Skip to main content

Human Deiminases: Isoforms, Substrate Specificities, Kinetics, and Detection

  • Chapter
  • First Online:
Progress in the Chemistry of Organic Natural Products 106

Part of the book series: Progress in the Chemistry of Organic Natural Products ((POGRCHEM,volume 106))

Abstract

Peptidylarginine deiminase (PAD) enzymes are of enormous interest in biomedicine. They catalyze the conversion of a positively-charged guanidinium at an arginine side chain into a neutral ureido group. As a result of this conversion, proteins acquire the non-ribosomally encoded amino acid “citrulline”. This imposes critical influences on the structure and function of the target molecules. In multiple sclerosis, myelin hyper-citrullination promotes demyelination by reducing its compaction and triggers auto-antibody production. Immune responses to citrulline-containing proteins play a central role in the pathogenesis of autoimmune diseases. Moreover, auto-antibodies, specific to citrullinated proteins, such as collagen type I and II and filaggrin, are early detectable in rheumatoid arthritis, serving as diagnostic markers of the disease. Despite their significance, little is understood about the role in demyelinating disorders, diversified cancers, and auto-immune diseases. To impart their biological and pathological effects, it is crucial to better understand the reaction mechanism, kinetic properties, substrate selection, and specificities of peptidylarginine deiminase isoforms.

Many aspects of PAD biochemistry and physiology have been ignored in past, but, herein is presented a comprehensive survey to improve our current understandings of the underlying mechanism and regulation of PAD enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fert-Bober J, Giles JT, Holewinski RJ, Kirk JA, Uhrigshardt H, Crowgey EL, Andrade F, Bingham IIICO, Park JK, Halushka MK, Kass DA, Bathon JM, Van Eyk JE (2015) Citrullination of myofilament proteins in heart failure. Cardiovasc Res 108:232

    Article  CAS  Google Scholar 

  2. Nishijyo T, Kawada A, Kanno T, Shiraiwa M, Takahara H (1997) Isolation and molecular cloning of epidermal- and hair follicle-specific peptidylarginine deiminase (type III) from rat. J Biochem 121:868

    Article  CAS  Google Scholar 

  3. Asaga H, Nakashima K, Senshu T, Ishigami A, Yamada M (2001) Immunocytochemical localization of peptidylarginine deiminase in human eosinophils and neutrophils. J Leukoc Biol 70:46

    CAS  Google Scholar 

  4. Suzuki A, Yamada R, Yamamoto K (2007) Citrullination by peptidylarginine deiminase in rheumatoid arthritis. Ann N Y Acad Sci 1108:323

    Article  CAS  Google Scholar 

  5. Rogers GE (1962) Occurrence of citrulline in proteins. Nature 194:1149

    Article  CAS  Google Scholar 

  6. Rogers GE, Simmonds DH (1958) Content of citrulline and other amino-acids in a protein of hair follicles. Nature 182:186

    Article  CAS  Google Scholar 

  7. Giles JT, Fert-Bober J, Park JK, Bingham CO 3rd, Andrade F, Fox-Talbot K, Pappas D, Rosen A, van Eyk J, Bathon JM, Halushka MK (2012) Myocardial citrullination in rheumatoid arthritis: a correlative histopathologic study. Arthritis Res Ther 14:R39

    Google Scholar 

  8. Amin B (2014) Proteomics and post-translational modification studies in patients with multiple sclerosis. PhD Thesis, University of Tuebingen, p 115

    Google Scholar 

  9. Acharya NK, Nagele EP, Han M, Coretti NJ, DeMarshall C, Kosciuk MC, Boulos PA, Nagele RG (2012) Neuronal PAD4 expression and protein citrullination: possible role in production of autoantibodies associated with neurodegenerative disease. J Autoimmun 38:369

    Article  CAS  Google Scholar 

  10. Witalison EE, Thompson PR, Hofseth LJ (2015) Protein arginine deiminases and associated citrullination: physiological functions and diseases associated with dysregulation. Curr Drug Targets 16:700

    Article  CAS  Google Scholar 

  11. Assohou-Luty C, Raijmakers R, Benckhuijsen WE, Stammen-Vogelzangs J, de Ru A, van Veelen PA, Franken KL, Drijfhout JW, Pruijn GJ (2014) The human peptidylarginine deiminases type 2 and type 4 have distinct substrate specificities. Biochim Biophys Acta 1844:829

    Article  CAS  Google Scholar 

  12. Witalison EE, Cui X, Hofseth AB, Subramanian V, Causey CP, Thompson PR, Hofseth LJ (2015) Inhibiting protein arginine deiminases has antioxidant consequences. J Pharmacol Exp Ther 353:64

    Article  CAS  Google Scholar 

  13. Chavanas S, Mechin MC, Takahara H, Kawada A, Nachat R, Serre G, Simon M (2004) Comparative analysis of the mouse and human peptidylarginine deiminase gene clusters reveals highly conserved non-coding segments and a new human gene, PADI6. Gene 330:19

    Article  CAS  Google Scholar 

  14. Chang X, Yamada R, Suzuki A, Kochi Y, Sawada T, Yamamoto K (2005) Citrullination of fibronectin in rheumatoid arthritis synovial tissue. Rheumatology 44:1374

    Article  CAS  Google Scholar 

  15. Vossenaar ER, Zendman AJ, van Venrooij WJ, Pruijn GJ (2003) PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. Bioessays 25:1106

    Article  CAS  Google Scholar 

  16. McGraw WT, Potempa J, Farley D, Travis J (1999) Purification, characterization, and sequence analysis of a potential virulence factor from Porphyromonas gingivalis, peptidylarginine deiminase. Infect Immun 67:3248

    CAS  Google Scholar 

  17. Shirai H, Blundell TL, Mizuguchi K (2001) A novel superfamily of enzymes that catalyze the modification of guanidino groups. Trends Biochem Sci 26:465

    Article  CAS  Google Scholar 

  18. Guerrin M, Ishigami A, Mechin MC, Nachat R, Valmary S, Sebbag M, Simon M, Senshu T, Serre G (2003) cDNA cloning, gene organization and expression analysis of human peptidylarginine deiminase type I. Biochem J 370:167

    Article  CAS  Google Scholar 

  19. Lei H (2010) Protein hypercitrullination, a basic mechanism in demyelinating diseases. MSc Thesis, University of Toronto, p 115

    Google Scholar 

  20. Liu YL, Chiang YH, Liu GY, Hung HC (2011) Functional role of dimerization of human peptidylarginine deiminase 4 (PAD4). PLoS One 6:e21314

    Article  CAS  Google Scholar 

  21. Mohanan S, Cherrington BD, Horibata S, McElwee JL, Thompson PR, Coonrod SA (2012) Potential role of peptidylarginine deiminase enzymes and protein citrullination in cancer pathogenesis. Biochem Res Int 2012:895343

    Article  CAS  Google Scholar 

  22. Arita K, Hashimoto H, Shimizu T, Nakashima K, Yamada M, Sato M (2004) Structural basis for Ca2+-induced activation of human PAD4. Nat Struct Mol Biol 11:777

    Article  CAS  Google Scholar 

  23. van Beers JJ, Zendman AJ, Raijmakers R, Stammen-Vogelzangs J, Pruijn GJ (2013) Peptidylarginine deiminase expression and activity in PAD2 knock-out and PAD4-low mice. Biochimie 95:299

    Article  CAS  Google Scholar 

  24. Foulquier C, Sebbag M, Clavel C, Chapuy-Regaud S, Al Badine R, Mechin MC, Vincent C, Nachat R, Yamada M, Takahara H, Simon M, Guerrin M, Serre G (2007) Peptidyl arginine deiminase type 2 (PAD-2) and PAD-4 but not PAD-1, PAD-3, and PAD-6 are expressed in rheumatoid arthritis synovium in close association with tissue inflammation. Arthritis Rheumatol 56:3541

    Article  CAS  Google Scholar 

  25. Vossenaar ER, Radstake TR, van der Heijden A, van Mansum MA, Dieteren C, de Rooij DJ, Barrera P, Zendman AJ, van Venrooij WJ (2004) Expression and activity of citrullinating peptidylarginine deiminase enzymes in monocytes and macrophages. Ann Rheum Dis 63:373

    Article  CAS  Google Scholar 

  26. Rus’d AA, Ikejiri Y, Ono H, Yonekawa T, Shiraiwa M, Kawada A, Takahara H (1999) Molecular cloning of cDNAs of mouse peptidylarginine deiminase type I, type III and type IV, and the expression pattern of type I in mouse. Eur J Biochem 259:660

    Article  Google Scholar 

  27. Ishigami A, Maruyama N (2010) Importance of research on peptidylarginine deiminase and citrullinated proteins in age-related disease. Geriatr Gerontol Int 10(Suppl 1):S53

    Article  Google Scholar 

  28. Akihito-Ishigami HA, Takako O, Kyoichi A, Naoki M (2001) Peptidylarginine deiminase type I, type II, type III and type IV are expressed in rat epidermis. Biomed Res 22:63

    Article  Google Scholar 

  29. Wang Y, Li P, Wang S, Hu J, Chen XA, Wu J, Fisher M, Oshaben K, Zhao N, Gu Y, Wang D, Chen G, Wang Y (2012) Anticancer peptidylarginine deiminase (PAD) inhibitors regulate the autophagy flux and the mammalian target of rapamycin complex 1 activity. J Biol Chem 287:25941

    Article  CAS  Google Scholar 

  30. Gyorgy B, Toth E, Tarcsa E, Falus A, Buzas EI (2006) Citrullination: a posttranslational modification in health and disease. Int J Biochem Cell Biol 38:1662

    Article  CAS  Google Scholar 

  31. Pearton DJ, Dale BA, Presland RB (2002) Functional analysis of the profilaggrin N-terminal peptide: identification of domains that regulate nuclear and cytoplasmic distribution. J Invest Dermatol 119:661

    Article  CAS  Google Scholar 

  32. Resing KA, al-Alawi N, Blomquist C, Fleckman P, Dale BA (1993) Independent regulation of two cytoplasmic processing stages of the intermediate filament-associated protein filaggrin and role of Ca2+ in the second stage. J Biol Chem 268:25139

    CAS  Google Scholar 

  33. Ishida-Yamamoto A, Senshu T, Eady RA, Takahashi H, Shimizu H, Akiyama M, Iizuka H (2002) Sequential reorganization of cornified cell keratin filaments involving filaggrin-mediated compaction and keratin 1 deimination. J Invest Dermatol 118:282

    Article  CAS  Google Scholar 

  34. Simon M, Haftek M, Sebbag M, Montezin M, Girbal-Neuhauser E, Schmitt D, Serre G (1996) Evidence that filaggrin is a component of cornified cell envelopes in human plantar epidermis. Biochem J 317:173

    Article  CAS  Google Scholar 

  35. Mack JW, Steven AC, Steinert PM (1993) The mechanism of interaction of filaggrin with intermediate filaments. The ionic zipper hypothesis. J Mol Biol 232:50

    Article  CAS  Google Scholar 

  36. Manabe M, Sanchez M, Sun TT, Dale BA (1991) Interaction of filaggrin with keratin filaments during advanced stages of normal human epidermal differentiation and in ichthyosis vulgaris. Differentiation 48:43

    Article  CAS  Google Scholar 

  37. Kizawa K, Jinbo Y, Inoue T, Takahara H, Unno M, Heizmann CW, Izumi Y (2013) Human S100A3 tetramerization propagates Ca2+/Zn2+ binding states. Biochim Biophys Acta 1833:1712

    Article  CAS  Google Scholar 

  38. Kizawa K, Takahara H, Troxler H, Kleinert P, Mochida U, Heizmann CW (2008) Specific citrullination causes assembly of a globular S100A3 homotetramer: a putative Ca2+ modulator matures human hair cuticle. J Biol Chem 283:5004

    Article  CAS  Google Scholar 

  39. Unno M, Kinjo S, Kizawa K, Takahara H (2013) Crystallization and preliminary X-ray crystallographic analysis of human peptidylarginine deiminase type I. Acta Crystallogr Sect F Struct Biol Cryst Commun 69:1357

    Article  CAS  Google Scholar 

  40. Saijo S, Nagai A, Kinjo S, Mashimo R, Akimoto M, Kizawa K, Yabe-Wada T, Shimizu N, Takahara H, Unno M (2016) Monomeric form of peptidylarginine deiminase type I revealed by X-ray crystallography and small-angle X-ray scattering. J Mol Biol 428:3058

    Article  CAS  Google Scholar 

  41. Anzilotti C, Pratesi F, Tommasi C, Migliorini P (2010) Peptidylarginine deiminase 4 and citrullination in health and disease. Autoimmun Rev 9:158

    Article  CAS  Google Scholar 

  42. Rohrbach AS, Slade DJ, Thompson PR, Mowen KA (2012) Activation of PAD4 in NET formation. Front Immunol 3:360

    Article  Google Scholar 

  43. Wang S, Wang Y (2013) Peptidylarginine deiminases in citrullination, gene regulation, health and pathogenesis. Biochim Biophys Acta 1829:1126

    Article  CAS  Google Scholar 

  44. Cherrington BD, Morency E, Struble AM, Coonrod SA, Wakshlag JJ (2010) Potential role for peptidylarginine deiminase 2 (PAD2) in citrullination of canine mammary epithelial cell histones. PLoS One 5:e11768

    Article  CAS  Google Scholar 

  45. Cherrington BD, Zhang X, McElwee JL, Morency E, Anguish LJ, Coonrod SA (2012) Potential role for PAD2 in gene regulation in breast cancer cells. PLoS One 7:e41242

    Article  CAS  Google Scholar 

  46. Zhang X, Bolt M, Guertin MJ, Chen W, Zhang S, Cherrington BD, Slade DJ, Dreyton CJ, Subramanian V, Bicker KL, Thompson PR, Mancini MA, Lis JT, Coonrod SA (2012) Peptidylarginine deiminase 2-catalyzed histone H3 arginine 26 citrullination facilitates estrogen receptor alpha target gene activation. Proc Natl Acad Sci U S A 109:13331

    Article  CAS  Google Scholar 

  47. Darrah E, Rosen A, Giles JT, Andrade F (2012) Peptidylarginine deiminase 2, 3 and 4 have distinct specificities against cellular substrates: novel insights into autoantigen selection in rheumatoid arthritis. Ann Rheum Dis 71:92

    Article  CAS  Google Scholar 

  48. Slade DJ, Fang P, Dreyton CJ, Zhang Y, Fuhrmann J, Rempel D, Bax BD, Coonrod SA, Lewis HD, Guo M, Gross ML, Thompson PR (2015) Protein arginine deiminase 2 binds calcium in an ordered fashion: implications for inhibitor design. ACS Chem Biol 10:1043

    Article  CAS  Google Scholar 

  49. Ishigami A, Ohsawa T, Asaga H, Akiyama K, Kuramoto M, Maruyama N (2002) Human peptidylarginine deiminase type II: molecular cloning, gene organization, and expression in human skin. Arch Biochem Biophys 407:25

    Article  CAS  Google Scholar 

  50. Musse AA, Polverini E, Raijmakers R, Harauz G (2008) Kinetics of human peptidylarginine deiminase 2 (hPAD2)-reduction of Ca2+ dependence by phospholipids and assessment of proposed inhibition by paclitaxel side chains. Biochem Cell Biol 86:437

    Article  CAS  Google Scholar 

  51. Bozdag M, Dreker T, Henry C, Tosco P, Vallaro M, Fruttero R, Scozzafava A, Carta F, Supuran CT (2013) Novel small molecule protein arginine deiminase 4 (PAD4) inhibitors. Bioorg Med Chem Lett 23:715

    Article  CAS  Google Scholar 

  52. Mechin MC, Coudane F, Adoue V, Arnaud J, Duplan H, Charveron M, Schmitt AM, Takahara H, Serre G, Simon M (2010) Deimination is regulated at multiple levels including auto-deimination of peptidylarginine deiminases. Cell Mol Life Sci 67:1491

    Article  CAS  Google Scholar 

  53. Kanno T, Kawada A, Yamanouchi J, Yosida-Noro C, Yoshiki A, Shiraiwa M, Kusakabe M, Manabe M, Tezuka T, Takahara H (2000) Human peptidylarginine deiminase type III: molecular cloning and nucleotide sequence of the cDNA, properties of the recombinant enzyme, and immunohistochemical localization in human skin. J Invest Dermatol 115:813

    Article  CAS  Google Scholar 

  54. Chirivi RGS, van Rosmalen JWG, Jenniskens GJ, Pruijn GJ, JMH R (2013) Citrullination: a target for disease intervention in multiple sclerosis and other inflammatory diseases? J Clin Cell Immunol 4:146

    Article  CAS  Google Scholar 

  55. Rogers G, Winter B, McLaughlan C, Powell B, Nesci T (1997) Peptidylarginine deiminase of the hair follicle: characterization, localization, and function in keratinizing tissues. J Invest Dermatol 108:700

    Article  CAS  Google Scholar 

  56. Raijmakers R, Zendman AJ, Egberts WV, Vossenaar ER, Raats J, Soede-Huijbregts C, Rutjes FP, van Veelen PA, Drijfhout JW, Pruijn GJ (2007) Methylation of arginine residues interferes with citrullination by peptidylarginine deiminases in vitro. J Mol Biol 367:1118

    Article  CAS  Google Scholar 

  57. Lee SC, Kim IG, Marekov LN, O'Keefe EJ, Parry DA, Steinert PM (1993) The structure of human trichohyalin. Potential multiple roles as a functional EF-hand-like calcium-binding protein, a cornified cell envelope precursor, and an intermediate filament-associated (cross-linking) protein. J Biol Chem 268:12164

    CAS  Google Scholar 

  58. O'Keefe EJ, Hamilton EH, Lee SC, Steinert P (1993) Trichohyalin: a structural protein of hair, tongue, nail, and epidermis. J Invest Dermatol 101:65S

    Article  Google Scholar 

  59. Tarcsa E, Marekov LN, Mei G, Melino G, Lee SC, Steinert PM (1996) Protein unfolding by peptidylarginine deiminase. Substrate specificity and structural relationships of the natural substrates trichohyalin and filaggrin. J Biol Chem 271:30709

    Article  CAS  Google Scholar 

  60. Hsu CY, Henry J, Raymond AA, Mechin MC, Pendaries V, Nassar D, Hansmann B, Balica S, Burlet-Schiltz O, Schmitt AM, Takahara H, Paul C, Serre G, Simon M (2011) Deimination of human filaggrin-2 promotes its proteolysis by calpain 1. J Biol Chem 286:23222

    Article  CAS  Google Scholar 

  61. Ying S, Simon M, Serre G, Takahara H (2012) Peptidylarginine deiminases and protein deimination in skin physiopathology. In: O’Daly J (ed) Psoriasis — a systemic disease. InTech, Rijeka, Croatia, p 117

    Google Scholar 

  62. Nachat R, Mechin MC, Takahara H, Chavanas S, Charveron M, Serre G, Simon M (2005) Peptidylarginine deiminase isoforms 1–3 are expressed in the epidermis and involved in the deimination of K1 and filaggrin. J Invest Dermatol 124:384

    Article  CAS  Google Scholar 

  63. Mechin MC, Enji M, Nachat R, Chavanas S, Charveron M, Ishida-Yamamoto A, Serre G, Takahara H, Simon M (2005) The peptidylarginine deiminases expressed in human epidermis differ in their substrate specificities and subcellular locations. Cell Mol Life Sci 62:1984

    Article  CAS  Google Scholar 

  64. Kizawa K, Takahara H, Unno M, Heizmann CW (2011) S100 and S100 fused-type protein families in epidermal maturation with special focus on S100A3 in mammalian hair cuticles. Biochimie 93:2038

    Article  CAS  Google Scholar 

  65. Unno M, Kawasaki T, Takahara H, Heizmann CW, Kizawa K (2011) Refined crystal structures of human Ca2+/Zn2+-binding S100A3 protein characterized by two disulfide bridges. J Mol Biol 408:477

    Article  CAS  Google Scholar 

  66. Unno M, Kizawa K, Ishihara M, Takahara H (2012) Crystallization and preliminary X-ray crystallographic analysis of human peptidylarginine deiminase type III. Acta Crystallogr Sect F Struct Biol Cryst Commun 68:668

    Article  CAS  Google Scholar 

  67. Nakashima K, Hagiwara T, Ishigami A, Nagata S, Asaga H, Kuramoto M, Senshu T, Yamada M (1999) Molecular characterization of peptidylarginine deiminase in HL-60 cells induced by retinoic acid and 1α,25-dihydroxyvitamin D(3). J Biol Chem 274:27786

    Article  CAS  Google Scholar 

  68. Nakashima K, Hagiwara T, Yamada M (2002) Nuclear localization of peptidylarginine deiminase V and histone deimination in granulocytes. J Biol Chem 277:49562

    Article  CAS  Google Scholar 

  69. Baka Z, Gyorgy B, Geher P, Buzas EI, Falus A, Nagy G (2012) Citrullination under physiological and pathological conditions. Joint Bone Spine 79:431

    Article  CAS  Google Scholar 

  70. Arita K, Hashimoto H, Shimizu T, Yamada M, Sato M (2003) Crystallization and preliminary X-ray crystallographic analysis of human peptidylarginine deiminase V. Acta Crystallogr D Biol Crystallogr 59:2332

    Article  CAS  Google Scholar 

  71. Hagiwara T, Nakashima K, Hirano H, Senshu T, Yamada M (2002) Deimination of arginine residues in nucleophosmin/B23 and histones in HL-60 granulocytes. Biochem Biophys Res Commun 290:979

    Article  CAS  Google Scholar 

  72. Arita K, Shimizu T, Hashimoto H, Hidaka Y, Yamada M, Sato M (2006) Structural basis for histone N-terminal recognition by human peptidylarginine deiminase 4. Proc Natl Acad Sci U S A 103:5291

    Article  CAS  Google Scholar 

  73. Moscarello MA, Lei H, Mastronardi FG, Winer S, Tsui H, Li Z, Ackerley C, Zhang L, Raijmakers R, Wood DD (2013) Inhibition of peptidyl-arginine deiminases reverses protein-hypercitrullination and disease in mouse models of multiple sclerosis. Dis Model Mech 6:467

    Article  CAS  Google Scholar 

  74. Jones JE, Causey CP, Knuckley B, Slack-Noyes JL, Thompson PR (2009) Protein arginine deiminase 4 (PAD4): Current understanding and future therapeutic potential. Curr Opin Drug Discov Devel 12:616

    CAS  Google Scholar 

  75. Mechin MC, Nachat R, Coudane F, Adoue V, Arnaud J, Serre G, Simon M (2011) Deimination or citrullination, a post-translational modification with many physiological and pathophysiological facets. Med Sci (Paris) 27:49

    Article  Google Scholar 

  76. Jang B, Jeon YC, Choi JK, Park M, Kim JI, Ishigami A, Maruyama N, Carp RI, Kim YS, Choi EK (2012) Peptidylarginine deiminase modulates the physiological roles of enolase via citrullination: links between altered multifunction of enolase and neurodegenerative diseases. Biochem J 445:183

    Article  CAS  Google Scholar 

  77. Andrade F, Darrah E, Gucek M, Cole RN, Rosen A, Zhu X (2010) Autocitrullination of human peptidyl arginine deiminase type 4 regulates protein citrullination during cell activation. Arthritis Rheumatol 62:1630

    Article  CAS  Google Scholar 

  78. Wright PW, Bolling LC, Calvert ME, Sarmento OF, Berkeley EV, Shea MC, Hao Z, Jayes FC, Bush LA, Shetty J, Shore AN, Reddi PP, Tung KS, Samy E, Allietta MM, Sherman NE, Herr JC, Coonrod SA (2003) ePAD, an oocyte and early embryo-abundant peptidylarginine deiminase-like protein that localizes to egg cytoplasmic sheets. Dev Biol 256:73

    Article  CAS  Google Scholar 

  79. Coonrod SA, Naaby-Hansen S, Shetty J, Shibahara H, Chen M, White JM, Herr JC (1999) Treatment of mouse oocytes with PI-PLC releases 70-kDa (pI 5) and 35- to 45-kDa (pI 5.5) protein clusters from the egg surface and inhibits sperm-oolemma binding and fusion. Dev Biol 207:334

    Article  CAS  Google Scholar 

  80. Choi M, Lee OH, Jeon S, Park M, Lee DR, Ko JJ, Yoon TK, Rajkovic A, Choi Y (2010) The oocyte-specific transcription factor, Nobox, regulates the expression of Pad6, a peptidylarginine deiminase in the oocyte. FEBS Lett 584:3629

    Article  CAS  Google Scholar 

  81. Zhang J, Dai J, Zhao E, Lin Y, Zeng L, Chen J, Zheng H, Wang Y, Li X, Ying K, Xie Y, Mao Y (2004) cDNA cloning, gene organization and expression analysis of human peptidylarginine deiminase type VI. Acta Biochim Pol 51:1051

    CAS  Google Scholar 

  82. Liu M, Oh A, Calarco P, Yamada M, Coonrod SA, Talbot P (2005) Peptidylarginine deiminase (PAD) is a mouse cortical granule protein that plays a role in preimplantation embryonic development. Reprod Biol Endocrinol 3:42

    Article  CAS  Google Scholar 

  83. Mechin MC, Sebbag M, Arnaud J, Nachat R, Foulquier C, Adoue V, Coudane F, Duplan H, Schmitt AM, Chavanas S, Guerrin M, Serre G, Simon M (2007) Update on peptidylarginine deiminases and deimination in skin physiology and severe human diseases. Int J Cosmet Sci 29:147

    Article  CAS  Google Scholar 

  84. Horibata S, Coonrod SA, Cherrington BD (2012) Role for peptidylarginine deiminase enzymes in disease and female reproduction. J Reprod Dev 58:274

    Article  CAS  Google Scholar 

  85. Esposito G, Vitale AM, Leijten FP, Strik AM, Koonen-Reemst AM, Yurttas P, Robben TJ, Coonrod S, Gossen JA (2007) Peptidylarginine deiminase (PAD) 6 is essential for oocyte cytoskeletal sheet formation and female fertility. Mol Cell Endocrinol 273:25

    Article  CAS  Google Scholar 

  86. Yurttas P, Vitale AM, Fitzhenry RJ, Cohen-Gould L, Wu W, Gossen JA, Coonrod SA (2008) Role for PADI6 and the cytoplasmic lattices in ribosomal storage in oocytes and translational control in the early mouse embryo. Development 135:2627

    Article  CAS  Google Scholar 

  87. Kan R, Yurttas P, Kim B, Jin M, Wo L, Lee B, Gosden R, Coonrod SA (2011) Regulation of mouse oocyte microtubule and organelle dynamics by PADI6 and the cytoplasmic lattices. Dev Biol 350:311

    Article  CAS  Google Scholar 

  88. Rose R, Rose M, Ottmann C (2012) Identification and structural characterization of two 14-3-3 binding sites in the human peptidylarginine deiminase type VI. J Struct Biol 180:65

    Article  CAS  Google Scholar 

  89. Taki HTG, Knuckley B, Thompson PR, Vugrek O, Hirata K, Miyahara T, Shinoda K, Hounoki H, Sugiyama E, Usui I, Urakaze M, Tobe K, Ishimoto T, Inoue R, Tanaka A, Mano H, Ogawa H, Mori H (2011) Purification of enzymatically inactive peptidylarginine deiminase type 6 from mouse ovary that reveals hexameric structure different from other dimeric isoform. Adv Biosci Biotechnol 2:304

    Article  CAS  Google Scholar 

  90. Bridges D, Moorhead GB (2004) 14-3-3 proteins: a number of functions for a numbered protein. Sci STKE 2004(242):re10

    Google Scholar 

  91. Fearon WR (1939) The carbamido diacetyl reaction: a test for citrulline. Biochem J 33:902

    Article  CAS  Google Scholar 

  92. Rogers GE, Harding HW, Llewellyn-Smith IJ (1977) The origin of citrulline-containing proteins in the hair follicle and the chemical nature of trichohyalin, an intracellular precursor. Biochim Biophys Acta 495:159

    Article  CAS  Google Scholar 

  93. Kubilus J, Waitkus RF, Baden HP (1980) Partial purification and specificity of an arginine-converting enzyme from bovine epidermis. Biochim Biophys Acta 615:246

    Article  CAS  Google Scholar 

  94. Fujisaki M, Sugawara K (1981) Properties of peptidylarginine deiminase from the epidermis of newborn rats. J Biochem 89:257

    Article  CAS  Google Scholar 

  95. Sugawara K, Oikawa Y, Ouchi T (1982) Identification and properties of peptidylarginine deiminase from rabbit skeletal muscle. J Biochem 91:1065

    Article  CAS  Google Scholar 

  96. Kubilus J, Baden HP (1983) Purification and properties of a brain enzyme which deiminates proteins. Biochim Biophys Acta 745:285

    Article  CAS  Google Scholar 

  97. Takahara H, Okamoto H, Sugawara K (1986) Calcium-dependent properties of peptidylarginine deiminase from rabbit skeletal muscle. Agric Biol Chem 50:2899

    CAS  Google Scholar 

  98. Watanabe K, Akiyama K, Hikichi K, Ohtsuka R, Okuyama A, Senshu T (1988) Combined biochemical and immunochemical comparison of peptidylarginine deiminases present in various tissues. Biochim Biophys Acta 966:375

    Article  CAS  Google Scholar 

  99. Terakawa H, Takahara H, Sugawara K (1991) Three types of mouse peptidylarginine deiminase: characterization and tissue distribution. J Biochem 110:661

    Article  CAS  Google Scholar 

  100. Takahara H, Tsuchida M, Kusubata M, Akutsu K, Tagami S, Sugawara K (1989) Peptidylarginine deiminase of the mouse. Distribution, properties, and immunocytochemical localization. J Biol Chem 264:13361

    CAS  Google Scholar 

  101. Watanabe K, Senshu T (1989) Isolation and characterization of cDNA clones encoding rat skeletal muscle peptidylarginine deiminase. J Biol Chem 264:15255

    CAS  Google Scholar 

  102. Senshu T, Akiyama K, Nagata S, Watanabe K, Hikichi K (1989) Peptidylarginine deiminase in rat pituitary: sex difference, estrous cycle-related changes, and estrogen dependence. Endocrinology 124:2666

    Article  CAS  Google Scholar 

  103. Asaga H, Yamada M, Senshu T (1998) Selective deimination of vimentin in calcium ionophore-induced apoptosis of mouse peritoneal macrophages. Biochem Biophys Res Commun 243:641

    Article  CAS  Google Scholar 

  104. Hensen SM, Pruijn GJ (2014) Methods for the detection of peptidylarginine deiminase (PAD) activity and protein citrullination. Mol Cell Proteomics 13:388

    Article  CAS  Google Scholar 

  105. Kearney PL, Bhatia M, Jones NG, Yuan L, Glascock MC, Catchings KL, Yamada M, Thompson PR (2005) Kinetic characterization of protein arginine deiminase 4: a transcriptional corepressor implicated in the onset and progression of rheumatoid arthritis. Biochemistry 44:10570

    Article  CAS  Google Scholar 

  106. Bicker KL, Subramanian V, Chumanevich AA, Hofseth LJ, Thompson PR (2012) Seeing citrulline: development of a phenylglyoxal-based probe to visualize protein citrullination. J Am Chem Soc 134:17015

    Article  CAS  Google Scholar 

  107. Knuckley B, Causey CP, Jones JE, Bhatia M, Dreyton CJ, Osborne TC, Takahara H, Thompson PR (2010) Substrate specificity and kinetic studies of PADs 1, 3, and 4 identify potent and selective inhibitors of protein arginine deiminase 3. Biochemistry 49:4852

    Article  CAS  Google Scholar 

  108. Takahara H, Oikawa Y, Sugawara K (1983) Purification and characterization of peptidylarginine deiminase from rabbit skeletal muscle. J Biochem 94:1945

    Article  CAS  Google Scholar 

  109. Knuckley B, Bhatia M, Thompson PR (2007) Protein arginine deiminase 4: evidence for a reverse protonation mechanism. Biochemistry 46:6578

    Article  CAS  Google Scholar 

  110. Smith BC, Denu JM (2009) Chemical mechanisms of histone lysine and arginine modifications. Biochim Biophys Acta 1789:45

    Article  CAS  Google Scholar 

  111. Rodriguez SB, Stitt BL, Ash DE (2009) Expression of peptidylarginine deiminase from Porphyromonas gingivalis in Escherichia coli: enzyme purification and characterization. Arch Biochem Biophys 488:14

    Article  CAS  Google Scholar 

  112. Ke Z, Wang S, Xie D, Zhang Y (2009) Born-Oppenheimer ab initio QM/MM molecular dynamics simulations of the hydrolysis reaction catalyzed by protein arginine deiminase 4. J Phys Chem B 113:16705

    Article  CAS  Google Scholar 

  113. Galkin A, Lu X, Dunaway-Mariano D, Herzberg O (2005) Crystal structures representing the Michaelis complex and the thiouronium reaction intermediate of Pseudomonas aeruginosa arginine deiminase. J Biol Chem 280:34080

    Article  CAS  Google Scholar 

  114. Van Steendam K, Tilleman K, De Ceuleneer M, De Keyser F, Elewaut D, Deforce D (2010) Citrullinated vimentin as an important antigen in immune complexes from synovial fluid of rheumatoid arthritis patients with antibodies against citrullinated proteins. Arthritis Res Ther 12:R132

    Article  CAS  Google Scholar 

  115. Nicholas AP, Sambandam T, Echols JD, Tourtellotte WW (2004) Increased citrullinated glial fibrillary acidic protein in secondary progressive multiple sclerosis. J Comp Neurol 473:128

    Article  CAS  Google Scholar 

  116. Boggs JM, Rangaraj G, Koshy KM, Ackerley C, Wood DD, Moscarello MA (1999) Highly deiminated isoform of myelin basic protein from multiple sclerosis brain causes fragmentation of lipid vesicles. J Neurosci Res 57:529

    Article  CAS  Google Scholar 

  117. Senshu T, Kan S, Ogawa H, Manabe M, Asaga H (1996) Preferential deimination of keratin K1 and filaggrin during the terminal differentiation of human epidermis. Biochem Biophys Res Commun 225:712

    Article  CAS  Google Scholar 

  118. Mastronardi FG, Wood DD, Mei J, Raijmakers R, Tseveleki V, Dosch HM, Probert L, Casaccia-Bonnefil P, Moscarello MA (2006) Increased citrullination of histone H3 in multiple sclerosis brain and animal models of demyelination: a role for tumor necrosis factor-induced peptidylarginine deiminase 4 translocation. J Neurosci 26:11387

    Article  CAS  Google Scholar 

  119. Ishigami A, Ohsawa T, Hiratsuka M, Taguchi H, Kobayashi S, Saito Y, Murayama S, Asaga H, Toda T, Kimura N, Maruyama N (2005) Abnormal accumulation of citrullinated proteins catalyzed by peptidylarginine deiminase in hippocampal extracts from patients with Alzheimer’s disease. J Neurosci Res 80:120

    Article  CAS  Google Scholar 

  120. Hermansson M, Artemenko K, Ossipova E, Eriksson H, Lengqvist J, Makrygiannakis D, Catrina AI, Nicholas AP, Klareskog L, Savitski M, Zubarev RA, Jakobsson PJ (2010) MS analysis of rheumatoid arthritic synovial tissue identifies specific citrullination sites on fibrinogen. Proteomics Clin Appl 4:511

    CAS  Google Scholar 

  121. Stensland M, Holm A, Kiehne A, Fleckenstein B (2009) Targeted analysis of protein citrullination using chemical modification and tandem mass spectrometry. Rapid Commun Mass Spectrom 23:2754

    Article  CAS  Google Scholar 

  122. Nakayama-Hamada M, Suzuki A, Kubota K, Takazawa T, Ohsaka M, Kawaida R, Ono M, Kasuya A, Furukawa H, Yamada R, Yamamoto K (2005) Comparison of enzymatic properties between hPADI2 and hPADI4. Biochem Biophys Res Commun 327:192

    Article  CAS  Google Scholar 

  123. Slack JL, Jones LE, Jr., Bhatia MM, Thompson PR (2011) Autodeimination of protein arginine deiminase 4 alters protein-protein interactions but not activity. Biochemistry 50:3997

    Google Scholar 

  124. Slack JL, Causey CP, Thompson PR (2011) Protein arginine deiminase 4: a target for an epigenetic cancer therapy. Cell Mol Life Sci 68:709

    Article  CAS  Google Scholar 

  125. Slack JL, Causey CP, Luo Y, Thompson PR (2011) Development and use of clickable activity based protein profiling agents for protein arginine deiminase 4. ACS Chem Biol 6:466

    Article  CAS  Google Scholar 

  126. Suzuki A, Yamada R, Chang X, Tokuhiro S, Sawada T, Suzuki M, Nagasaki M, Nakayama-Hamada M, Kawaida R, Ono M, Ohtsuki M, Furukawa H, Yoshino S, Yukioka M, Tohma S, Matsubara T, Wakitani S, Teshima R, Nishioka Y, Sekine A, Iida A, Takahashi A, Tsunoda T, Nakamura Y, Yamamoto K (2003) Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet 34:395

    Article  CAS  Google Scholar 

  127. Lu J, Goldstein KM, Chen P, Huang S, Gelbert LM, Nagpal S (2005) Transcriptional profiling of keratinocytes reveals a vitamin D-regulated epidermal differentiation network. J Invest Dermatol 124:778

    Article  CAS  Google Scholar 

  128. Chavanas S, Adoue V, Mechin MC, Ying S, Dong S, Duplan H, Charveron M, Takahara H, Serre G, Simon M (2008) Long-range enhancer associated with chromatin looping allows AP-1 regulation of the peptidylarginine deiminase 3 gene in differentiated keratinocyte. PLoS One 3:e3408

    Article  CAS  Google Scholar 

  129. Adoue V, Chavanas S, Coudane F, Mechin MC, Caubet C, Ying S, Dong S, Duplan H, Charveron M, Takahara H, Serre G, Simon M (2008) Long-range enhancer differentially regulated by c-Jun and JunD controls peptidylarginine deiminase-3 gene in keratinocytes. J Mol Biol 384:1048

    Article  CAS  Google Scholar 

  130. Bhattacharya SK, Crabb JS, Bonilha VL, Gu X, Takahara H, Crabb JW (2006) Proteomics implicates peptidyl arginine deiminase 2 and optic nerve citrullination in glaucoma pathogenesis. Invest Ophthalmol Vis Sci 47:2508

    Article  Google Scholar 

  131. Nagata S, Uehara T, Inoue K, Senshu T (1992) Increased peptidylarginine deiminase expression during induction of prolactin biosynthesis in a growth-hormone-producing rat pituitary cell line, MtT/S. J Cell Physiol 150:426

    Article  CAS  Google Scholar 

  132. Takahara H, Kusubata M, Tsuchida M, Kohsaka T, Tagami S, Sugawara K (1992) Expression of peptidylarginine deiminase in the uterine epithelial cells of mouse is dependent on estrogen. J Biol Chem 267:520

    CAS  Google Scholar 

  133. Arai T, Kusubata M, Kohsaka T, Shiraiwa M, Sugawara K, Takahara H (1995) Mouse uterus peptidylarginine deiminase is expressed in decidual cells during pregnancy. J Cell Biochem 58:269

    Article  CAS  Google Scholar 

  134. Dong S, Zhang Z, Takahara H (2007) Estrogen-enhanced peptidylarginine deiminase type IV gene (PADI4) expression in MCF-7 cells is mediated by estrogen receptor-alpha-promoted transfactors activator protein-1, nuclear factor-Y, and Sp1. Mol Endocrinol 21:1617

    Article  CAS  Google Scholar 

  135. Denis H, Deplus R, Putmans P, Yamada M, Metivier R, Fuks F (2009) Functional connection between deimination and deacetylation of histones. Mol Cell Biol 29:4982

    Article  CAS  Google Scholar 

  136. Knipp M, Vasak M (2000) A colorimetric 96-well microtiter plate assay for the determination of enzymatically formed citrulline. Anal Biochem 286:257

    Article  CAS  Google Scholar 

  137. Rahmatullah M, Boyde TR (1980) Improvements in the determination of urea using diacetyl monoxime; methods with and without deproteinisation. Clin Chim Acta 107:3

    Article  CAS  Google Scholar 

  138. Zendman AJ, Raijmakers R, Nijenhuis S, Vossenaar ER, Tillaart M, Chirivi RG, Raats JM, van Venrooij WJ, Drijfhout JW, Pruijn GJ (2007) ABAP: antibody-based assay for peptidylarginine deiminase activity. Anal Biochem 369:232

    Article  CAS  Google Scholar 

  139. Raats JM, Wijnen EM, Pruijn GJ, van den Hoogen FH, van Venrooij WJ (2003) Recombinant human monoclonal autoantibodies specific for citrulline-containing peptides from phage display libraries derived from patients with rheumatoid arthritis. J Rheumatol 30:1696

    CAS  Google Scholar 

  140. Deraos G, Chatzantoni K, Matsoukas MT, Tselios T, Deraos S, Katsara M, Papathanasopoulos P, Vynios D, Apostolopoulos V, Mouzaki A, Matsoukas J (2008) Citrullination of linear and cyclic altered peptide ligands from myelin basic protein (MBP(87-99)) epitope elicits a Th1 polarized response by T cells isolated from multiple sclerosis patients: implications in triggering disease. J Med Chem 51:7834

    Article  CAS  Google Scholar 

  141. Liao YF, Hsieh HC, Liu GY, Hung HC (2005) A continuous spectrophotometric assay method for peptidylarginine deiminase type 4 activity. Anal Biochem 347:176

    Article  CAS  Google Scholar 

  142. Chikuma T, Yamada M, Tsuda A, Yamamoto M, Nakashima K, Yajima R, Kato T (2000) A highly sensitive high-performance liquid chromatography-fluorometric method for the assay of peptidylarginine deiminase activity. Anal Biochem 285:230

    Article  CAS  Google Scholar 

  143. Wang Q, Priestman MA, Lawrence DS (2013) Monitoring of protein arginine deiminase activity by using fluorescence quenching: multicolor visualization of citrullination. Angew Chem Int Ed Engl 52:2323

    Article  CAS  Google Scholar 

  144. Zhang J, Goodlett DR, Quinn JF, Peskind E, Kaye JA, Zhou Y, Pan C, Yi E, Eng J, Wang Q, Aebersold RH, Montine TJ (2005) Quantitative proteomics of cerebrospinal fluid from patients with Alzheimer's disease. J Alzheimers Dis 7:125

    Article  CAS  Google Scholar 

  145. Wildeman E, Pires MM (2013) Facile fluorescence-based detection of PAD4-mediated citrullination. Chembiochem 14:963

    Article  CAS  Google Scholar 

  146. Shelef MA, Sokolove J, Lahey LJ, Wagner CA, Sackmann EK, Warner TF, Wang Y, Beebe DJ, Robinson WH, Huttenlocher A (2014) Peptidylarginine deiminase 4 contributes to tumor necrosis factor alpha-induced inflammatory arthritis. Arthritis Rheumatol 66:1482

    Article  CAS  Google Scholar 

  147. Bawadekar M, Gendron-Fitzpatrick A, Rebernick R, Shim D, Warner TF, Nicholas AP, Lundblad LK, Thompson PR, Shelef MA (2016) Tumor necrosis factor alpha, citrullination, and peptidylarginine deiminase 4 in lung and joint inflammation. Arthritis Res Ther 18:173

    Article  Google Scholar 

  148. Guo Q, Fast W (2011) Citrullination of inhibitor of growth 4 (ING4) by peptidylarginine deminase 4 (PAD4) disrupts the interaction between ING4 and p53. J Biol Chem 286:17069

    Article  CAS  Google Scholar 

  149. Guo J, Qian L, Li XP, Li XM, Wang GS, Fang X (2013) Peptidyl arginine deiminase 4 participates in the pathogenesis of rheumatoid arthritis by influencing histone methylation. Zhonghua Nei Ke Za Zhi 52:928

    CAS  Google Scholar 

  150. Bates IR, Libich DS, Wood DD, Moscarello MA, Harauz G (2002) An Arg/Lys→Gln mutant of recombinant murine myelin basic protein as a mimic of the deiminated form implicated in multiple sclerosis. Protein Expr Purif 25:330

    Article  CAS  Google Scholar 

  151. Calabrese R, Zampieri M, Mechelli R, Annibali V, Guastafierro T, Ciccarone F, Coarelli G, Umeton R, Salvetti M, Caiafa P (2012) Methylation-dependent PAD2 upregulation in multiple sclerosis peripheral blood. Mult Scler 18:299

    Article  CAS  Google Scholar 

  152. Jang B, Ishigami A, Maruyama N, Carp RI, Kim YS, Choi EK (2013) Peptidylarginine deiminase and protein citrullination in prion diseases: strong evidence of neurodegeneration. Prion 7:42

    Article  CAS  Google Scholar 

  153. Ishigami A, Masutomi H, Handa S, Nakamura M, Nakaya S, Uchida Y, Saito Y, Murayama S, Jang B, Jeon YC, Choi EK, Kim YS, Kasahara Y, Maruyama N, Toda T (2015) Mass spectrometric identification of citrullination sites and immunohistochemical detection of citrullinated glial fibrillary acidic protein in Alzheimer’s disease brains. J Neurosci Res 93:1664

    Article  CAS  Google Scholar 

  154. Struyf S, Noppen S, Loos T, Mortier A, Gouwy M, Verbeke H, Huskens D, Luangsay S, Parmentier M, Geboes K, Schols D, Van Damme J, Proost P (2009) Citrullination of CXCL12 differentially reduces CXCR4 and CXCR7 binding with loss of inflammatory and anti-HIV-1 activity via CXCR4. J Immunol 182:666

    Article  CAS  Google Scholar 

  155. McElwee JL, Mohanan S, Griffith OL, Breuer HC, Anguish LJ, Cherrington BD, Palmer AM, Howe LR, Subramanian V, Causey CP, Thompson PR, Gray JW, Coonrod SA (2012) Identification of PADI2 as a potential breast cancer biomarker and therapeutic target. BMC Cancer 12:500

    Article  CAS  Google Scholar 

  156. Ulivi P, Mercatali L, Casoni GL, Scarpi E, Bucchi L, Silvestrini R, Sanna S, Monteverde M, Amadori D, Poletti V, Zoli W (2013) Multiple marker detection in peripheral blood for NSCLC diagnosis. PLoS One 8:e57401

    Article  CAS  Google Scholar 

  157. Pritzker LB, Moscarello MA (1998) A novel microtubule independent effect of paclitaxel: the inhibition of peptidylarginine deiminase from bovine brain. Biochim Biophys Acta 1388:154

    Article  CAS  Google Scholar 

  158. Hidaka Y, Hagiwara T, Yamada M (2005) Methylation of the guanidino group of arginine residues prevents citrullination by peptidylarginine deiminase IV. FEBS Lett 579:4088

    Article  CAS  Google Scholar 

  159. Luo Y, Arita K, Bhatia M, Knuckley B, Lee YH, Stallcup MR, Sato M, Thompson PR (2006) Inhibitors and inactivators of protein arginine deiminase 4: functional and structural characterization. Biochemistry 45:11727

    Article  CAS  Google Scholar 

  160. Stone EM, Schaller TH, Bianchi H, Person MD, Fast W (2005) Inactivation of two diverse enzymes in the amidinotransferase superfamily by 2-chloroacetamidine: dimethylargininase and peptidylarginine deiminase. Biochemistry 44:13744

    Article  CAS  Google Scholar 

  161. Luo Y, Knuckley B, Lee YH, Stallcup MR, Thompson PR (2006) A fluoroacetamidine-based inactivator of protein arginine deiminase 4: design, synthesis, and in vitro and in vivo evaluation. J Am Chem Soc 128:1092

    Article  CAS  Google Scholar 

  162. Luo Y, Knuckley B, Bhatia M, Pellechia PJ, Thompson PR (2006) Activity-based protein profiling reagents for protein arginine deiminase 4 (PAD4): synthesis and in vitro evaluation of a fluorescently labeled probe. J Am Chem Soc 128:14468

    Article  CAS  Google Scholar 

  163. Jones JE, Slack JL, Fang P, Zhang X, Subramanian V, Causey CP, Coonrod SA, Guo M, Thompson PR (2012) Synthesis and screening of a haloacetamidine containing library to identify PAD4 selective inhibitors. ACS Chem Biol 7:160

    Article  CAS  Google Scholar 

  164. Dreyton CJ, Jones JE, Knuckley BA, Subramanian V, Anderson ED, Brown SJ, Fernandez-Vega V, Eberhart C, Spicer T, Zuhl AM, Ferguson J, Speers AE, Wang C, Boger DL, Thompson P, Cravatt BF, Hodder P, Rosen H (2010) Optimization and characterization of a pan protein arginine deiminase (PAD) inhibitor. In: Probe Reports from the NIH Molecular Libraries Program. Bethesda, MD, USA

    Google Scholar 

  165. Knuckley B, Luo Y, Thompson PR (2008) Profiling Protein Arginine Deiminase 4 (PAD4): a novel screen to identify PAD4 inhibitors. Bioorg Med Chem 16:739

    Article  CAS  Google Scholar 

  166. Causey CP, Jones JE, Slack JL, Kamei D, Jones LE, Subramanian V, Knuckley B, Ebrahimi P, Chumanevich AA, Luo Y, Hashimoto H, Sato M, Hofseth LJ, Thompson PR (2011) The development of N-alpha-(2-carboxyl)benzoyl-N(5)-(2-fluoro-1-iminoethyl)-l-ornithine amide (o-F-amidine) and N-alpha-(2-carboxyl)benzoyl-N(5)-(2-chloro-1-iminoethyl)-l-ornithine amide (o-Cl-amidine) as second generation protein arginine deiminase (PAD) inhibitors. J Med Chem 54:6919

    Article  CAS  Google Scholar 

  167. Witalison EE, Cui X, Causey CP, Thompson PR, Hofseth LJ (2015) Molecular targeting of protein arginine deiminases to suppress colitis and prevent colon cancer. Oncotarget 6:36053

    Google Scholar 

  168. Wang H, Xu B, Zhang X, Zheng Y, Zhao Y, Chang X (2016) PADI2 gene confers susceptibility to breast cancer and plays tumorigenic role via ACSL4, BINC3 and CA9 signaling. Cancer Cell Int 16:61

    Article  Google Scholar 

  169. Mohanan S, Horibata S, McElwee JL, Dannenberg AJ, Coonrod SA (2013) Identification of macrophage extracellular trap-like structures in mammary gland adipose tissue: a preliminary study. Front Immunol 4:67

    Article  CAS  Google Scholar 

  170. Wood DD, Moscarello MA (1989) The isolation, characterization, and lipid-aggregating properties of a citrulline containing myelin basic protein. J Biol Chem 264:5121

    CAS  Google Scholar 

  171. Nomura K (1992) Specificity and mode of action of the muscle-type protein-arginine deiminase. Arch Biochem Biophys 293:362

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bushra Amin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Amin, B., Voelter, W. (2017). Human Deiminases: Isoforms, Substrate Specificities, Kinetics, and Detection. In: Kinghorn, A., Falk, H., Gibbons, S., Kobayashi, J. (eds) Progress in the Chemistry of Organic Natural Products 106. Progress in the Chemistry of Organic Natural Products, vol 106. Springer, Cham. https://doi.org/10.1007/978-3-319-59542-9_2

Download citation

Publish with us

Policies and ethics