions. An optimization algorithm is then used to analyze the amount of fracture healing that will provide a full weight bearing capacity of the injured extremity in combination with the implant.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. T. Dahmen, M. Roland, T. Tjardes, B. Bouillon, P. Slusallek, S. Diebels, An automated workflow for the biomechanical simulation of a tibia with implant using computed tomography and the finite element method. Comput. Math. Appl. 70(5), 903–916 (2015)

    Article  MathSciNet  Google Scholar 

  2. M. Roland, T. Tjardes, R. Otchwemah, B. Bouillon, S. Diebels, An optimization algorithm for individualized biomechanical analysis and simulation of tibia fractures. J. Biomech. 48, 1119–1124 (2015)

    Article  Google Scholar 

  3. T. Tjardes, M. Roland, R. Otchwemah, T. Dahmen, S. Diebels, B. Bouillon, Less than full circumferential fusion of a tibial nonunion is sufficient to achieve mechanically valid fusion - Proof of concept using a finite element modeling approach. BMC Musculoskel. Dis. 15, 434 (2014)

    Article  Google Scholar 

  4. T.P. Ruedi, R.E. Buckley, C.G. Moran, AO principles of fracture management. Thieme (2007)

    Google Scholar 

  5. J. Weickert, Theoretical foundations of anisotropic diffusion in image processing. Comput. Suppl. 11, 221–236 (1996)

    Google Scholar 

  6. J. Weickert, Anisotropic Diffusion in Image Processing, (Teubner, 2005)

    Google Scholar 

  7. M. Mäntylä, An Introduction to Solid Modeling, (Computer Science Press Inc, New York, 1987)

    Google Scholar 

  8. M. Kremer, D. Bommes, L. Kobbelt, OpenVolumeMesh—a versatile index-based data structure for 3D polytopal complexes, in Proceedings of the 21st International Meshing Roundtable, (Springer, Berlin, 2012), pp. 531–548

    Google Scholar 

  9. J. Möbius, L. Kobbelt, OpenFlipper: an open source geometry processing and rendering framework, in Lecture Notes in Computer Science, Curves and Surfaces ed. by J.-D. Boissonnat, P. Chenin, A. Cohen, C. Gout, T. Lyche, M.-L. Mazure, L. Schumaker, (Springer, Berlin 2012), pp. 488–500

    Google Scholar 

  10. J. Keyak, Y. Falkinstein, Comparison of in situ and in vitro CT-scan-based finite element model predictions of proximal femoral fracture load. J. Med. Eng. Phys. 25, 781–787 (2003)

    Article  Google Scholar 

  11. I. Hvid, S.M. Bentzen, F. Linde, L. Mosekilde, B. Pongsoipetch, X-ray quantitative computed tomography: the relations to physical properties of proximal tibial trabecular bone specimens. J. Biomech. 22, 837–844 (1989)

    Google Scholar 

  12. J.Y. Rho, M.C. Hobatho, R.B. Ashman, Relations of mechanical properties to density and CT numbers in human bone Med. Eng. Phys. 17, 347–355 (1995)

    Article  Google Scholar 

  13. C. Zannoni, R. Mantovani, M. Viceconti, Material properties assignment to finite element models of bone structures: a new method. Med. Eng. Phys. 20, 735–740 (1998)

    Article  Google Scholar 

  14. Z. Yosibash, R. Padan, L. Joscowicz, C. Milgrom, A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments. ASME J. Biomech. Eng. 129(3), 297–309 (2007)

    Article  Google Scholar 

  15. N. Trabelsi, Z. Yosibash, C. Milgrom, Validation of subject-specific automated p-FE analysis of the proximal femur. J. Biomech. 42, 234–241 (2009)

    Article  Google Scholar 

  16. M. Ruess, D. Tal, N. Trabelsi, Z. Yosibash, E. Rank, The finite cell method for bone simulations: verification and validation. Biomech. Model. Mechanobiol. 11, 425–437 (2012)

    Article  Google Scholar 

  17. C. Les, J. Keyak, S. Sover, K. Taylor, A. Kaneps, Estimation of material properties in the equine metacarpus with use of quantitative computed tomography. J. Orthop. Res. 12, 822–833 (1994)

    Article  Google Scholar 

  18. E.J. Chen, J. Novakofski, W.K. Jenkins, W.D. O’Brien, Young’s modulus measurements of soft tissues with application to elasticity imaging. IEEE Trans. Ultrason. Ferroelect. Freq. Control 43(1), 191–194 (1996)

    Google Scholar 

  19. K.-H. Kramer, Metallische Implantatwerkstoffe—ein Überblick BIOmaterialien 2, 4 (2001)

    Google Scholar 

  20. M. Ashraf Imam, A.C. Fraker, Titanium alloys as implant materials. Medical application of titanium and it’s alloy: the material and biological Issues. ASTM STP 1272, 1–16 (1996)

    Google Scholar 

  21. S. Timoshenko, Strength of Materials, (RE Krieger Pub. Co., Huntington, 1976)

    Google Scholar 

  22. B. Riviere, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, (Society for Industrial and Applied Mathematics (SIAM), 2008)

    Google Scholar 

  23. W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin, T.D. Young, The deal.II Library, version 8.1 (2013), arXiv:1312.2266v4

  24. W. Bangerth, R. Hartmann, G. Kanschat, deal.II—a General Purpose Object Oriented Finite Element Library. ACM T. Math. Softw. 33(4), 24/1–24/27 (2007)

    Google Scholar 

  25. A. Meister, Numerik linearer Gleichungssysteme, (Vieweg-Verlag, Wiesbaden, 2007)

    Google Scholar 

  26. D. Braess, Finite Elemente, (Springer, Berlin, 2003)

    Google Scholar 

Download references

Acknowledgements

Michael Roland and Thorsten Tjardes contributed equally to this work. The financial support for a dated back project from the Deutsche Forschungsgemeinschaft (DFG) under the grant DI 430/17–1 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Roland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Roland, M., Tjardes, T., Dahmen, T., Slusallek, P., Bouillon, B., Diebels, S. (2018). Personalized Orthopedic Trauma Surgery by Applied Clinical Mechanics. In: Wriggers, P., Lenarz, T. (eds) Biomedical Technology. Lecture Notes in Applied and Computational Mechanics, vol 84. Springer, Cham. https://doi.org/10.1007/978-3-319-59548-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59548-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59547-4

  • Online ISBN: 978-3-319-59548-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics