Skip to main content

Carotenoid Production by Filamentous Fungi and Yeasts

  • Chapter
  • First Online:
Biotechnology of Yeasts and Filamentous Fungi

Abstract

Carotenoids are widespread pigments in nature, obtained by direct synthesis or by ingestion in all taxonomic groups, and playing a large diversity of biological functions. Carotenoid biosynthesis is frequently found in fungi, and the amenability of some producing species to research studies has made them ideal models to investigate the genes and enzymes involved in the biosynthesis and its regulation. Best known examples are those for the production of β-carotene by the mucorales Phycomyces blakesleeanus, Mucor circinelloides, and Blakeslea trispora, neurosporaxanthin by the ascomycetes Neurospora crassa and Fusarium fujikuroi, and astaxanthin by the basidiomycete yeast Xanthophyllomyces dendrorhous, formerly Phaffia rhodozyma. Because of their coloring and health-promoting properties, some carotenoids have biotechnological applications, usually as food or feed additives. In the case of the fungi, the biotechnological studies have been mostly centered on the productions of β-carotene or its red precursor lycopene by B. trispora and astaxanthin by X. dendrorhous, extended to the heterologous expression of the relevant genes in non-carotenogenic yeasts as potentially favorable industrial producers. Less attention has been addressed to the synthesis of other carotenoids, with the only exception of torularhodin, produced by Rhodotorula and other related basidiomycete yeasts, but the genetics of its biosynthesis has not been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aasen AJ, Jensen SL (1965) Fungal carotenoids II. The structure of the carotenoid acid neurosporaxanthin. Acta Chem Scand 19:1843–1853

    Article  CAS  PubMed  Google Scholar 

  • Acheampong EA, Martin AM (1995) Kinetic studies on the yeast Phaffia rhodozyma. J Basic Microbiol 35:147–155

    Article  CAS  PubMed  Google Scholar 

  • Ádám AL, García-Martínez J, Szücs EP et al (2011) The MAT1-2-1 mating-type gene upregulates photo-inducible carotenoid biosynthesis in Fusarium verticillioides. FEMS Microbiol Lett 318:76–83

    Article  PubMed  CAS  Google Scholar 

  • Ahrazem O, Gómez-Gómez L, Rodrigo M et al (2016) Carotenoid cleavage oxygenases from microbes and photosynthetic organisms: features and functions. Int J Mol Sci 17:1781

    Article  PubMed Central  Google Scholar 

  • Aksu Z, Eren AT (2005) Carotenoids production by the yeast Rhodotorula mucilaginosa: use of agricultural wastes as a carbon source. Process Biochem 40:2985–2991

    Article  CAS  Google Scholar 

  • Aksu Z, Eren AT (2007) Production of carotenoids by the isolated yeast of Rhodotorula glutinis. Biochem Eng J 35:107–113

    Article  CAS  Google Scholar 

  • Alcaíno J, Barahona S, Carmona M et al (2008) Cloning of the cytochrome p450 reductase (crtR) gene and its involvement in the astaxanthin biosynthesis of Xanthophyllomyces dendrorhous. BMC Microbiol 8:169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alcaíno J, Fuentealba M, Cabrera R et al (2012) Modeling the interfacial interactions between CrtS and CrtR from Xanthophyllomyces dendrorhous, a P450 system involved in astaxanthin production. J Agric Food Chem 60:8640–8647

    Article  PubMed  CAS  Google Scholar 

  • Alcaino J, Baeza M, Cifuentes V (2014) Astaxanthin and related xanthophylls. In: Martín J-F, García-Estrada C, Zeilinger S (eds) Biosynthesis and molecular genetics of fungal secondary metabolites. Springer, New York, NY, pp 187–208

    Chapter  Google Scholar 

  • Alcaíno J, Romero I, Niklitschek M et al (2014) Functional characterization of the Xanthophyllomyces dendrorhous farnesyl pyrophosphate synthase and geranylgeranyl pyrophosphate synthase encoding genes that are involved in the synthesis of isoprenoid precursors. PLoS One 9:e96626

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alcaíno J, Bravo N, Córdova P et al (2016) The involvement of Mig1 from Xanthophyllomyces dendrorhous in catabolic repression: an active mechanism contributing to the regulation of carotenoid production. PLoS One 11:e0162838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Almeida ER, Cerdá-Olmedo E (2008) Gene expression in the regulation of carotene biosynthesis in Phycomyces. Curr Genet 53:129–137

    Article  CAS  PubMed  Google Scholar 

  • Álvarez V, Rodríguez-Sáiz M, de la Fuente JL et al (2006) The crtS gene of Xanthophyllomyces dendrorhous encodes a novel cytochrome-P450 hydroxylase involved in the conversion of β-carotene into astaxanthin and other xanthophylls. Fungal Genet Biol 43:261–272

    Article  PubMed  CAS  Google Scholar 

  • Amado IR, Vázquez JA (2015) Mussel processing wastewater: a low-cost substrate for the production of astaxanthin by Xanthophyllomyces dendrorhous. Microb Cell Factories 14:177

    Article  CAS  Google Scholar 

  • Ambati RR, Phang SM, Ravi S, Aswathanarayana RG (2014) Astaxanthin: sources, extraction, stability, biological activities and its commercial applications—a review. Mar Drugs 12:128–152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • An GH (1997) Photosensitization of the yeast Phaffia rhodozyma at a low temperature for screening carotenoid hyperproducing mutants. Appl Biochem Biotechnol 66:263–268

    Article  CAS  PubMed  Google Scholar 

  • An GH, Johnson EA (1990) Influence of light on growth and pigmentation of the yeast Phaffia rhodozyma. Antonie Van Leeuwenhoek 57:191–203

    Article  CAS  PubMed  Google Scholar 

  • An GH, Schuman DB, Johnson EA (1989) Isolation of Phaffia rhodozyma mutants with increased astaxanthin content. Appl Environ Microbiol 55:116–124

    CAS  PubMed  PubMed Central  Google Scholar 

  • An GH, Bielich J, Auerbach R, Johnson EA (1991) Isolation and characterization of carotenoid hyperproducing mutants of yeast by flow cytometry and cell sorting. Biotechnology (N Y) 9:70–73

    Article  CAS  Google Scholar 

  • An GH, Cho MH, Johnson EA (1999) Monocyclic carotenoid biosynthetic pathway in the yeast Phaffia rhodozyma (Xanthophyllomyces dendrorhous). J Biosci Bioeng 88:189–193

    Article  CAS  PubMed  Google Scholar 

  • An GH, Jang BG, Cho MH (2001) Cultivation of the carotenoid-hyperproducing mutant 2A2N of the red yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma) with molasses. J Biosci Bioeng 92:121–125

    Article  CAS  PubMed  Google Scholar 

  • Andrewes AG, Phaff HJ, Starr MP (1976) Carotenoids of Phaffia rhodozyma, a red-pigmented fermenting yeast. Phytochemistry 15:1003–1007

    Article  CAS  Google Scholar 

  • Aragón CM, Murillo FJ, de la Guardia MD, Cerdá-Olmedo E (1976) An enzyme complex for the dehydrogenation of phytoene in Phycomyces. Eur J Biochem FEBS 63:71–75

    Article  Google Scholar 

  • Araya-Garay JM, Ageitos JM, Vallejo JA et al (2012a) Construction of a novel Pichia pastoris strain for production of xanthophylls. AMB Express 2:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Araya-Garay JM, Feijoo-Siota L, Rosa-dos-Santos F et al (2012b) Construction of new Pichia pastoris X-33 strains for production of lycopene and β-carotene. Appl Microbiol Biotechnol 93:2483–2492

    Article  CAS  PubMed  Google Scholar 

  • Arpaia G, Carattoli A, Macino G (1995) Light and development regulate the expression of the albino-3 gene in Neurospora crassa. Dev Biol 170:626–635

    Article  CAS  PubMed  Google Scholar 

  • Arpin N, Liaaen-Jensen S (1967) Chemotaxonomic research on fungi. Fungal carotenoids. IV. Carotenoids of Phillipsia carminea (Pat.) Le Gal; isolation and identification of a new natural xanthophyll. Bull Soc Chim Biol (Paris) 49:527–536

    CAS  Google Scholar 

  • Arrach N, Fernández-Martín R, Cerdá-Olmedo E, Avalos J (2001) A single gene for lycopene cyclase, phytoene synthase, and regulation of carotene biosynthesis in Phycomyces. Proc Natl Acad Sci U S A 98:1687–1692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arrach N, Schmidhauser TJ, Avalos J (2002) Mutants of the carotene cyclase domain of al-2 from Neurospora crassa. Mol Gen Genomics 266:914–921

    Article  CAS  Google Scholar 

  • Austin DG, Bu’Lock JD, Winstanley DJ (1969) Trisporic acid biosynthesis and carotenogenesis in Blakesleea trispora. Biochem J 113:34P

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Austin DJ, Bu’Lock JD, Drake D (1970) The biosynthesis of trisporic acids from β-carotene via retinal and trisporol. Experientia 26:348–349

    Article  CAS  PubMed  Google Scholar 

  • Avalos J, Cerdá-Olmedo E (1987) Carotenoid mutants of Gibberella fujikuroi. Curr Genet 25:1837–1841

    Google Scholar 

  • Avalos J, Cerdá-Olmedo E (2004) Fungal carotenoid production. In: Arora DK (ed) Handbook of fungal biotechnology, 2nd edn. Marcel Dekker, New York, pp 367–378

    Google Scholar 

  • Avalos J, Corrochano LM (2013) Carotenoid biosynthesis in Neurospora. In: Kasbekar DP, McCluskey K (eds) Neurospora: genomics and molecular biology. Caister Academic Press, Norfolk, pp 227–241

    Google Scholar 

  • Avalos J, Estrada AF (2010) Regulation by light in Fusarium. Fungal Genet Biol 47:930–938

    Article  CAS  PubMed  Google Scholar 

  • Avalos J, Schrott EL (1990) Photoinduction of carotenoid biosynthesis in Gibberella fujikuroi. FEMS Microbiol Lett 66:295–298

    Article  CAS  Google Scholar 

  • Avalos J, Mackenzie A, Nelki DS, Bramley PM (1988) Terpenoid biosynthesis in cell-extracts of wild type and mutant strains of Gibberella fujikuroi. Biochim Biophys Acta 966:257–265

    Article  CAS  Google Scholar 

  • Avalos J, Díaz-Sánchez V, García-Martínez J et al (2014a) Carotenoids. In: Martín JF, García-Estrada C, Zeilinger S (eds) Biosynthesis and molecular genetics of fungal secondary metabolites. Springer, New York, pp 149–185

    Chapter  Google Scholar 

  • Baima S, Macino G, Morelli G (1991) Photoregulation of the albino-3 gene in Neurospora crassa. J Photochem Photobiol B 11:107–115

    Article  CAS  PubMed  Google Scholar 

  • Barbachano-Torres A, Castelblanco-Matiz LM, Ramos-Valdivia AC et al (2014) Analysis of proteomic changes in colored mutants of Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Arch Microbiol 196:411–421

    Article  CAS  PubMed  Google Scholar 

  • Barba-Ostria C, Lledias F, Georgellis D (2011) The Neurospora crassa DCC-1 protein, a putative histidine kinase, is required for normal sexual and asexual development and carotenogenesis. Eukaryot Cell 10:1733–1739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbato C, Calissano M, Pickford A et al (1996) Mild RIP-an alternative method for in vivo mutagenesis of the albino-3 gene in Neurospora crassa. Mol Gen Genet 252:353–361

    CAS  PubMed  Google Scholar 

  • Barredo J-L (ed) (2012) Microbial carotenoids from fungi: methods and protocols. Humana Press, New York

    Google Scholar 

  • Barrero AF, Herrador MM, Arteaga P et al (2011) New apocarotenoids and β-carotene cleavage in Blakeslea trispora. Org Biomol Chem 9:7190–7195

    Article  CAS  PubMed  Google Scholar 

  • Bartley GE, Schmidhauser TJ, Yanofsky C, Scolnik PA (1990) Carotenoid desaturases from Rhodobacter capsulatus and Neurospora crassa are structurally and functionally conserved and contain domains homologous to flavoprotein disulfide oxidoreductases. J Biol Chem 265:16020–16024

    CAS  PubMed  Google Scholar 

  • Beekwilder J, van Rossum HM, Koopman F et al (2014) Polycistronic expression of a β-carotene biosynthetic pathway in Saccharomyces cerevisiae coupled to β-ionone production. J Biotechnol 192(Pt B):383–392

    Article  CAS  PubMed  Google Scholar 

  • Bejarano ER, Cerdá-Olmedo E (1989) Inhibition of phytoene dehydrogenation and activation of carotenogenesis in Phycomyces. Phytochemistry 28:1623–1626

    Article  CAS  Google Scholar 

  • Bejarano ER, Avalos J, Lipson ED, Cerdá-Olmedo E (1991) Photoinduced accumulation of carotene in Phycomyces. Planta 183:1–9

    Article  CAS  PubMed  Google Scholar 

  • Bejarano ER, Cerdá-Olmedo E (1992) Independence of the carotene and sterol pathways of Phycomyces. FEBS Lett 306:209–212

    Article  CAS  PubMed  Google Scholar 

  • Bejarano ER, Govind NS, Cerdá-Olmedo E (1987) ξ-carotene and other carotenes in a Phycomyces mutant. Phytochemistry 26:2251–2254

    Article  CAS  Google Scholar 

  • Bejarano ER, Parra F, Murillo FJ, Cerdá-Olmedo E (1988) End-product regulation of carotenogenesis in Phycomyces. Arch Microbiol 150:209–214

    Article  CAS  Google Scholar 

  • Bergman K, Eslava AP, Cerdá-Olmedo E (1973) Mutants of Phycomyces with abnormal phototropism. Mol Gen Genet 123:1–16

    Article  CAS  PubMed  Google Scholar 

  • Bieszke JA, Braun EL, Bean LE et al (1999a) The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins. Proc Natl Acad Sci U S A 96:8034–8039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bieszke JA, Spudich EN, Scott KL et al (1999b) A eukaryotic protein, NOP-1, binds retinal to form an archaeal rhodopsin-like photochemically reactive pigment. Biochemistry (Mosc) 38:14138–14145

    Article  CAS  Google Scholar 

  • Bindl E, Lang W, Rau W (1970) Untersuchungen über die lichtabhängige Carotinoidsynthese. VI Zeitlicher Verlauf der Synthese der einzelnen Carotinoide bei Fusarium aquaeductuum unter verschiedenen Induktionsbedingungen. Planta 94:156–174

    Article  CAS  PubMed  Google Scholar 

  • Blasco JL, Roeßink D, Iturriaga EA et al (2001) Photocarotenogenesis in phycomyces: expression of the carB gene encoding phytoene dehydrogenase. J Plant Res 114:25–31

    Article  CAS  Google Scholar 

  • Blomhoff R, Blomhoff HK (2006) Overview of retinoid metabolism and function. J Neurobiol 66:606–630

    Article  CAS  PubMed  Google Scholar 

  • Böhme K, Richter C, Pätz R (2006) New insights into mechanisms of growth and β-carotene production in Blakeslea trispora. Biotechnol J 1:1080–1084

    Article  PubMed  CAS  Google Scholar 

  • Bramley PM (1985) The in vitro biosynthesis of carotenoids. Adv Lipid Res 21:243–279

    Article  CAS  Google Scholar 

  • Brehm-Stecher BF, Johnson EA (2012) Isolation of carotenoid hyperproducing mutants of Xanthophyllomyces dendrorhous (Phaffia rhodozyma) by flow cytometry and cell sorting. Methods Mol Biol 898:207–217

    Article  CAS  PubMed  Google Scholar 

  • Breitenbach J, Fraser PD, Sandmann G (2012) Carotenoid synthesis and phytoene synthase activity during mating of Blakeslea trispora. Phytochemistry 76:40–45

    Article  CAS  PubMed  Google Scholar 

  • Breitenbach J, Visser H, Verdoes JC et al (2011) Engineering of geranylgeranyl pyrophosphate synthase levels and physiological conditions for enhanced carotenoid and astaxanthin synthesis in Xanthophyllomyces dendrorhous. Biotechnol Lett 33:755–761

    Article  CAS  PubMed  Google Scholar 

  • Britton G, Liaaen-Jensen S, Pfander H (1998) Carotenoids. Birkhäuser Verlag, Basel

    Google Scholar 

  • Britton G, Liaaen-Jensen S, Pfander H (2004) Carotenoids: handbook. Birkhauser, Boston

    Book  Google Scholar 

  • Burgeff H (1924) Untersuchungen über Sexualität und Parasitismus bei Mucorineen. Gustav Fischer, Jena

    Google Scholar 

  • Burmester A, Richter M, Schultze K et al (2007) Cleavage of β-carotene as the first step in sexual hormone synthesis in zygomycetes is mediated by a trisporic acid regulated β-carotene oxygenase. Fungal Genet Biol 44:1096–1108

    Article  CAS  PubMed  Google Scholar 

  • Buzzini P, Innocenti M, Turchetti B et al (2007) Carotenoid profiles of yeasts belonging to the genera Rhodotorula, Rhodosporidium, Sporobolomyces, and Sporidiobolus. Can J Microbiol 53:1024–1031

    Article  CAS  PubMed  Google Scholar 

  • Buzzini P, Martini A (1999) Production of carotenoids by strains of Rhodotorula glutinis cultured in raw materials of agro-industrial origin. Bioresour Technol 71:41–44

    Article  Google Scholar 

  • Calo P, de Miguel T, Velázquez JB, Villa TG (1995) Mevalonic acid increases trans-astaxanthin and carotenoid biosynthesis in Phaffia rhodozyma. Biotechnol Lett 17:575–578

    Article  CAS  Google Scholar 

  • Candau R, Avalos J, Cerdá-Olmedo E (1991a) Gibberellins and carotenoids in the wild type and mutants of Gibberella fujikuroi. Appl Environ Microbiol 57:3378–3382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Candau R, Bejarano ER, Cerdá-Olmedo E (1991b) In vivo channeling of substrates in an enzyme aggregate for β-carotene biosynthesis. Proc Natl Acad Sci U S A 88:4936–4940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carattoli A, Cogoni C, Morelli G, Macino G (1994) Molecular characterization of upstream regulatory sequences controlling the photoinduced expression of the albino-3 gene of Neurospora crassa. Mol Microbiol 13:787–795

    Article  CAS  PubMed  Google Scholar 

  • Carattoli A, Romano N, Ballario P et al (1991) The Neurospora crassa carotenoid biosynthetic gene (albino 3) reveals highly conserved regions among prenyltransferases. J Biol Chem 266:5854–5859

    CAS  PubMed  Google Scholar 

  • Cardoso LA, Jäckel S, Karp SG et al (2016) Improvement of Sporobolomyces ruberrimus carotenoids production by the use of raw glycerol. Bioresour Technol 200:374–379

    Article  CAS  PubMed  Google Scholar 

  • Castelblanco-Matiz LM, Barbachano-Torres A, Ponce-Noyola T et al (2015) Carotenoid production and gene expression in an astaxanthin-overproducing Xanthophyllomyces dendrorhous mutant strain. Arch Microbiol 197:1129–1139

    Article  CAS  PubMed  Google Scholar 

  • Castrillo M, Avalos J (2015) The flavoproteins CryD and VvdA cooperate with the white collar protein WcoA in the control of photocarotenogenesis in Fusarium fujikuroi. PLoS One 10:e0119785

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Castrillo M, Bernhardt A, Avalos J et al (2015) Biochemical characterization of the DASH-type cryptochrome CryD from Fusarium fujikuroi. Photochem Photobiol 91:1356–1367

    Article  CAS  PubMed  Google Scholar 

  • Castrillo M, García-Martínez J, Avalos J (2013) Light-dependent functions of the Fusarium fujikuroi CryD DASH cryptochrome in development and secondary metabolism. Appl Environ Microbiol 79:2777–2788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cederberg E, Neujahr HY (1969) Activation of β-carotene synthesis in Blakeslea trispora by certain terpenes. Acta Chem Scand 23:957–961

    Article  CAS  PubMed  Google Scholar 

  • Cerdá-Olmedo E (1987) Carotene. In: Cerdá-Olmedo E, Lipson ED (eds) Phycomyces. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 199–222

    Google Scholar 

  • Cerdá-Olmedo E (1985) Carotene mutants of Phycomyces. Methods Enzymol 110:220–243

    Article  Google Scholar 

  • Cerdá-Olmedo E (1989) Production of carotenoids with fungi. In: Vandamme E (ed) Biotechnology of vitamin, growth factor and pigment production. Elsevier Applied Science, London, pp 27–42

    Chapter  Google Scholar 

  • Cerdá-Olmedo E, Hüttermann A (1986) Förderung und Hemmung der Carotinsynthese bei Phycomyces durch Aromaten. Angew Bot 60:59–70

    Google Scholar 

  • Cerdá-Olmedo E, Mehta BJ (2012) Isolation of mutants and construction of intersexual heterokaryons of Blakeslea trispora. Methods Mol Biol 898:75–84

    Article  PubMed  CAS  Google Scholar 

  • Chang J-J, Thia C, Lin H-Y et al (2015) Integrating an algal β-carotene hydroxylase gene into a designed carotenoid-biosynthesis pathway increases carotenoid production in yeast. Bioresour Technol 184:2–8

    Article  CAS  PubMed  Google Scholar 

  • Chen CH, Dunlap JC, Loros JJ (2010) Neurospora illuminates fungal photoreception. Fungal Genet Biol 47:922–929

    Article  PubMed  PubMed Central  Google Scholar 

  • Chi S, He Y, Ren J et al (2015) Overexpression of a bifunctional enzyme, CrtS, enhances astaxanthin synthesis through two pathways in Phaffia rhodozyma. Microb Cell Factories 14:90

    Article  CAS  Google Scholar 

  • Choudhari S, Singhal R (2008) Media optimization for the production of β-carotene by Blakeslea trispora: a statistical approach. Bioresour Technol 99:722–730

    Article  CAS  PubMed  Google Scholar 

  • Choudhari SM, Ananthanarayan L, Singhal RS (2008) Use of metabolic stimulators and inhibitors for enhanced production of β-carotene and lycopene by Blakeslea trispora NRRL 2895 and 2896. Bioresour Technol 99:3166–3173

    Article  CAS  PubMed  Google Scholar 

  • Chumpolkulwong N, Kakizono T, Nagai S, Nishio N (1997) Increased astaxanthin production by Phaffia rhodozyma mutants isolated as resistant to diphenylamine. J Ferment Bioeng 83:429–434

    Article  CAS  Google Scholar 

  • Corrochano LM, Cerdá-Olmedo E (1992) Sex, light and carotenes: the development of Phycomyces. Trends Genet TIG 8:268–274

    Article  CAS  PubMed  Google Scholar 

  • Corrochano LM, Cerdá-Olmedo E (1990) Photomorphogenesis in behavioural and colour mutants of Phycomyces. J Photochem Photobiol B 6:325–335

    Article  Google Scholar 

  • Corrochano LM, Garre V (2010) Photobiology in the Zygomycota: multiple photoreceptor genes for complex responses to light. Fungal Genet Biol 47:893–899

    Article  CAS  PubMed  Google Scholar 

  • Csernetics A, Nagy G, Iturriaga EA et al (2011) Expression of three isoprenoid biosynthesis genes and their effects on the carotenoid production of the zygomycete Mucor circinelloides. Fungal Genet Biol 48:696–703

    Article  CAS  PubMed  Google Scholar 

  • Csernetics Á, Tóth E, Farkas A et al (2015) Expression of Xanthophyllomyces dendrorhous cytochrome-P450 hydroxylase and reductase in Mucor circinelloides. World J Microbiol Biotechnol 31:321–336

    Article  CAS  PubMed  Google Scholar 

  • Daub ME, Payne GA (1989) The role of carotenoids in resistance of fungi to cercosporin. Phytopathology 79:180–185

    Article  CAS  Google Scholar 

  • de Fabo EC, Harding RW, Shropshire W Jr (1976) Action spectrum between 260 and 800 nanometers for the photoinduction of carotenoid biosynthesis in Neurospora crassa. Plant Physiol 57:440–445

    Article  PubMed  PubMed Central  Google Scholar 

  • de la Fuente JL, Rodríguez-Sáiz M, Schleissner C et al (2010) High-titer production of astaxanthin by the semi-industrial fermentation of Xanthophyllomyces dendrorhous. J Biotechnol 148:144–146

    Article  PubMed  CAS  Google Scholar 

  • De la Guardia MD, Aragón CM, Murillo FJ, Cerdá-Olmedo E (1971) A carotenogenic enzyme aggregate in Phycomyces: evidence from quantitive complementation. Proc Natl Acad Sci U S A 68:2012–2015

    Article  PubMed  PubMed Central  Google Scholar 

  • de Miguel T, Calo P, Díaz A, Villa TG (1997) The genus Rhodosporidium: a potential source of β-carotene. Microbiologia 13:67–70

    PubMed  Google Scholar 

  • DeBose-Boyd RA (2008) Feedback regulation of cholesterol synthesis: sterol-accelerated ubiquitination and degradation of HMG CoA reductase. Cell Res 18:609–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degli-Innocenti F, Russo VE (1984) Isolation of new white collar mutants of Neurospora crassa and studies on their behavior in the blue light-induced formation of protoperithecia. J Bacteriol 159:757–761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Díaz-Sánchez V, Estrada AF, Limón MC et al (2013) The oxygenase CAO-1 of Neurospora crassa is a resveratrol cleavage enzyme. Eukaryot Cell 12:1305–1314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Díaz-Sánchez V, Estrada AF, Trautmann D et al (2011a) Analysis of al-2 mutations in Neurospora. PLoS One 6:e21948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Díaz-Sánchez V, Estrada AF, Trautmann D et al (2011b) The gene carD encodes the aldehyde dehydrogenase responsible for neurosporaxanthin biosynthesis in Fusarium fujikuroi. FEBS J 278:3164–3176

    Article  PubMed  CAS  Google Scholar 

  • Dimitrova S, Pavlova K, Lukanov L et al (2013) Production of metabolites with antioxidant and emulsifying properties by antarctic strain Sporobolomyces salmonicolor AL1. Appl Biochem Biotechnol 169:301–311

    Article  CAS  PubMed  Google Scholar 

  • Domenech CE, Giordano W, Avalos J, Cerdá-Olmedo E (1996) Separate compartments for the production of sterols, carotenoids and gibberellins in Gibberella fujikuroi. Eur J Biochem 239:720–725

    Article  CAS  PubMed  Google Scholar 

  • Domínguez-Bocanegra AR, Torres-Muñoz JA (2004) Astaxanthin hyperproduction by Phaffia rhodozyma (now Xanthophyllomyces dendrorhous) with raw coconut milk as sole source of energy. Appl Microbiol Biotechnol 66:249–252

    Article  CAS  Google Scholar 

  • Domonkos I, Kis M, Gombos Z, Ughy B (2013) Carotenoids, versatile components of oxygenic photosynthesis. Prog Lipid Res 52:539–561

    Article  CAS  PubMed  Google Scholar 

  • Ducrey Sanpietro LM, Kula MR (1998) Studies of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Effect of inhibitors and low temperature. Yeast Chichester Engl 14:1007–1016

    Article  CAS  Google Scholar 

  • Echavarri-Erasun C, Johnson EA (2004) Stimulation of astaxanthin formation in the yeast Xanthophyllomyces dendrorhous by the fungus Epicoccum nigrum. FEMS Yeast Res 4:511–519

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrenshaft M, Daub ME (1994) Isolation, sequence, and characterization of the Cercospora nicotianae phytoene dehydrogenase gene. Appl Environ Microbiol 60:2766–2771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elahi M, Chichester CO, Simpson KL (1973a) Biosynthesis of carotenoids by Phycomyces blakesleeanus mutants in the presence of nitrogenous heterocyclic compounds. Phytochemistry 12:1627–1632

    Article  CAS  Google Scholar 

  • Elahi M, Lee TH, Simpson KL, Chichester CO (1973b) Effect of CPTA and cycocel on the biosynthesis of carotenoids by Phycomyces blakesleeanus mutants. Phytochemistry 12:1633–1639

    Article  CAS  Google Scholar 

  • El-Jack M, Mackenzie A, Bramley PM (1988) The photoregulation of carotenoid biosynthesis in Aspergillus giganteus mut. alba. Planta 174:59–66

    Article  CAS  PubMed  Google Scholar 

  • Eslava AP, Alvarez MI, Cerdá-Olmedo E (1974) Regulation of carotene biosynthesis in Phycomyces by vitamin A and β-ionone. Eur J Biochem 48:617–623

    Article  CAS  Google Scholar 

  • Estrada AF, Avalos J (2009) Regulation and targeted mutation of opsA, coding for the NOP-1 opsin orthologue in Fusarium fujikuroi. J Mol Biol 387:59–73

    Article  CAS  PubMed  Google Scholar 

  • Estrada AF, Avalos J (2008) The White Collar protein WcoA of Fusarium fujikuroi is not essential for photocarotenogenesis, but is involved in the regulation of secondary metabolism and conidiation. Fungal Genet Biol 45:705–718

    Article  CAS  PubMed  Google Scholar 

  • Estrada AF, Brefort T, Mengel C et al (2010) Ustilago maydis accumulates β-carotene at levels determined by a retinal-forming carotenoid oxygenase. Fungal Genet Biol 46:803–813

    Article  CAS  Google Scholar 

  • Estrada AF, Maier D, Scherzinger D et al (2008a) Novel apocarotenoid intermediates in Neurospora crassa mutants imply a new biosynthetic reaction sequence leading to neurosporaxanthin formation. Fungal Genet Biol 45:1497–1505

    Article  CAS  PubMed  Google Scholar 

  • Estrada AF, Youssar L, Scherzinger D et al (2008b) The ylo-1 gene encodes an aldehyde dehydrogenase responsible for the last reaction in the Neurospora carotenoid pathway. Mol Microbiol 69:1207–1220

    Article  CAS  PubMed  Google Scholar 

  • Fang TJ, Cheng YS (1992) Isolation of astaxanthin over-producing mutants of Phaffia rhodozyma and their fermentation kinetics. Chin J Microbiol Inmunol 25:209–222

    CAS  Google Scholar 

  • Fernández-Martín R, Cerdá-Olmedo E, Avalos J (2000) Homologous recombination and allele replacement in transformants of Fusarium fujikuroi. Mol Gen Genet 263:838–845

    Article  PubMed  Google Scholar 

  • Flores R, Cerdá-Olmedo E, Corrochano LM (1998) Separate sensory pathways for photomorphogenesis in Phycomyces. Photochem Photobiol 67:467–472

    Article  CAS  Google Scholar 

  • Flores-Cotera LB, Martín R, Sánchez S (2001) Citrate, a possible precursor of astaxanthin in Phaffia rhodozyma: influence of varying levels of ammonium, phosphate and citrate in a chemically defined medium. Appl Microbiol Biotechnol 55:341–347

    Article  CAS  PubMed  Google Scholar 

  • Fontana JD, Guimarães MF, Martins NT et al (1996) Culture of the astaxanthinogenic yeast Phaffia rhodozyma in low-cost media. Appl Biochem Biotechnol 57–58:413–422

    Article  PubMed  Google Scholar 

  • Fraser PD, Bramley PM (1994) The purification of phytoene dehydrogenase from Phycomyces blakesleeanus. Biochim Biophys Acta 1212:59–66

    Article  CAS  PubMed  Google Scholar 

  • Fraser PD, Miura Y, Misawa N (1997) In vitro characterization of astaxanthin biosynthetic enzymes. J Biol Chem 272:6128–6135

    Article  CAS  PubMed  Google Scholar 

  • Fraser PD, Ruiz-Hidalgo MJ, López-Matas MA et al (1996) Carotenoid biosynthesis in wild type and mutant strains of Mucor circinelloides. Biochim Biophys Acta 1289:203–208

    Article  PubMed  Google Scholar 

  • Freitas C, Parreira TM, Roseiro J et al (2014) Selecting low-cost carbon sources for carotenoid and lipid production by the pink yeast Rhodosporidium toruloides> NCYC 921 using flow cytometry. Bioresour Technol 158:355–359

    Article  CAS  PubMed  Google Scholar 

  • Frengova G, Simova E, Beshkova D (2004a) Use of whey ultrafiltrate as a substrate for production of carotenoids by the yeast Rhodotorula rubra. Appl Biochem Biotechnol 112:133–141

    Article  CAS  PubMed  Google Scholar 

  • Frengova G, Simova E, Pavlova K et al (1994) Formation of carotenoids by Rhodotorula glutinis in whey ultrafiltrate. Biotechnol Bioeng 44:888–894

    Article  CAS  PubMed  Google Scholar 

  • Frengova GI, Beshkova DM (2009) Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance. J Ind Microbiol Biotechnol 36:163–180

    Article  CAS  PubMed  Google Scholar 

  • Frengova GI, Simova ED, Beshkova DM (2004b) Improvement of carotenoid-synthesizing yeast Rhodotorula rubra by chemical mutagenesis. Z Naturforschung C J Biosci 59:99–103

    CAS  Google Scholar 

  • Garbayo I, Vílchez C, Nava-Saucedo JE, Barbotin JN (2003) Nitrogen, carbon and light-mediated regulation studies of carotenoid biosynthesis in immobilized mycelia of Gibberella fujikuroi. Enzym Microb Technol 33:629–634

    Article  CAS  Google Scholar 

  • García-Martínez J, Ádám AL, Avalos J (2012) Adenylyl cyclase plays a regulatory role in development, stress resistance and secondary metabolism in Fusarium fujikuroi. PLoS One 7:e28849

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • García-Martínez J, Brunk M, Avalos J, Terpitz U (2015) The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination. Sci Rep 5:7798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gassel S, Breitenbach J, Sandmann G (2014) Genetic engineering of the complete carotenoid pathway towards enhanced astaxanthin formation in Xanthophyllomyces dendrorhous starting from a high-yield mutant. Appl Microbiol Biotechnol 98:345–350

    Article  CAS  PubMed  Google Scholar 

  • Gassel S, Schewe H, Schmidt I et al (2013) Multiple improvement of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous by a combination of conventional mutagenesis and metabolic pathway engineering. Biotechnol Lett 35:565–569

    Article  CAS  PubMed  Google Scholar 

  • Georgiou CD, Tairis N, Polycratis A (2001a) Production of β-carotene by Sclerotinia sclerotiorum and its role in sclerotium differentiation. Mycol Res 105:1110–1115

    Article  CAS  Google Scholar 

  • Georgiou CD, Zervoudakis G, Tairis N, Kornaros M (2001b) β-Carotene production and its role in sclerotial differentiation of Sclerotium rolfsii. Fungal Genet Biol 34:11–20

    Article  CAS  PubMed  Google Scholar 

  • Gessler NN, Sokolov AV, Bykhovsky VY, Belozerskaya TA (2002) Superoxide dismutase and catalase activities in carotenoid-synthesizing fungi Blakeslea trispora and Neurospora crassa in oxidative stress. Appl Biochem Microbiol 38:205–209

    Article  CAS  Google Scholar 

  • Girard P, Falconnier B, Bricout J, Vladescu B (1994) β-Carotene producing mutants of Phaffia rhodozyma. Appl Microbiol Biotechnol 41:183–191

    Article  CAS  Google Scholar 

  • Goksungur Y, Mantzouridou F, Roukas T, Kotzekidou P (2004) Production of β-carotene from beet molasses by Blakeslea trispora in stirred-tank and bubble column reactors: development of a mathematical modeling. Appl Biochem Biotechnol 112:37–54

    Article  CAS  PubMed  Google Scholar 

  • Goldie AH, Subden RE (1973) The neutral carotenoids of wild-type and mutant strains of Neurospora crassa. Biochem Genet 10:275–284

    Article  CAS  PubMed  Google Scholar 

  • Goodwin TW (1980) The biochemistry of the carotenoids, 2nd edn. Chapman & Hall, London

    Book  Google Scholar 

  • Govind NS, Cerdá-Olmedo E (1986) Sexual activation of carotenogenesis in Phycomyces blakesleeanus. J Gen Microbiol 132:2775–2780

    CAS  Google Scholar 

  • Gu WL, An GH, Johnson EA (1997) Ethanol increases carotenoid production in Phaffia rhodozyma. J Ind Microbiol Biotechnol 19:114–117

    Article  CAS  PubMed  Google Scholar 

  • Han JR, Zhao WJ, Gao YY, Yuan JM (2005) Effect of oxidative stress and exogenous β-carotene on sclerotial differentiation and carotenoid yield of Penicillium sp. PT95. Lett Appl Microbiol 40:412–417

    Article  CAS  PubMed  Google Scholar 

  • Han M, He Q, Zhang WG (2012) Carotenoids production in different culture conditions by Sporidiobolus pararoseus. Prep Biochem Biotechnol 42:293–303

    Article  CAS  PubMed  Google Scholar 

  • Hara KY, Morita T, Mochizuki M et al (2014) Development of a multi-gene expression system in Xanthophyllomyces dendrorhous. Microb Cell Factories 13:175

    Article  CAS  Google Scholar 

  • Harding RW (1974) The effect of temperature on photo-induced carotenoid biosynthesis in Neurospora crassa. Plant Physiol 54:142–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harding RW (1973) Inhibition of conidiation and photoinduced carotenoid biosynthesis by cyclic AMP. Neurospora Newsl 20:20–21

    Google Scholar 

  • Harding RW, Huang PC, Mitchell HK (1969) Photochemical studies of the carotenoid biosynthetic pathway in Neurospora crassa. Arch Biochem Biophys 129:696–707

    Article  CAS  PubMed  Google Scholar 

  • Harding RW, Philip DQ, Drozdowicz BZ, Williams NP (1984) A Neurospora crassa mutant which overaccumulates carotenoid pigments. Neurospora Newsl 31:23–25

    Google Scholar 

  • Harding RW, Turner RV (1981) Photoregulation of the carotenoid biosynthetic pathway in albino and white collar mutants of Neurospora crassa. Plant Physiol 68:745–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hausmann A, Sandmann G (2000) A single five-step desaturase is involved in the carotenoid biosynthesis pathway to β-carotene and torulene in Neurospora crassa. Fungal Genet Biol 30:147–153

    Article  CAS  PubMed  Google Scholar 

  • Haxo F (1950) Carotenoids of the mushroom Cantharellus cinnabarinus. Bot Gaz 112:228–232

    Article  CAS  Google Scholar 

  • Hayman GT, Mannarelli BM, Leathers TD (1995) Production of carotenoids by Phaffia rhodozyma grown on media composed of corn wet-milling co-products. J Ind Microbiol 14:389–395

    Article  CAS  Google Scholar 

  • He Q, Liu Y (2005) Molecular mechanism of light responses in Neurospora: from light-induced transcription to photoadaptation. Genes Dev 19:2888–2899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández-Almanza A, Cesar Montanez J, Aguilar-González MA et al (2014a) Rhodotorula glutinis as source of pigments and metabolites for food industry. Food Biosci 5:64–72

    Article  CAS  Google Scholar 

  • Hernández-Almanza A, Montañez-Sáenz J, Martínez-Ávila C et al (2014b) Carotenoid production by Rhodotorula glutinis YB-252 in solid-state fermentation. Food Biosci 7:31–36

    Article  CAS  Google Scholar 

  • Herz S, Weber RW, Anke H et al (2007) Intermediates in the oxidative pathway from torulene to torularhodin in the red yeasts Cystofilobasidium infirmominiatum and C. capitatum (Heterobasidiomycetes, Fungi). Phytochemistry 68:2503–2511

    Article  CAS  PubMed  Google Scholar 

  • Higuera-Ciapara I, Félix-Valenzuela L, Goycoolea FM (2006) Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr 46:185–196

    Article  CAS  PubMed  Google Scholar 

  • Hsu W-J, Poling SM, Yokoyama H (1974) Effects of amines on the carotenogenesis in Blakeslea trispora. Phytochemistry 13:415–419

    Article  CAS  Google Scholar 

  • Hsu WJ, Yokoyama H, Coggins CW (1972) Carotenoid biosynthesis in Blakeslea trispora. Phytochemistry 11:2985–2990

    Article  CAS  Google Scholar 

  • Hu X, Li H, Tang P et al (2013a) GC-MS-based metabolomics study of the responses to arachidonic acid in Blakeslea trispora. Fungal Genet Biol 57:33–41

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Ma X, Tang P, Yuan Q (2013b) Improved β-carotene production by oxidative stress in Blakeslea trispora induced by liquid paraffin. Biotechnol Lett 35:559–563

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Sun J, Yuan Q (2012) Improved β-carotene biosynthesis and gene transcription in Blakeslea trispora with arachidonic acid. Biotechnol Lett 34:2107–2111

    Article  CAS  PubMed  Google Scholar 

  • Huang PC (1964) Recombination and complementation of albino mutants in Neurospora. Genetics 49:453–469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Idnurm A, Rodríguez-Romero J, Corrochano LM et al (2006) The Phycomyces madA gene encodes a blue-light photoreceptor for phototropism and other light responses. Proc Natl Acad Sci U S A 103:4546–4551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iurkov AM, Vustin MM, Tiaglov BV et al (2008) Pigmented basidiomycete yeasts are a promising source of carotenoids and ubiquinone Q10. Mikrobiologiia 77:5–10

    CAS  PubMed  Google Scholar 

  • Jayaram M, Leutwiler L, Delbrück M (1980) Light-induced carotene synthesis in mutants of Phycomyces with abnormal phototropism. Photochem Photobiol 32:241–245

    Article  CAS  Google Scholar 

  • Jeong JC, Lee IY, Kim SW, Park YH (1999) Stimulation of β-carotene synthesis by hydrogen peroxide in Blakeslea trispora. Biotechnol Lett 21:683–686

    Article  CAS  Google Scholar 

  • Jin JM, Lee J, Lee YW (2010) Characterization of carotenoid biosynthetic genes in the ascomycete Gibberella zeae. FEMS Microbiol Lett 302:197–202

    Article  CAS  PubMed  Google Scholar 

  • Jirasripongpun K, Pewlong W, Kitraksa P, Krudngern C (2008) Carotenoid production by Xanthophyllomyces dendrorhous: use of pineapple juice as a production medium. Lett Appl Microbiol 47:112–116

    Article  CAS  PubMed  Google Scholar 

  • Johnson EA (2003) Phaffia rhodozyma: colorful odyssey. Int Microbiol 6:169–174

    Article  CAS  PubMed  Google Scholar 

  • Johnson EA, Lewis MJ (1979) Astaxanthin formation by the yeast Phaffia rhodozyma. J Gen Microbiol 115:173–183

    Article  CAS  Google Scholar 

  • Kajiwara S, Fraser PD, Kondo K, Misawa N (1997) Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli. Biochem J 324:421–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S-K, Lee J-H, Lee C-H, Yoon Y-C (2007) Increased carotenoid production in Xanthophyllomyces dendrorhous G276 using plant extracts. J Microbiol Seoul Korea 45:128–132

    CAS  Google Scholar 

  • Kirti K, Amita S, Priti S et al (2014) Colorful world of microbes: carotenoids and their applications. Adv Biol 2014:1–13

    Article  CAS  Google Scholar 

  • Krinsky NI, Johnson EJ (2005) Carotenoid actions and their relation to health and disease. Mol Asp Med 26:459–516

    Article  CAS  Google Scholar 

  • Kritsky MS, Sokolovsky VY, Belozerskaya TA, Chernysheva EK (1982) Relationship between cyclic AMP level and accumulation of carotenoid pigments in Neurospora crassa. Arch Microbiol 133:206–208

    Article  CAS  Google Scholar 

  • Kucsera J, Pfeiffer I, Ferenczy L (1998) Homothallic life cycle in the diploid red yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Antonie Van Leeuwenhoek 73:163–168

    Article  CAS  PubMed  Google Scholar 

  • Kuzina V, Cerdá-Olmedo E (2006) Modification of sexual development and carotene production by acetate and other small carboxylic acids in Blakeslea trispora and Phycomyces blakesleeanus. Appl Environ Microbiol 72:4917–4922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzina V, Domenech C, Cerdá-Olmedo E (2006) Relationships among the biosyntheses of ubiquinone, carotene, sterols, and triacylglycerols in Zygomycetes. Arch Microbiol 186:485–493

    Article  CAS  PubMed  Google Scholar 

  • Kuzina V, Ramírez-Medina H, Visser H et al (2008) Genes involved in carotene synthesis and mating in Blakeslea trispora. Curr Genet 54:143–152

    Article  CAS  PubMed  Google Scholar 

  • Lampila LE, Wallen SE, Bullerman LB (1985) A review of factors affecting biosynthesis of carotenoids by the order Mucorales. Mycopathologia 90:65–80

    Article  CAS  PubMed  Google Scholar 

  • Lange N, Steinbüchel A (2011) β-carotene production by Saccharomyces cerevisiae with regard to plasmid stability and culture media. Appl Microbiol Biotechnol 91:1611–1622

    Article  CAS  PubMed  Google Scholar 

  • Ledetzky N, Osawa A, Iki K et al (2014) Multiple transformation with the crtYB gene of the limiting enzyme increased carotenoid synthesis and generated novel derivatives in Xanthophyllomyces dendrorhous. Arch Biochem Biophys 545:141–147

    Article  CAS  PubMed  Google Scholar 

  • Lee JJL, Chen L, Cao B, Chen WN (2016) Engineering Rhodosporidium toruloides with a membrane transporter facilitates production and separation of carotenoids and lipids in a bi-phasic culture. Appl Microbiol Biotechnol 100:869–877

    Article  CAS  PubMed  Google Scholar 

  • Lewis MJ, Ragot N, Berlant MC, Miranda M (1990) Selection of astaxanthin-overproducing mutants of Phaffia rhodozyma with β-Ionone. Appl Environ Microbiol 56:2944–2945

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Schmidhauser TJ (1995) Developmental and photoregulation of al-1 and al-2, structural genes for two enzymes essential for carotenoid biosynthesis in Neurospora. Dev Biol 169:90–95

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Sun Z, Li J, Zhang Y (2013) Enhancing beta-carotene production in Saccharomyces cerevisiae by metabolic engineering. FEMS Microbiol Lett 345:94–101

    Article  CAS  PubMed  Google Scholar 

  • Linden H, Rodríguez-Franco M, Macino G (1997) Mutants of Neurospora crassa defective in regulation of blue light perception. Mol Gen Genet 254:111–118

    Article  CAS  PubMed  Google Scholar 

  • Linnemannstöns P, Prado MM, Fernández-Martín R et al (2002) A carotenoid biosynthesis gene cluster in Fusarium fujikuroi: the genes carB and carRA. Mol Gen Genomics 267:593–602

    Article  CAS  Google Scholar 

  • Liu X-J, Liu R-S, Li H-M, Tang Y-J (2012) Lycopene production from synthetic medium by Blakeslea trispora NRRL 2895 (+) and 2896 (-) in a stirred-tank fermenter. Bioprocess Biosyst Eng 35:739–749

    Article  CAS  PubMed  Google Scholar 

  • Liu YS, Wu JY (2006a) Use of n-hexadecane as an oxygen vector to improve Phaffia rhodozyma growth and carotenoid production in shake-flask cultures. J Appl Microbiol 101:1033–1038

    Article  CAS  PubMed  Google Scholar 

  • Liu YS, Wu JY (2006b) Hydrogen peroxide-induced astaxanthin biosynthesis and catalase activity in Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol 73:663–668

    Article  CAS  PubMed  Google Scholar 

  • Liu YS, Wu JY (2007) Perfusion culture process plus H2O2 stimulation for efficient astaxanthin production by Xanthophyllomyces dendrorhous. Biotechnol Bioeng 97:568–573

    Article  CAS  PubMed  Google Scholar 

  • Liu Z-Q, Zhang J-F, Zheng Y-G, Shen Y-C (2008) Improvement of astaxanthin production by a newly isolated Phaffia rhodozyma mutant with low-energy ion beam implantation. J Appl Microbiol 104:861–872

    Article  CAS  PubMed  Google Scholar 

  • Lodato P, Alcaino J, Barahona S et al (2003) Alternative splicing of transcripts from crtI and crtYB genes of Xanthophyllomyces dendrorhous. Appl Environ Microbiol 69:4676–4682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lodato P, Alcaíno J, Barahona S et al (2007) Expression of the carotenoid biosynthesis genes in Xanthophyllomyces dendrorhous. Biol Res 40:73–84

    Article  CAS  PubMed  Google Scholar 

  • Lodato P, Alcaíno J, Barahona S et al (2004) Study of the expression of carotenoid biosynthesis genes in wild-type and deregulated strains of Xanthophyllomyces dendrorhous (Ex.: Phaffia rhodozyma). Biol Res 37:83–93

    Article  CAS  PubMed  Google Scholar 

  • López J, Essus K, Kim I et al (2015) Production of β-ionone by combined expression of carotenogenic and plant CCD1 genes in Saccharomyces cerevisiae. Microb Cell Factories 14:84

    Article  CAS  Google Scholar 

  • López-Díaz I, Cerdá-Olmedo E (1980) Relationship of photocarotenogenesis to other behavioural and regulatory responses in Phycomyces. Planta 150:134–139

    Article  PubMed  Google Scholar 

  • López-Nieto MJ, Costa J, Peiro E et al (2004) Biotechnological lycopene production by mated fermentation of Blakeslea trispora. Appl Microbiol Biotechnol 66:153–159

    Article  PubMed  CAS  Google Scholar 

  • Lorca-Pascual JM, Murcia-Flores L, Garre V et al (2004) The RING-finger domain of the fungal repressor crgA is essential for accurate light regulation of carotenogenesis. Mol Microbiol 52:1463–1474

    Article  CAS  PubMed  Google Scholar 

  • Loto I, Gutiérrez MS, Barahona S et al (2012) Enhancement of carotenoid production by disrupting the C22-sterol desaturase gene (CYP61) in Xanthophyllomyces dendrorhous. BMC Microbiol 12:235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madhour A, Anke H, Mucci A et al (2005) Biosynthesis of the xanthophyll plectaniaxanthin as a stress response in the red yeast Dioszegia (Tremellales, Heterobasidiomycetes, Fungi). Phytochemistry 66:2617–2626

    Article  CAS  PubMed  Google Scholar 

  • Mantzouridou F, Naziri E, Tsimidou MZ (2008) Industrial glycerol as a supplementary carbon source in the production of β-carotene by Blakeslea trispora. J Agric Food Chem 56:2668–2675

    Article  CAS  PubMed  Google Scholar 

  • Mantzouridou F, Roukasa T, Kotzekidoua P, Liakopoulou M (2002) Optimization of β-carotene production from synthetic medium by Blakeslea trispora: a mathematical modeling. Appl Biochem Biotechnol 101:153–175

    Article  CAS  PubMed  Google Scholar 

  • Mantzouridou F, Tsimidou MZ (2008) Lycopene formation in Blakeslea trispora. Chemical aspects of a bioprocess. Trends Food Sci Technol 19:363–371

    Article  CAS  Google Scholar 

  • Mantzouridou F, Tsimidou MZ, Roukas T (2006) Performance of crude olive pomace oil and soybean oil during carotenoid production by Blakeslea trispora in submerged fermentation. J Agric Food Chem 54:2575–2581

    Article  CAS  PubMed  Google Scholar 

  • Marcoleta A, Niklitschek M, Wozniak A et al (2011) Glucose and ethanol-dependent transcriptional regulation of the astaxanthin biosynthesis pathway in Xanthophyllomyces dendrorhous. BMC Microbiol 11:190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marova I, Carnecka M, Halienova A et al (2012) Use of several waste substrates for carotenoid-rich yeast biomass production. J Environ Manag 95:S338–S342

    Article  CAS  Google Scholar 

  • Martín JF, Gudiña E, Barredo JL (2008) Conversion of β-carotene into astaxanthin: two separate enzymes or a bifunctional hydroxylase-ketolase protein? Microb Cell Factories 7:3

    Article  CAS  Google Scholar 

  • Martínez C, Hermosilla G, León R et al (1998) Genetic transformation of astaxanthin mutants of Phaffia rhodozyma. Antonie Van Leeuwenhoek 73:147–153

    Article  PubMed  Google Scholar 

  • Martinez-Moya P, Niehaus K, Alcaíno J et al (2015) Proteomic and metabolomic analysis of the carotenogenic yeast Xanthophyllomyces dendrorhous using different carbon sources. BMC Genomics 16:289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinez-Moya P, Watt SA, Niehaus K et al (2011) Proteomic analysis of the carotenogenic yeast Xanthophyllomyces dendrorhous. BMC Microbiol 11:131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mata-Gómez LC, Montañez JC, Méndez-Zavala A, Aguilar CN (2014) Biotechnological production of carotenoids by yeasts: an overview. Microb Cell Factories 13:12

    Article  CAS  Google Scholar 

  • Medina HR, Cerdá-Olmedo E, Al-Babili S (2011) Cleavage oxygenases for the biosynthesis of trisporoids and other apocarotenoids in Phycomyces. Mol Microbiol 82:199–208

    Article  CAS  PubMed  Google Scholar 

  • Mehta BJ, Cerdá-Olmedo E (1995) Mutants of carotene production in Blakeslea trispora. Appl Microbiol Biotechnol 42:836–838

    Article  CAS  Google Scholar 

  • Mehta BJ, Cerdá-Olmedo E (1999) Lycopene cyclization in Blakeslea trispora. Mycoscience 40:307–310

    Article  CAS  Google Scholar 

  • Mehta BJ, Cerdá-Olmedo E (2001) Intersexual partial diploids of Phycomyces. Genetics 158:635–641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta BJ, Obraztsova IN, Cerdá-Olmedo E (2003) Mutants and intersexual heterokaryons of Blakeslea trispora for production of β-carotene and lycopene. Appl Environ Microbiol 69:4043–4048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta BJ, Salgado LM, Bejarano ER, Cerdá-Olmedo E (1997) New mutants of Phycomyces blakesleeanus for β-carotene production. Appl Environ Microbiol 63:3657–3661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mende K, Homann V, Tudzynski B (1997) The geranylgeranyl diphosphate synthase gene of Gibberella fujikuroi: isolation and expression. Mol Gen Genet 255:96–105

    Article  CAS  PubMed  Google Scholar 

  • Meyer PS, Du Preez JC (1994) Photo-regulated astaxanthin production by Phaffia rhodozyma mutants. Syst Appl Microbiol 17:24–31

    Article  CAS  Google Scholar 

  • Meyer PS, du Preez JC, Kilian SG (1993) Selection and evaluation of astaxanthin-overproducing mutants of Phaffia rhodozyma. World J Microbiol Biotechnol 9:514–520

    Article  CAS  PubMed  Google Scholar 

  • Miao L, Chi S, Tang Y et al (2011) Astaxanthin biosynthesis is enhanced by high carotenogenic gene expression and decrease of fatty acids and ergosterol in a Phaffia rhodozyma mutant strain. FEMS Yeast Res 11:192–201

    Article  CAS  PubMed  Google Scholar 

  • Miao L, Wang Y, Chi S et al (2010) Reduction of fatty acid flux results in enhancement of astaxanthin synthesis in a mutant strain of Phaffia rhodozyma. J Ind Microbiol Biotechnol 37:595–602

    Article  CAS  PubMed  Google Scholar 

  • Mitzka U, Rau W (1977) Composition and photoinduced biosynthesis of the carotenoids of a protoplast-like Neurospora crassa “slime” mutant. Arch Microbiol 111:261–263

    Article  CAS  PubMed  Google Scholar 

  • Mitzka-Schnabel U (1985) Carotenogenic enzymes from Neurospora. Pure Appl Chem 57:667–669

    Article  CAS  Google Scholar 

  • Mitzka-Schnabel U, Rau W (1980) The subcellular distribution of carotenoids in Neurospora crassa. Phytochemistry 19:1409–1413

    Article  CAS  Google Scholar 

  • Miura Y, Kondo K, Saito T et al (1998) Production of the carotenoids lycopene, β-carotene, and astaxanthin in the food yeast Candida utilis. Appl Environ Microbiol 64:1226–1229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moliné M, Flores MR, Libkind D et al (2010) Photoprotection by carotenoid pigments in the yeast Rhodotorula mucilaginosa: the role of torularhodin. Photochem Photobiol Sci 9:1145–1151

    Article  PubMed  CAS  Google Scholar 

  • Moliné M, Libkind D, van Broock M (2012) Production of torularhodin, torulene, and β-carotene by Rhodotorula yeasts. Methods Mol Biol 898:275–283

    Article  PubMed  CAS  Google Scholar 

  • Montanti J, Nghiem NP, Johnston DB (2011) Production of astaxanthin from cellulosic biomass sugars by mutants of the yeast Phaffia rhodozyma. Appl Biochem Biotechnol 164:655–665

    Article  CAS  PubMed  Google Scholar 

  • Moore MM, Breedveld MW, Autor AP (1989) The role of carotenoids in preventing oxidative damage in the pigmented yeast, Rhodotorula mucilaginosa. Arch Biochem Biophys 270:419–431

    Article  CAS  PubMed  Google Scholar 

  • Moran NA, Jarvik T (2010) Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 328:624–627

    Article  CAS  PubMed  Google Scholar 

  • Murcia-Flores L, Lorca-Pascual JM, Garre V et al (2007) Non-AUG translation initiation of a fungal RING finger repressor involved in photocarotenogenesis. J Biol Chem 282:15394–15403

    Article  CAS  PubMed  Google Scholar 

  • Murillo FJ, Calderón IL, López-Díaz I, Cerdá-Olmedo E (1978) Carotene-superproducing strains of Phycomyces. Appl Environ Microbiol 36:639–642

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murillo FJ, Cerdá-Olmedo E (1976) Regulation of carotene synthesis in Phycomyces. Mol Gen Genet 148:19–24

    Article  CAS  PubMed  Google Scholar 

  • Murillo FJ, Torres-Martínez S, Aragón CM, Cerdá-Olmedo E (1981) Substrate transfer in carotene biosynthesis in Phycomyces. Eur J Biochem 119:511–516

    Article  CAS  PubMed  Google Scholar 

  • Nanou K, Roukas T (2011) Stimulation of the biosynthesis of carotenes by oxidative stress in Blakeslea trispora induced by elevated dissolved oxygen levels in the culture medium. Bioresour Technol 102:8159–8164

    Article  CAS  PubMed  Google Scholar 

  • Nanou K, Roukas T (2010) Oxidative stress response and morphological changes of Blakeslea trispora induced by butylated hydroxytoluene during carotene production. Appl Biochem Biotechnol 160:2415–2423

    Article  CAS  PubMed  Google Scholar 

  • Nanou K, Roukas T (2013) Oxidative stress response of Blakeslea trispora induced by iron ions during carotene production in shake flask culture. Appl Biochem Biotechnol 169:2281–2289

    Article  CAS  PubMed  Google Scholar 

  • Nanou K, Roukas T (2016) Waste cooking oil: a new substrate for carotene production by Blakeslea trispora in submerged fermentation. Bioresour Technol 203:198–203

    Article  CAS  PubMed  Google Scholar 

  • Navarro E, Lorca-Pascual JM, Quiles-Rosillo MD et al (2001) A negative regulator of light-inducible carotenogenesis in Mucor circinelloides. Mol Gen Genomics 266:463–470

    Article  CAS  Google Scholar 

  • Navarro E, Ruiz-Pérez VL, Torres-Martínez S (2000) Overexpression of the crgA gene abolishes light requirement for carotenoid biosynthesis in Mucor circinelloides. Eur J Biochem 267:800–807

    Article  CAS  PubMed  Google Scholar 

  • Navarro E, Sandmann G, Torres-Martínez S (1995) Mutants of the carotenoid biosynthetic pathway of Mucor circinelloides. Exp Mycol 19:186–190

    Article  CAS  Google Scholar 

  • Navarro-Sampedro L, Yanofsky C, Corrochano LM (2008) A genetic selection for Neurospora crassa mutants altered in their light regulation of transcription. Genetics 178:171–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson MA, Morelli G, Carattoli A et al (1989) Molecular cloning of a Neurospora crassa carotenoid biosynthetic gene (albino-3) regulated by blue light and the products of the white collar genes. Mol Cell Biol 9:1271–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neupert W, Ludwig GD (1971) Sites of biosynthesis of outer and inner membrane proteins of Neurospora crassa mitochondria. Eur J Biochem 19:523–532

    Article  CAS  PubMed  Google Scholar 

  • Niklitschek M, Alcaíno J, Barahona S et al (2008) Genomic organization of the structural genes controlling the astaxanthin biosynthesis pathway of Xanthophyllomyces dendrorhous. Biol Res 41:93–108

    Article  PubMed  Google Scholar 

  • Ninet L, Renaut J, Tissier R (1969) Activation of the biosynthesis of carotenoids by Blakeslea trispora. Biotechnol Bioeng 11:1195–1210

    Article  CAS  Google Scholar 

  • Ojima K, Breitenbach J, Visser H et al (2006) Cloning of the astaxanthin synthase gene from Xanthophyllomyces dendrorhous (Phaffia rhodozyma) and its assignment as a β-carotene 3-hydroxylase/4-ketolase. Mol Gen Genomics 275:148–158

    Article  CAS  Google Scholar 

  • Ootaki T, Crafts-Lighty A, Delbrück M, Hsu WJ (1973) Complementation between mutants of Phycomyces deficient with respect to carotenogenesis. Mol Gen Genet 121:57–70

    Article  CAS  PubMed  Google Scholar 

  • Paietta J, Sargent ML (1981) Photoreception in Neurospora crassa: correlation of reduced light sensitivity with flavin deficiency. Proc Natl Acad Sci U S A 78:5573–5577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paietta J, Sargent ML (1983) Modification of blue light photoresponses by riboflavin analogs in Neurospora crassa. Plant Physiol 72:764–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papaioannou EH, Liakopoulou-Kyriakides M (2012) Agro-food wastes utilization by Blakeslea trispora for carotenoids production. Acta Biochim Pol 59:151–153

    CAS  PubMed  Google Scholar 

  • Papp T, Csernetics A, Nagy G et al (2013) Canthaxanthin production with modified Mucor circinelloides strains. Appl Microbiol Biotechnol 97:4937–4950

    Article  CAS  PubMed  Google Scholar 

  • Papp T, Velayos A, Bartok T et al (2006) Heterologous expression of astaxanthin biosynthesis genes in Mucor circinelloides. Appl Microbiol Biotechnol 69:526–531

    Article  CAS  PubMed  Google Scholar 

  • Parajo JC, Santos VV, Vazquez M (1998) Production of carotenoids by Phaffia rhodozyma growing on media made from hemicellulosic hydrolysates of Eucalyptus globulus wood. Biotechnol Bioeng 59:501–506

    Article  CAS  PubMed  Google Scholar 

  • Pegklidou K, Mantzouridou F, Tsimidou MZ (2008) Lycopene production using Blakeslea trispora in the presence of 2-methyl imidazole: yield, selectivity, and safety aspects. J Agric Food Chem 56:4482–4490

    Article  CAS  PubMed  Google Scholar 

  • Polaino S, Herrador MM, Cerdá-Olmedo E, Barrero AF (2010) Splitting of β-carotene in the sexual interaction of Phycomyces. Org Biomol Chem 8:4229–4231

    Article  CAS  PubMed  Google Scholar 

  • Prado MM, Prado-Cabrero A, Fernández-Martín R, Avalos J (2004) A gene of the opsin family in the carotenoid gene cluster of Fusarium fujikuroi. Curr Genet 46:47–58

    Article  CAS  PubMed  Google Scholar 

  • Prado-Cabrero A, Estrada AF, Al-Babili S, Avalos J (2007) Identification and biochemical characterization of a novel carotenoid oxygenase: elucidation of the cleavage step in the Fusarium carotenoid pathway. Mol Microbiol 64:448–460

    Article  CAS  PubMed  Google Scholar 

  • Prado-Cabrero A, Schaub P, Díaz-Sánchez V et al (2009) Deviation of the neurosporaxanthin pathway towards β-carotene biosynthesis in Fusarium fujikuroi by a point mutation in the phytoene desaturase gene. FEBS J 276:4582–4597

    Article  CAS  PubMed  Google Scholar 

  • Qiang W, Ling-ran F, Luo W et al (2014) Mutation breeding of lycopene-producing strain Blakeslea trispora by a novel atmospheric and room temperature plasma (ARTP). Appl Biochem Biotechnol 174:452–460

    Article  CAS  PubMed  Google Scholar 

  • Quiles-Rosillo MD, Ruiz-Vázquez RM, Torres-Martínez S, Garre V (2005) Light induction of the carotenoid biosynthesis pathway in Blakeslea trispora. Fungal Genet Biol 42:141–153

    Article  CAS  PubMed  Google Scholar 

  • Quiles-Rosillo MD, Torres-Martínez S, Garre V (2003) cigA, a light-inducible gene involved in vegetative growth in Mucor circinelloides is regulated by the carotenogenic repressor crgA. Fungal Genet Biol 38:122–132

    Article  CAS  PubMed  Google Scholar 

  • Ramírez J, Gutierrez H, Gschaedler A (2001) Optimization of astaxanthin production by Phaffia rhodozyma through factorial design and response surface methodology. J Biotechnol 88:259–268

    Article  PubMed  Google Scholar 

  • Rao AV, Rao LG (2007) Carotenoids and human health. Pharmacol Res 55:207–216

    Article  CAS  PubMed  Google Scholar 

  • Rau W (1962) Über den Einfluss der Temperatur auf die lichtabhängige Carotinoidbildung von Fusarium aquaeductuum. Planta 59:123–137

    Article  CAS  Google Scholar 

  • Rau W (1967) Untersuchungen über die lichtabhängige Carotinoidsynthese. I Das Wirkungsspektrum von Fusarium aquaeductuum. Planta 72:14–28

    Article  CAS  Google Scholar 

  • Rau W, Lindemann I, Rau-Hund A (1968) Untersuchungen über die lichtabhängige Carotinoidsynthese. III Die Farbstoffbildung von Neurospora crassa in Submerskultur. Planta 80:309–316

    Article  CAS  Google Scholar 

  • Razani SH, Mousavi SM, Yeganeh HM, Marc I (2007) Fatty acid and carotenoid production by Sporobolomyces ruberrimus when using technical glycerol and ammonium sulfate. J Microbiol Biotechnol 17:1591–1597

    PubMed  Google Scholar 

  • Revuelta JL, Eslava AP (1983) A new gene (carC) involved in the regulation of carotenogenesis in Phycomyces. Mol Gen Genet 192:225–229

    Article  CAS  Google Scholar 

  • Ribeiro BD, Barreto DW, Coelho MAZ (2011) Technological aspects of β-carotene production. Food Bioprocess Technol 4:693–701

    Article  CAS  Google Scholar 

  • Rodríguez-Ortiz R, Limón MC, Avalos J (2009) Regulation of carotenogenesis and secondary metabolism by nitrogen in wild-type Fusarium fujikuroi and carotenoid-overproducing mutants. Appl Environ Microbiol 75:405–413

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Ortiz R, Limón MC, Avalos J (2013) Functional analysis of the carS gene of Fusarium fujikuroi. Mol Gen Genomics 288:157–173

    Article  CAS  Google Scholar 

  • Rodríguez-Ortiz R, Michielse C, Rep M et al (2012) Genetic basis of carotenoid overproduction in Fusarium oxysporum. Fungal Genet Biol 49:684–696

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Sáiz M, de la Fuente JL, Barredo JL (2010) Xanthophyllomyces dendrorhous for the industrial production of astaxanthin. Appl Microbiol Biotechnol 88:645–658

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Saiz M, Paz B, De La Fuente JL et al (2004) Blakeslea trispora genes for carotene biosynthesis. Appl Environ Microbiol 70:5589–5594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rohmer M, Knani M, Simonin P et al (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 15:517–524

    Article  Google Scholar 

  • Roukas T (2016) The role of oxidative stress on carotene production by Blakeslea trispora in submerged fermentation. Crit Rev Biotechnol 36:424–433

    CAS  PubMed  Google Scholar 

  • Roukas T, Varzakakou M, Kotzekidou P (2015) From cheese whey to carotenes by Blakeslea trispora in a bubble column reactor. Appl Biochem Biotechnol 175:182–193

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Hidalgo MJ, Benito EP, Sandmann G, Eslava AP (1997a) The phytoene dehydrogenase gene of Phycomyces: regulation of its expression by blue light and vitamin A. Mol Gen Genet 253:734–744

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Roldán MC, Garre V, Guarro J et al (2008) Role of the white collar 1 photoreceptor in carotenogenesis, UV resistance, hydrophobicity, and virulence of Fusarium oxysporum. Eukaryot Cell 7:1227–1230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saelices L, Youssar L, Holdermann I et al (2007) Identification of the gene responsible for torulene cleavage in the Neurospora carotenoid pathway. Mol Gen Genomics 278:527–537

    Article  CAS  Google Scholar 

  • Saenge C, Cheirsilp B, Suksaroge TT, Bourtoom T (2011) Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Process Biochem 46:210–218

    Article  CAS  Google Scholar 

  • Sahadevan Y, Richter-Fecken M, Kaerger K et al (2013) Early and late trisporoids differentially regulate β-carotene production and gene transcript levels in the mucoralean fungi Blakeslea trispora and Mucor mucedo. Appl Environ Microbiol 79:7466–7475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakaki H, Kaneno H, Sumiya Y et al (2002a) A new carotenoid glycosyl ester isolated from a marine microorganism, Fusarium strain T-1. J Nat Prod 65:1683–1684

    Article  CAS  PubMed  Google Scholar 

  • Sakaki H, Nakanishi T, Satonaka K et al (2000) Properties of a high-torularhodin-producing mutant of Rhodotorula glutinis cultivated under oxidative stress. J Biosci Bioeng 89:203–205

    Article  CAS  PubMed  Google Scholar 

  • Sakaki H, Nakanishi T, Tada A et al (2001) Activation of torularhodin production by Rhodotorula glutinis using weak white light irradiation. J Biosci Bioeng 92:294–297

    Article  CAS  PubMed  Google Scholar 

  • Sakaki H, Nochide H, Komemushi S, Miki W (2002b) Effect of active oxygen species on the productivity of torularhodin by Rhodotorula glutinis No. 21. J Biosci Bioeng 93:338–340

    Article  CAS  PubMed  Google Scholar 

  • Salgado LM, Avalos J, Bejarano ER, Cerdá-Olmedo E (1991) Correlation between in vivo and in vitro carotenogenesis in Phycomyces. Phytochemistry 30:2587–2591

    Article  CAS  Google Scholar 

  • Salgado LM, Bejarano ER, Cerdá-Olmedo E (1989) Carotene-superproducing mutants of Phycomyces blakesleeanus. Exp Mycol 13:332–336

    Article  CAS  Google Scholar 

  • Salgado LM, Cerdá-Olmedo E (1992) Genetic interactions in the regulation of carotenogenesis in Phycomyces. Curr Genet 21:67–71

    Article  CAS  Google Scholar 

  • Sandmann G (2002) Combinatorial biosynthesis of carotenoids in a heterologous host: a powerful approach for the biosynthesis of novel structures. Chembiochem Eur J Chem Biol 3:629–635

    Article  CAS  Google Scholar 

  • Sandmann G, Misawa N (2002) Fungal carotenoids. In: Osiewacz HD (ed) The mycota X. Industrial applications. Springer, Berlin, pp 247–262

    Chapter  Google Scholar 

  • Sandmann G, Misawa N, Wiedemann M et al (1993) Functional identification of al-3 from Neurospora crassa as the gene for geranylgeranyl pyrophosphate synthase by complementation with crt genes, in vitro characterization of the gene product and mutant analysis. J Photochem Photobiol B 18:245–251

    Article  CAS  PubMed  Google Scholar 

  • Sandmann G, Takaichi S, Fraser PD (2008) C(35)-apocarotenoids in the yellow mutant Neurospora crassa YLO. Phytochemistry 69:2886–2890

    Article  CAS  PubMed  Google Scholar 

  • Sandmann G, Zhu C, Krubasik P, Fraser PD (2006) The biotechnological potential of the al-2 gene from Neurospora crassa for the production of monocyclic keto hydroxy carotenoids. Biochim Biophys Acta 1761:1085–1092

    Article  CAS  PubMed  Google Scholar 

  • Sanz C, Alvarez MI, Orejas M et al (2002) Interallelic complementation provides genetic evidence for the multimeric organization of the Phycomyces blakesleeanus phytoene dehydrogenase. Eur J Biochem 269:902–908

    Article  CAS  PubMed  Google Scholar 

  • Sanz C, Benito EP, Orejas M et al (2010) Protein-DNA interactions in the promoter region of the Phycomyces carB and carRA genes correlate with the kinetics of their mRNA accumulation in response to light. Fungal Genet Biol 47:773–781

    Article  CAS  PubMed  Google Scholar 

  • Sanz C, Rodríguez-Romero J, Idnurm A et al (2009) Phycomyces MADB interacts with MADA to form the primary photoreceptor complex for fungal phototropism. Proc Natl Acad Sci U S A 106:7095–7100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanz C, Velayos A, Alvarez MI et al (2011) Functional analysis of the Phycomyces carRA gene encoding the enzymes phytoene synthase and lycopene cyclase. PLoS One 6:e23102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schachtschabel D, David A, Menzel K-D et al (2008) Cooperative biosynthesis of trisporoids by the (+) and (-) mating types of the zygomycete Blakeslea trispora. Chembiochem Eur J Chem Biol 9:3004–3012

    Article  CAS  Google Scholar 

  • Schmidhauser TJ, Lauter FR, Russo VE, Yanofsky C (1990) Cloning, sequence, and photoregulation of al-1, a carotenoid biosynthetic gene of Neurospora crassa. Mol Cell Biol 10:5064–5070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidhauser TJ, Lauter FR, Schumacher M et al (1994) Characterization of al-2, the phytoene synthase gene of Neurospora crassa. Cloning, sequence analysis, and photoregulation. J Biol Chem 269:12060–12066

    CAS  PubMed  Google Scholar 

  • Schmidt AD, Heinekamp T, Matuschek M et al (2005) Analysis of mating-dependent transcription of Blakeslea trispora carotenoid biosynthesis genes carB and carRA by quantitative real-time PCR. Appl Microbiol Biotechnol 67:549–555

    Article  CAS  PubMed  Google Scholar 

  • Schmidt I, Schewe H, Gassel S et al (2011) Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol 89:555–571

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Dannert C (2000) Engineering novel carotenoids in microorganisms. Curr Opin Biotechnol 11:255–261

    Article  CAS  PubMed  Google Scholar 

  • Schneider T, Graeff-Hönninger S, French WT et al (2013) Lipid and carotenoid production by oleaginous red yeast Rhodotorula glutinis cultivated on brewery effluents. Energy 61:34–43

    Article  CAS  Google Scholar 

  • Schroeder WA, Johnson EA (1995a) Singlet oxygen and peroxyl radicals regulate carotenoid biosynthesis in Phaffia rhodozyma. J Biol Chem 270:18374–18379

    Article  CAS  PubMed  Google Scholar 

  • Schroeder WA, Johnson EA (1993) Antioxidant role of carotenoids in Phaffia rhodozyma. J Gen Microbiol 139:907–912

    Article  CAS  Google Scholar 

  • Schroeder WA, Johnson EA (1995b) Carotenoids protect Phaffia rhodozyma against singlet oxygen damage. J Ind Microbiol 14:502–507

    Article  CAS  Google Scholar 

  • Schrott EL (1980) Fluence response relationship of carotenogenesis in Neurospora crassa. Planta 150:174–179

    Article  CAS  PubMed  Google Scholar 

  • Schrott EL (1981) The biphasic fluence response of carotenogenesis in Neurospora crassa: temporary insensitivity of the photoreceptor system. Planta 151:371–374

    Article  CAS  PubMed  Google Scholar 

  • Schwerdtfeger C, Linden H (2003) VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO J 22:4846–4855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi F, Zhan W, Li Y, Wang X (2014) Temperature influences β-carotene production in recombinant Saccharomyces cerevisiae expressing carotenogenic genes from Phaffia rhodozyma. World J Microbiol Biotechnol 30:125–133

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Xin X, Yuan Q (2012) Improved lycopene production by Blakeslea trispora with isopentenyl compounds and metabolic precursors. Biotechnol Lett 34:849–852

    Article  CAS  PubMed  Google Scholar 

  • Shimada H, Kondo K, Fraser PD et al (1998) Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway. Appl Environ Microbiol 64:2676–2680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shrode LB, Lewis ZA, White LD et al (2001) vvd is required for light adaptation of conidiation-specific genes of Neurospora crassa, but not circadian conidiation. Fungal Genet Biol 32:169–181

    Article  CAS  PubMed  Google Scholar 

  • Sieiro C, Poza M, de Miguel T, Villa TG (2003) Genetic basis of microbial carotenogenesis. Int Microbiol 6:11–16

    CAS  PubMed  Google Scholar 

  • Silva F, Navarro E, Peñaranda A et al (2008) A RING-finger protein regulates carotenogenesis via proteolysis-independent ubiquitylation of a White Collar-1-like activator. Mol Microbiol 70:1026–1036

    CAS  PubMed  Google Scholar 

  • Silva F, Torres-Martínez S, Garre V (2006) Distinct white collar-1 genes control specific light responses in Mucor circinelloides. Mol Microbiol 61:1023–1037

    Article  CAS  PubMed  Google Scholar 

  • Simpson KL, Nakayama TO, Chichester CO (1964) Biosynthesis of yeast carotenoids. J Bacteriol 88:1688–1694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sokolovsky VY, Lauter FR, Müller-Röber B et al (1992) Nitrogen regulation of blue light-inducible genes in Neurospora crassa. J Gen Microbiol 138:2045–2049

    Article  Google Scholar 

  • Sperstad S, Lutnaes BF, Stormo SK et al (2006) Torularhodin and torulene are the major contributors to the carotenoid pool of marine Rhodosporidium babjevae (Golubev). J Ind Microbiol Biotechnol 33:269–273

    Article  CAS  PubMed  Google Scholar 

  • Spurgeon SL, Turner RV, Harding RW (1979) Biosynthesis of phytoene from isopentenyl pyrophosphate by a Neurospora enzyme system. Arch Biochem Biophys 195:23–29

    Article  CAS  PubMed  Google Scholar 

  • Stachowiak B (2013) Efficiency of selected mutagens in generating Xanthophyllomyces dendrorhous strains hyperproducing astaxanthin. Pol J Microbiol 62:67–72

    CAS  PubMed  Google Scholar 

  • Stahl W, Sies H (2005) Bioactivity and protective effects of natural carotenoids. Biochim Biophys Acta 1740:101–107

    Article  CAS  PubMed  Google Scholar 

  • Stahl W, Sies H (2003) Antioxidant activity of carotenoids. Mol Asp Med 24:345–351

    Article  CAS  Google Scholar 

  • Strobel I, Breitenbach J, Scheckhuber CQ et al (2009) Carotenoids and carotenogenic genes in Podospora anserina: engineering of the carotenoid composition extends the life span of the mycelium. Curr Genet 55:175–184

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Li H, Yuan Q (2012) Metabolic regulation of trisporic acid on Blakeslea trispora revealed by a GC-MS-based metabolomic approach. PLoS One 7:e46110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun N, Lee S, Song KB (2004) Characterization of a carotenoid-hyperproducing yeast mutant isolated by low-dose gamma irradiation. Int J Food Microbiol 94:263–267

    Article  CAS  PubMed  Google Scholar 

  • Sutter RP (1970) Effect of light on β-carotene accumulation in Blakeslea trispora. J Gen Microbiol 64:215–221

    Article  CAS  PubMed  Google Scholar 

  • Sutter RP (1987) Sexual development. In: Cerdá-Olmedo E, Lipson ED (eds) Phycomyces. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 317–336

    Google Scholar 

  • Tagua VG, Medina HR, Martín-Domínguez R et al (2012) A gene for carotene cleavage required for pheromone biosynthesis and carotene regulation in the fungus Phycomyces blakesleeanus. Fungal Genet Biol 49:398–404

    Article  CAS  PubMed  Google Scholar 

  • Tang Q, Li Y, Yuan QP (2008) Effects of an ergosterol synthesis inhibitor on gene transcription of terpenoid biosynthesis in Blakeslea trispora. Curr Microbiol 57:527–531

    Article  CAS  PubMed  Google Scholar 

  • Tapiero H, Townsend DM, Tew KD (2004) The role of carotenoids in the prevention of human pathologies. Biomed Pharmacother Biomedecine Pharmacother 58:100–110

    Article  CAS  Google Scholar 

  • Thewes S, Prado-Cabrero A, Prado MM et al (2005) Characterization of a gene in the car cluster of Fusarium fujikuroi that codes for a protein of the carotenoid oxygenase family. Mol Gen Genomics 274:217–228

    Article  CAS  Google Scholar 

  • Tinoi J, Rakariyatham N, Deming RL (2006) Utilization of mustard waste isolates for improved production of astaxanthin by Xanthophyllomyces dendrorhous. J Ind Microbiol Biotechnol 33:309–314

    Article  CAS  PubMed  Google Scholar 

  • Tinoi J, Rakariyatham N, Deming RL (2005) Simplex optimization of carotenoid production by Rhodotorula glutinis using hydrolyzed mung bean waste flour as substrate. Process Biochem 40:2551–2557

    Article  CAS  Google Scholar 

  • Torres-Martínez S, Murillo FJ, Cerdá-Olmedo E (1980) Genetics of lycopene cyclization and substrate transfer in β-carotene biosynthesis in Phycomyces. Genet Res 36:299–309

    Article  PubMed  Google Scholar 

  • Torres-Martínez S, Ruiz-Vázquez RM, Garre V et al (2012) Molecular tools for carotenogenesis analysis in the zygomycete Mucor circinelloides. Methods Mol Biol 898:85–107

    Article  PubMed  CAS  Google Scholar 

  • Tsolakis G, Parashi E, Galland P, Kotzabasis K (1999) Blue light signaling chains in Phycomyces: phototransduction of carotenogenesis and morphogenesis involves distinct protein kinase/phosphatase elements. Fungal Genet Biol 28:201–213

    Article  CAS  PubMed  Google Scholar 

  • Tudzynski B (2005) Gibberellin biosynthesis in fungi: genes, enzymes, evolution, and impact on biotechnology. Appl Microbiol Biotechnol 66:597–611

    Article  CAS  PubMed  Google Scholar 

  • Ukibe K, Hashida K, Yoshida N, Takagi H (2009) Metabolic engineering of Saccharomyces cerevisiae for astaxanthin production and oxidative stress tolerance. Appl Environ Microbiol 75:7205–7211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valadon LRG, Cooke RC (1963) Carotenoid pigments of the nematode-trapping hyphomycete Arthrobotrys oligospora (fres.) Phytochemistry 2:103–105

    Article  CAS  Google Scholar 

  • Valadon LRG, Mummery RS (1969) Biosynthesis of neurosporaxanthin. Microbios 1A:3–8

    Google Scholar 

  • Valadon LRG, Mummery RS (1977) Natural β-apo-4′-carotenoic acid methyl ester in the fungus Verticillium agaricinum. Phytochemistry 16:613–614

    Article  CAS  Google Scholar 

  • Valduga E, Rausch Ribeiro AH, Cence K et al (2014) Carotenoids production from a newly isolated Sporidiobolus pararoseus strain using agroindustrial substrates. Biocatal Agric Biotechnol 3:207–213

    Google Scholar 

  • Valduga E, Valerio A, Treichel H et al (2009) Kinetic and stoichiometric parameters in the production of carotenoids by Sporidiobolus salmonicolor (CBS 2636) in synthetic and agroindustrial media. Appl Biochem Biotechnol 157:61–69

    Article  CAS  PubMed  Google Scholar 

  • van Eijk GW, Mummery RS, Roeymans HJ, Valadon LR (1979) A comparative study of carotenoids of Aschersonia aleyroides and Aspergillus giganteus. Antonie Van Leeuwenhoek 45:417–422

    Article  PubMed  Google Scholar 

  • Varzakakou M, Roukas T (2010) Identification of carotenoids produced from cheese whey by Blakeslea trispora in submerged fermentation. Prep Biochem Biotechnol 40:76–82

    Article  CAS  PubMed  Google Scholar 

  • Varzakakou M, Roukas T, Papaioannou E et al (2011) Autolysis of Blakeslea trispora during carotene production from cheese whey in an airlift reactor. Prep Biochem Biotechnol 41:7–21

    Article  CAS  PubMed  Google Scholar 

  • Vázquez M, Martin AM (1998) Optimization of Phaffia rhodozyma continuous culture through response surface methodology. Biotechnol Bioeng 57:314–320

    Article  PubMed  Google Scholar 

  • Velayos A, Blasco JL, Álvarez MI et al (2000a) Blue-light regulation of phytoene dehydrogenase (carB) gene expression in Mucor circinelloides. Planta 210:938–946

    Article  CAS  PubMed  Google Scholar 

  • Velayos A, Eslava AP, Iturriaga EA (2000b) A bifunctional enzyme with lycopene cyclase and phytoene synthase activities is encoded by the carRP gene of Mucor circinelloides. Eur J Biochem 267:5509–5519

    Article  CAS  PubMed  Google Scholar 

  • Velayos A, López-Matas MA, Ruiz-Hidalgo MJ, Eslava AP (1997) Complementation analysis of carotenogenic mutants of Mucor circinelloides. Fungal Genet Biol 22:19–27

    Article  CAS  PubMed  Google Scholar 

  • Velayos A, Papp T, Aguilar-Elena R et al (2003) Expression of the carG gene, encoding geranylgeranyl pyrophosphate synthase, is up-regulated by blue light in Mucor circinelloides. Curr Genet 43:112–120

    CAS  PubMed  Google Scholar 

  • Verdoes JC, Krubasik P, Sandmann G, van Ooyen AJJ (1999a) Isolation and functional characterisation of a novel type of carotenoid biosynthetic gene from Xanthophyllomyces dendrorhous. Mol Gen Genet 262:453–461

    Article  CAS  PubMed  Google Scholar 

  • Verdoes JC, Misawa N, van Ooyen AJJ (1999b) Cloning and characterization of the astaxanthin biosynthetic gene encoding phytoene desaturase of Xanthophyllomyces dendrorhous. Biotechnol Bioeng 63:750–755

    Article  CAS  PubMed  Google Scholar 

  • Verdoes JC, Sandmann G, Visser H et al (2003) Metabolic engineering of the carotenoid biosynthetic pathway in the yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Appl Environ Microbiol 69:3728–3738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verwaal R, Jiang Y, Wang J et al (2010) Heterologous carotenoid production in Saccharomyces cerevisiae induces the pleiotropic drug resistance stress response. Yeast Chichester Engl 27:983–998

    Article  CAS  Google Scholar 

  • Verwaal R, Wang J, Meijnen J-P et al (2007) High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 73:4342–4350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visser H, van Ooyen AJJ, Verdoes JC (2003) Metabolic engineering of the astaxanthin-biosynthetic pathway of Xanthophyllomyces dendrorhous. FEMS Yeast Res 4:221–231

    Article  CAS  PubMed  Google Scholar 

  • Vittorioso P, Carattoli A, Londei P, Macino G (1994) Internal translational initiation in the mRNA from the Neurospora crassa albino-3 gene. J Biol Chem 269:26650–26654

    CAS  PubMed  Google Scholar 

  • Wang GY, Keasling JD (2002) Amplification of HMG-CoA reductase production enhances carotenoid accumulation in Neurospora crassa. Metab Eng 4:193–201

    Article  CAS  PubMed  Google Scholar 

  • Wang H-B, Luo J, Huang X-Y et al (2014) Oxidative stress response of Blakeslea trispora induced by H2O2 during β-carotene biosynthesis. J Ind Microbiol Biotechnol 41:555–561

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Luo W, Gu Q-Y et al (2013) Enhanced lycopene content in Blakeslea trispora by effective mutation-screening method. Appl Biochem Biotechnol 171:1692–1700

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Yu L, Zhou P (2006) Effects of different fungal elicitors on growth, total carotenoids and astaxanthin formation by Xanthophyllomyces dendrorhous. Bioresour Technol 97:26–31

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chen X, Hong X et al (2016) Cyclase inhibitor tripropylamine significantly enhanced lycopene accumulation in Blakeslea trispora. J Biosci Bioeng 122(5):570–576

    Article  CAS  PubMed  Google Scholar 

  • Will OH, Ruddat M, Garber ED, Kezdy FJ (1984) Characterization of carotene accumulation in Ustilago violacea using high-performance liquid chromatography. Curr Microbiol 10:57–63

    Article  CAS  Google Scholar 

  • Will OH, Ruddat M, Newland NA (1985) Characterization of carotene accumulation in species of the fungal genus Ustilago using high-performance liquid chromatography. Bot Gaz 146:204–207

    Article  CAS  Google Scholar 

  • Woodside JV, McGrath AJ, Lyner N, McKinley MC (2015) Carotenoids and health in older people. Maturitas 80:63–68

    Article  CAS  PubMed  Google Scholar 

  • Wozniak A, Lozano C, Barahona S et al (2011) Differential carotenoid production and gene expression in Xanthophyllomyces dendrorhous grown in a nonfermentable carbon source. FEMS Yeast Res 11:252–262

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Lu M, Yu L (2011) Expression of carotenogenic genes and astaxanthin production in Xanthophyllomyces dendrorhous as a function of oxygen tension. Z Naturforschung C J Biosci 66:283–286

    Article  CAS  Google Scholar 

  • Xie W, Lv X, Ye L et al (2015) Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Metab Eng 30:69–78

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Yuan Q-P, Zhu Y (2007) Improved production of lycopene and β-carotene by Blakeslea trispora with oxygen-vectors. Process Biochem 42:289–293

    Article  CAS  Google Scholar 

  • Yamamoto K, Hara KY, Morita T et al (2016) Enhancement of astaxanthin production in Xanthophyllomyces dendrorhous by efficient method for the complete deletion of genes. Microb Cell Factories 15:155

    Article  Google Scholar 

  • Yamane Y, Higashida K, Nakashimada Y et al (1997) Influence of oxygen and glucose on primary metabolism and astaxanthin production by Phaffia rhodozyma in batch and fed-batch cultures: kinetic and stoichiometric analysis. Appl Environ Microbiol 63:4471–4478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamano S, Ishii T, Nakagawa M et al (1994) Metabolic engineering for production of β-carotene and lycopene in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 58:1112–1114

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Borkovich KA (1999) Mutational activation of a Gαi causes uncontrolled proliferation of aerial hyphae and increased sensitivity to heat and oxidative stress in Neurospora crassa. Genetics 151:107–117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yen H-W, Chang J-T (2015) Growth of oleaginous Rhodotorula glutinis in an internal-loop airlift bioreactor by using lignocellulosic biomass hydrolysate as the carbon source. J Biosci Bioeng 119:580–584

    Article  CAS  PubMed  Google Scholar 

  • Youssar L, Avalos J (2007) Genetic basis of the ovc phenotype of Neurospora: identification and analysis of a 77 kb deletion. Curr Genet 51:19–30

    Article  CAS  PubMed  Google Scholar 

  • Youssar L, Schmidhauser TJ, Avalos J (2005) The Neurospora crassa gene responsible for the cut and ovc phenotypes encodes a protein of the haloacid dehalogenase family. Mol Microbiol 55:828–838

    Article  CAS  PubMed  Google Scholar 

  • Zahra Bathaie S, Ashrafi M, Azizian M, Tamanoi F (2016) Mevalonate pathway and human cancers. Curr Mol Pharmacol 10:77–85

    Google Scholar 

  • Zalokar M (1954) Studies on biosynthesis of carotenoids in Neurospora crassa. Arch Biochem Biophys 50:71–80

    Article  CAS  PubMed  Google Scholar 

  • Zalokar M (1957) Isolation of an acidic pigment in Neurospora. Arch Biochem Biophys 70:568–571

    Article  CAS  PubMed  Google Scholar 

  • Zalokar M (1955) Biosynthesis of carotenoids in Neurospora. Action spectrum of photoactivation. Arch Biochem Biophys 56:318–325

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Zhang X, Tan T (2014) Lipid and carotenoid production by Rhodotorula glutinis under irradiation/high-temperature and dark/low-temperature cultivation. Bioresour Technol 157:149–153

    Article  CAS  PubMed  Google Scholar 

  • Zoz L, Carvalho JC, Soccol VT et al (2015) Torularhodin and torulene: bioproduction, properties and prospective applications in food and cosmetics—a review. Braz Arch Biol Technol 58:278–288

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Spanish Government (projects BIO2012-39716 and BIO2015-69613-R), and Andalusian Government (project CTS-6638) for funding support. The grants include support from the European Union (European Regional Development Fund [ERDF]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Avalos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Avalos, J., Nordzieke, S., Parra, O., Pardo-Medina, J., Carmen Limón, M. (2017). Carotenoid Production by Filamentous Fungi and Yeasts. In: Sibirny, A. (eds) Biotechnology of Yeasts and Filamentous Fungi. Springer, Cham. https://doi.org/10.1007/978-3-319-58829-2_8

Download citation

Publish with us

Policies and ethics