Skip to main content

The Potential of Plants and Seeds in DNA-Based Information Storage

  • Chapter
  • First Online:
Understanding Information

Abstract

New approaches for data archiving are required due to a constant increase in digital information production and lack of a capacitive, low maintenance storage medium. High-density information encoding and longevity are the two important advantages which have recently made DNA an attractive target for information storage. However, creating new copies of the same encoded information by producing new, artificial DNA sequences is not financially viable. Moreover, a naked DNA molecule can be greatly affected by environmental influences, thus resulting in DNA mutations and changes in the stored information. Our approach demonstrates the great potential of plants and seeds in circumventing these drawbacks. It shows that artificially encoded data can be stored and multiplied within plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Python. https://www.python.org/. Accessed: 2016-06-30.

  2. 2.

    Plant-based data storage project. http://www.storing-data-into-living-plant.net/

  3. 3.

    Global crop diversity trust. https://www.croptrust.org/what-we-do/svalbard-global-seed-vault/. Accessed: 2016-07-26.

References

  • Agacka M, Depta A, Börner M, Doroszewska T, Hay FR, Börner A (2013) Viability of nicotiana spp. seeds stored under ambient temperature. Seed Sci Technol 41(3):474–478

    Article  Google Scholar 

  • Ailenberg M, Rotstein OD (2009) An improved Huffman coding method for archiving text, images, and music characters in DNA. Biotechniques 47(3):747

    Article  Google Scholar 

  • Ajwani D, Malinger I, Meyer U, Toledo S (2008) Characterizing the performance of flash memory storage devices and its impact on algorithm design. In: Proceedings of the 7th International conference on experimental algorithms (WEA’08), Provincetown, pp 208–219

    Google Scholar 

  • Anchordoquy TJ, Molina MC (2007) Preservation of DNA. Cell Preserv Technol 5(4):180–188

    Article  Google Scholar 

  • Ausländer S, Fussenegger M (2014) Dynamic genome engineering in living cells. Science 346(6211):813–814

    Article  Google Scholar 

  • Bombarely A, Rosli HG, Vrebalov J, Moffett P, Mueller LA, Martin GB (2012) A draft genome sequence of Michaelicotiana benthamiana to enhance molecular plant-microbe biology research. Mol Plant-Microbe Interact 25(12):1523–1530

    Article  Google Scholar 

  • Bonnet J, Colotte M, Coudy D, Couallier V, Portier J, Morin B, Tuffet S (2010) Chain and conformation stability of solid-state DNA: implications for room temperature storage. Nucleic Acids Res 38(5):1531–1546

    Article  Google Scholar 

  • Brand S (2000) Clock of the long now: time and responsibility. Basic Books, New York

    Google Scholar 

  • Church GM, Gao Y, Kosuri S (2012) Next-generation digital information storage in DNA. Science 337(6102):1628–1628

    Article  Google Scholar 

  • Cisco (2016) The zettabyte era: trends and analysis. White paper, Cisco Systems, Inc. Available via http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html. Accessed 26 Nov 2016

  • Clelland CT, Risca V, Bancroft C (1999) Hiding messages in DNA microdots. Nature 399(6736):533–534

    Article  Google Scholar 

  • Clermont D, Santoni S, Saker S, Gomard M, Gardais E, Bizet C (2014) Assessment of DNA encapsulation, a new room-temperature DNA storage method. Biopreserv Biobanking 12(3):176–183

    Article  Google Scholar 

  • Colotte M, Coudy D, Tuffet S, Bonnet J (2011) Adverse effect of air exposure on the stability of DNA stored at room temperature. Biopreserv Biobanking 9(1):47–50

    Article  Google Scholar 

  • Cox JPL (2001) Long-term data storage in DNA. Trends Biotechnol 19(7):247–250

    Article  Google Scholar 

  • Davis J (1996) Microvenus. Art J 55(1):70–74

    Article  Google Scholar 

  • Faize M, Faize L, Burgos L (2010) Using quantitative real-time PCR to detect chimeras in transgenic tobacco and apricot and to monitor their dissociation. BMC Biotechnol 10(1):53

    Article  Google Scholar 

  • Farzadfard F, Lu TK (2014) Genomically encoded analog memory with precise in vivo DNA writing in living cell populations. Science 346(6211):1256272

    Article  Google Scholar 

  • Fister K, Fister I, Murovec J, Bohanec B (2017) DNA labelling of varieties covered by patent protection: a new solution for managing intellectual property rights in the seed industry. Transgenic Res 26(1):87–95

    Article  Google Scholar 

  • Gant JF, Reinsel D, Chute C, Schlichting W, McArthur J, Minton S, Xheneti I, Toncheva A, Manfrediz A (2007) The expanding digital universe. White paper, International Data Corporation. Available via https://web.archive.org/web/20130310100607/http://www.emc.com/collateral/analyst-reports/expanding-digital-idc-white-paper.pdf. Accessed 26 Nov 2016

  • Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329(5987):52–56

    Article  Google Scholar 

  • Goldman N, Bertone P, Chen S, Dessimoz C, LeProust EM, Sipos B, Birney E (2013) Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature 494(7435):77–80

    Article  Google Scholar 

  • Goodin MM, Zaitlin D, Naidu RA, Lommel SA (2008) Nicotiana benthamiana: its history and future as a model for plant-pathogen interactions. Mol Plant-Microbe Interact 21(8):1015–1026

    Article  Google Scholar 

  • Grass RN, Heckel R, Puddu M, Paunescu D, Stark WJ (2015) Robust chemical preservation of digital information on DNA in silica with error-correcting codes. Angew Chem Int Ed 54(8):2552–2555

    Article  Google Scholar 

  • Hilbert M, López P (2011) The world’s technological capacity to store, communicate, and compute information. Science 332(6025):60–65

    Article  Google Scholar 

  • Ivanova NV, Kuzmina ML (2013) Protocols for dry DNA storage and shipment at room temperature. Mol Ecol Resour 13(5):890–898

    Article  Google Scholar 

  • Langtangen HP (2006) Python scripting for computational science, 3rd edn. Springer, Berlin

    MATH  Google Scholar 

  • Liss M, Daubert D, Brunner K, Kliche K, Hammes U, Leiherer A, Wagner R (2012) Embedding permanent watermarks in synthetic genes. PLoS One 7(8):e42465

    Article  Google Scholar 

  • Liu X, Li Q, Wang X, Zhou X, He X, Liao Q, Zhu F, Cheng L, Zhang Y (2015) Evaluation of DNA/RNAshells for room temperature nucleic acids storage. Biopreserv Biobanking 13(1):49–55

    Article  Google Scholar 

  • Ljubič K, Fister I Jr (2014) How to store Wikipedia into a forest tree: initial idea. In: Proceedings of the first International conference on multimedia, scientific information and visualization for information systems and metrics (MSIVISM’14), pp 45–52

    Google Scholar 

  • MacKay DJC (2003) Information theory, inference and learning algorithms. Cambridge University Press, New York

    MATH  Google Scholar 

  • Marx V (2013) Biology: the big challenges of big data. Nature 498(7453):255–260

    Article  Google Scholar 

  • Ossowski S, Schneeberger K, Lucas-Lledó JI, Warthmann N, Clark RM, Shaw RG, Weigel D, Lynch M (2010) The rate and molecular spectrum of spontaneous mutations in arabidopsis thaliana. Science 327(5961):92–94

    Article  Google Scholar 

  • Özgen M, Özdilek A, Birsin MA, Önde S, Şahin D, Açıkgöz E, Kaya Z (2012) Analysis of ancient DNA from in vitro grown tissues of 1600-year-old seeds revealed the species as Anagyris foetida. Seed Sci Res 22(4):279–286

    Article  Google Scholar 

  • Pennisi E (2012) Search for pore-fection. Science 336(6081):534–537

    Article  Google Scholar 

  • Susič N, Bohanec B, Murovec J (2014) Agrobacterium tumefaciens-mediated transformation of bush monkey-flower (Mimulus aurantiacus Curtis) with a new reporter gene ZsGreen. Plant Cell Tissue Organ Cult 116(2):243–251

    Article  Google Scholar 

  • The Economist (2012) Digital archiving: history flushed. The economist. Available via http://www.economist.com/node/21553410. Accessed 26 July 2016

    Google Scholar 

  • Weng H, Pan A, Yang L, Zhang C, Liu Z, Zhang D (2004) Estimating number of transgene copies in transgenic rapeseed by real-time PCR assay with HMG I/Y as an endogenous reference gene. Plant Mol Biol Report 22(3):289–300

    Article  Google Scholar 

  • Yashina S, Gubin S, Maksimovich S, Yashina A, Gakhova E, Gilichinsky D (2012) Regeneration of whole fertile plants from 30,000-year-old fruit tissue buried in Siberian permafrost. Proc Natl Acad Sci USA 109(10):4008–4013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Fister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fister, K., Fister, I., Murovec, J. (2017). The Potential of Plants and Seeds in DNA-Based Information Storage. In: Schuster, A. (eds) Understanding Information. Advanced Information and Knowledge Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-59090-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59090-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59089-9

  • Online ISBN: 978-3-319-59090-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics