
Fast matrix-free discontinuous Galerkin kernels

on modern computer architectures

Martin Kronbichler1 Katharina Kormann2,3

Igor Pasichnyk4 Momme Allalen5

1Institute for Computational Mechanics, Technical University of Munich,
Boltzmannstr. 15, 85747 Garching, Germany

kronbichler@lnm.mw.tum.de
2Max–Planck–Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching,

Germany
3Zentrum Mathematik, Technical University of Munich, Boltzmannstr. 3, 85747

Garching, Germany
4IBM Deutschland, Boltzmannstr. 1, 85748 Garching, Germany

5Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften,

Boltzmannstr. 1, 85748 Garching, Germany

Abstract

This study compares the performance of high-order discontinuous Ga-
lerkin finite elements on modern hardware. The main computational ker-
nel is the matrix-free evaluation of differential operators by sum factoriza-
tion, exemplified on the symmetric interior penalty discretization of the
Laplacian as a metric for a complex application code in fluid dynamics.
State-of-the-art implementations of these kernels stress both arithmetics
and memory transfer. The implementations of SIMD vectorization and
shared-memory parallelization are detailed. Computational results are
presented for dual-socket Intel Haswell CPUs at 28 cores, a 64-core Intel
Knights Landing, and a 16-core IBM Power8 processor. Up to polyno-
mial degree six, Knights Landing is approximately twice as fast as Haswell.
Power8 performs similarly to Haswell, trading a higher frequency for nar-
rower SIMD units. The performance comparison shows that simple ways
to express parallelism through for loops perform better on medium and
high core counts than a more elaborate task-based parallelization with dy-
namic scheduling according to dependency graphs, despite less memory
transfer in the latter algorithm.

1 Introduction

The increasing accuracy requirements when simulating partial differential equa-
tions in engineering applications can often not be satisfied by simply scaling up
existing codes. A limitation in the solver design of many codes is their heavy

1



2

use of sparse linear algebra routines, with matrices coming from some low-order
discretization on unstructured meshes. Sparse matrix algebra is heavily mem-
ory bandwidth bound and has only seen moderate performance gains from the
advances in computer architecture during the last decade. On systems with a
limited amount of high-bandwidth memory, such as the 16 GB of MCDRAM
on the Intel Knights Landing architecture, the sheer memory consumption of
sparse matrices can further limit the applicability of legacy implementations.

In iterative linear solvers which are dominated by matrix-vector products,
an alternative to matrix-based schemes is an evaluation on the fly without ac-
tually constructing the matrix. Stencil-based realizations such as finite differ-
ences often impose too strong restrictions on the computational mesh. On the
other hand, the integrals underlying a matrix-vector product in a finite element
discretization are amenable to fast matrix-free implementation by sum factor-
ization [6] for meshes consisting of quadrilaterals or hexahedra. A generic sum
factorization finite element kernel was introduced to the deal.II finite element
library [1] in [11]. For polynomial degrees two and higher, it has been shown to
be several times faster than matrix-based schemes.

For discretization of complex transport phenomena, higher-order discontin-
uous Galerkin (DG) methods are very attractive: As opposed to continuous
finite elements, they do not strongly impose the continuity of the solution over
element interfaces but rather link the elements by integrals involving numerical
fluxes as a combination of the solution on both sides. This flexibility allows for
taking directionality into account, such as upwinding [2], and makes the method
robust also in complex flow scenarios. Furthermore, the independent definition
of the solution on each element in DG avoids the indirect addressing inherent to
the access of degrees of freedom in continuous spectral element methods [6] in
favor of “packed” data access. Its combination of highly desirable characteristics
makes DG an essential building block in next-generation solvers and motivates
the development of efficient and tuned implementations. The present work has
its background in a high-order discontinuous Galerkin solver for simulating in-
compressible turbulent flow described by the Navier–Stokes equations, where
one of the central algorithmic components is a solver for the pressure Poisson
equation which is implemented via the multigrid infrastructure described in [12].

For this purpose, we have extended the sum-factorization finite element
framework presented in [11] to discontinuous elements with face integrals. In
this work, we consider single node code optimizations. Two central aspects
of high-performance DG implementations on modern compute architecture are
addressed, namely efficient SIMD vectorization and shared-memory paralleliza-
tion. These two components form the basis for hybrid codes that additionally
use MPI to span over several nodes. Our shared memory parallelization is real-
ized with the Intel Threading Building Blocks (TBB) library (tightly integrated
into deal.II) with support for both parallel for loops as well as task-based
parallelism that schedules according to dependencies [13].

A major contribution of the present study is the identification of code pat-
terns that provide best performance in shared memory, given several options.
Most previous HPC implementations of DG use patterns similar to what we



3

Table 1: Specification of hardware systems used for evaluation. Memory band-
width on KNL according to the STREAM benchmark.

Xeon Phi KNL Haswell Power8

Cores 64 14 16
Threads 4 Threads/core 2 Threads/core 8 Threads/core
Frequency 1.3 GHz/core 2.6 GHz/core 3.8 GHz/core
L1 cache 32 kB/core 32 kB/core 64 kB/core
L2 cache 1 MB/(2 cores) 256 kB/core 512 kB/core
Memory 16 GB MCDRAM @ 430 GB/s L3 Cache: 2*17.5 MB L3 Cache: 8 MB

384 GB DDR4 @ 90 GB/s 2.3 GB/core 8 GB/core
SIMD 512 bit 256 bit 128 bit

identify as the loop variant in the following, which also we find to perform best
when parallelized. However, the pure performance metrics in terms of memory
transfer are better for the alternative task implementation adapted from [9] as
seen in Sect 5.1, thus motivating our comparative analysis.

The second major contribution is the documentation of the absolute per-
formance of our kernels on contemporary hardware, namely an Intel Xeon Phi
system based on the Knights Landing architecture, a dual-socked Intel Haswell
system, and an IBM Power8 system. Table 1 lists the key characteristics of
these systems. While the Haswell and Power8 systems are conventional (latency-
optimized) CPUs with a moderate number of cores, the KNL system is through-
put-oriented with more parallelism but slower two-wide cores derived from the
Intel Atom processor [5]. The Knights Landing architecture also comes with a
new memory technology, a high bandwidth on-package memory called Multi-
Channel DRAM (MCDRAM) in addition to the traditional DDR4 memory.
MCDRAM provides up to 5× the bandwidth of DDR4 but is of lower capacity
(16GB), accessible through the “cache”, “flat” and “hybrid” modes, respec-
tively. The optimal usage of MCDRAM is an open issue, and addressed in our
work by memory-lean kernels that can fit into this fast memory.

The remainder of this text is structured as follows. Section 2 presents the
fluid dynamics application underlying the tuning. Section 3 gives an overview
of the implementation used for benchmarking. In Sect. 4, tuning steps of the
code are described. Section 5 compares the performance on three systems using
relevant test cases.

2 Application background and discretization

Incompressible fluid flow is governed by the Navier–Stokes equations,

∂~u

∂t
+∇ ·

(
~u⊗ ~u+ p~I − 1

Re
(∇~u+∇~uT)

)
= ~f,

∇ · ~u = 0,

(1)



4

Figure 1: Turbulent flow along a periodic hill, visualized through the Q-criterion,
on a computation on a 128× 64× 64 boundary-fitted mesh with fourth-degree
elements involving 260 million degrees of freedom.

where ~u denotes the (non-dimensional) fluid velocity, p is the pressure, and
~f represents body forces. For large Reynolds numbers Re, the flow becomes
turbulent and develops instationary and small-scale features that needs high
resolution and efficient solvers. The physically relevant scale range in space and
time behaves as Re3. For moderate to large Reynolds numbers Re = 104 . . . 108

whose resolution requirements exceed even the power of large supercomputers,
modeling approaches such as large or detached eddy simulation complement
direct numerical simulation.

For time discretization of Eq. (1), splitting schemes are most common at
larger Reynolds numbers, such as the dual-splitting approach by Karniadakis [7],
where each time step involves an explicit convection step, a pressure Poisson
equation, a projection to make the velocity field divergence-free, and an im-
plicit viscous step. In Fig. 1, the result of a direct numerical simulation of the
turbulent flow around a periodic hill is shown, i.e., a highly resolved computation
that covers all length scales relevant to the flow physics. The simulation results
have been obtained for a polynomial degree k = 4 on a mesh of 128 × 64 × 64
elements, producing 260 million spatial degrees of freedom that are followed
over several million time steps.

Table 2 details the distribution of run time in the four phases of a time step
in this application, the fraction of time spent in integration kernels similar to
the matrix-vector product analyzed in the sequel of this work, and the active
access of memory of each step. The active memory can be compared to the
global resident memory of 332 GB as measured by accumulation over all 128
nodes involved in the computation. The most demanding part is to solve the
pressure Poisson equation with 65 million equations. To ensure optimal com-
plexity and thus efficient use of computational resources, we use an iterative
conjugate gradient solver preconditioned by a geometric multigrid V-cycle [12].
The smoothing on each level is done by the Chebyshev iteration which only
needs access to the inverse of the entries on the matrix diagonal besides the



5

Table 2: Run times of the sub-steps involved in one time step of the incom-
pressible flow solver with 260 million degrees of freedom when running on 2048
Sandy Bridge cores. The projection step includes a stabilization according to
[10], which invokes fast local conjugate gradient solvers independently for each
element.

run time # iterations share mat-vec memory accessed

explicit convective step 0.012 s — 100% 59 GB of 332 GB
pressure Poisson equation 0.29 s 11 77% 41 GB of 332 GB
projection step 0.045 s 20 − 50 100% 26 GB of 332 GB
viscous step 0.066 s 3 73% 36 GB of 332 GB

matrix-vector product.
The numbers in Table 2 highlight that code optimizations need to concen-

trate on the matrix-vector product which accounts for approximately 80% of the
total run time. Note that the implementation according to [11] uses a generic
interface to integration and improvements made for one kernel typically trans-
late to similar profits in the other variants of the integration loops and thus the
whole complex application code. Besides the times for a time step listed in the
table, the code also consists an initial setup phase and small data analysis parts
take less than 1% of overall run time.

A discretized partial differential operator corresponds to a matrix-vector
product in our model. We assume a triangulation of the computational domain
into elements K ∈ Th. The set of interior faces is denoted by F i

h with p− and p+

the pressure solution on the respective side of the face, and the set of boundary
faces by Fb

h . The bilinear forms (a, b)K =
∫
K
a� bd~x and 〈a, b〉F =

∫
F
a� bd~x

denote the inner product of the two quantities and subsequent integration over
the element K or the face F , respectively. Using this notation, the discretization
of the pressure Poisson equation finds ph such that the equation

∑
K∈Th

(∇qh,∇ph)K +
∑
F∈F i

h

[〈
q−h − q

+
h , σ(p−h − p

+
h )
〉
F

−
〈

(q−h − q
+
h )~n−,

∇p−h +∇p+
h

2

〉
F

−
〈
∇q−h +∇q+

h

2
, ~n−(p−h − p

+
h )

〉
F

]
+
∑
F∈Fb

h

〈qh, 2σph〉F − 〈qh~n,∇ph〉F − 〈∇qh, ~nph〉F =
∑
K∈Th

(
qh,−

γ0

∆t
∇ · ~̂u

)
K

(2)

holds for all test functions qh. In this equation, γ0
∆t∇ · ~̂u is the forcing given

by the divergence of some intermediate-step velocity ~̂u that is usually used in a
slightly modified form with integration by parts including central fluxes for the
velocity for stability reasons according to [10]. The interior penalty parameter



6

is denoted by σ and penalizes jumps of the solution over faces, see e.g. [2].

3 Implementation

The operator evaluation is realized by fast integration, using an extension of the
framework presented in [11] to discontinuous Galerkin. For the linear operator

L implementing the left hand side of Eq. (2), an input vector ~P is interpreted
by its solution function ph and tested by all basis functions qh, giving rise to an
output vector ~Q,

~Q = L~P . (3)

The integrals are performed according to Eq. (2) on both cells K and faces F .
For the cell integrals, the degrees of freedom related to the cell from the global
vector are extracted, the local operator is evaluated by integration and tested
by all local basis functions and, finally, the local integrals are written into the
global result vector. In the integrals, the gradient operators ∇ with respect
to the spatial variable ~x in Eq. (2) are replaced by gradients in the reference

coordinate ~ξ ∈ (0, 1)3 and multiplied by the Jacobian of the transformation in
the usual finite element fashion [11]. The unit-cell operation is the same on all
elements and implemented by sum factorization kernels for hexahedra [6, 8]. The
Jacobian transformation on Cartesian meshes is the same throughout an element
(and possibly over many different elements), whereas a separate d×d matrix for
each quadrature point is necessary for curved meshes. Our realization makes
use of these optimizations if the mesh allows for that, significantly reducing
memory transfer in the Cartesian mesh case.

The face integrals involve interpolated solutions from the two neighboring
cells, tested by basis functions and integrated by a quadrature formula on the
faces. In order to avoid double computations when evaluating the integrals to
all faces of a cell, we use a separate loop indexing for the faces. Integrals on
inner faces combine the information from both adjacent cells in a single step.

The evaluation complexity per degree of freedom with sum factorization is
O(k + 1) in the polynomial degree k for cell integrals [11] and O(1) for face
integrals. The proportionality constants are such that the number of arithmetic
operations for on-the-fly integration is lower than with the final matrix “sten-
cils” starting at polynomial degrees three to four for continuous elements [11]
and at degree two to three of discontinuous ansatz spaces. Since a matrix-based
scheme is usually heavily memory-bandwidth bound, matrix-free evaluation is
the fastest available evaluation option already for quadratic shape functions.
The specific characteristics of the method allow for an almost constant run time
per degree of freedom for a wide range of polynomial degrees 2 ≤ k ≤ 8 [11, 12],
making the polynomial degree essentially a parameter that can be adapted to
the complexity of the geometry to be meshed: A more complex geometry will
use more elements of somewhat lower polynomial degree. On more regular
domains, the higher solution quality of high-order shape functions can be lever-
aged. Our kernels are integrated into the deal.II finite element library [1],



7

which provides the infrastructure of the mesh, definition of degrees of freedom
and parallelization for our application code. This allows for implementing weak
forms such as the Laplacian (2) in compact form with only up to a few dozens
of lines of code. Despite their generality, the matrix-free kernels outperform the
benchmark code from the HPGMG project1 by 1.5 to 2.5 times on continuous
elements [12], which is due to the careful selection of stored data structures
vs. on-the-fly computation. The arithmetic intensities of the resulting algo-
rithms are between 1 and 6 FLOP/byte, depending on the geometry, i.e., close
to the ridge of memory-bound and computation-bound algorithms [12]. This
characteristic makes it necessary to consider both memory efficiency as well as
optimizations addressing arithmetics and instruction scheduling.

Since several faces compute integral contributions to the same cell in this
layout, the face computations cannot be simply split into subranges within a
parallel for loop over the faces, and they cannot be arbitrarily mixed with cell
integrals in order to avoid race conditions when accessing the global result vector
~Q in Eq. (3). In the following, we discuss two shared-memory parallelizations
that avoid these race conditions in different ways. We focus on implementation
with the Intel TBB library which is the main thread parallelism paradigm in
deal.II. An alternative OpenMP-based implementation of our loops has shown
very similar performance. We do not consider atomic operations or locks in this
work because they have been found to be less efficient on preliminary tests.
For the former, no vectorized versions are implemented in CPU hardware yet,
reducing efficiency.

3.1 Parallel evaluation through tasks

The task-based parallel scheme adapts the partition-partition scheme described
in [9] for finite element operator application. In the discontinuous Galerkin
setting, each task includes operations on a range of cells, a range of inner faces,
and a range of boundary faces. The latter two ranges are associated with the
cell range in order to leverage solution data already in caches from the cell
integrals. A race condition can appear if one task operates on an inner face
accessing cells K1 and K2 and another task simultaneously operates on another
inner face involving either K1 or K2 or a cell integral on K1/2. We note that at
least one of the two cells—the one the face is associated with—will be part of
the same task and not conflict. However, this does not necessarily hold true for
the other cell.

The idea of the partitioning strategy is to compute the connectivity between
tasks based on the access pattern of face integrals. The connectivity graph is
then split in such a way that layer i is only connected to layers i− 1 and i+ 1.
With this layout, the cells in all even partitions can be parallelized without race
conditions. Afterwards, all odd partitions can be run in parallel. Starting with
a group of cells for the first partition, the size of the partitions can increase and
the total number of partitions might be rather small. In order to create enough

1https://hpgmg.org



8

parallelism, we therefore create another layer of partitions inside each partition.
Each partition on the second level is a multiple of a certain block size in order
to make sure that vectorization is possible. The idea is related to graph coloring
but adapted such that only local synchronization points between the adjacent
tasks are necessary, as opposed to global synchronization when running parallel
loops on one color at a time, see [9].

The algorithm can be summarized as follows

– Preprocessing: Find the connectivity structure where each cell is associ-
ated with a list of cells that share a face with it.

– Assign each block to one partition:

– Assign the first cells (up to a user-specified grain size) to partition
zero.

– Assign all cells that are connected with cells in partition zero, but
not already assigned a partition to partition one. If the number of
cells is not a multiple of the grain size, add neighbors of the cells in
partition one. This fill-up avoids empty lanes when vectorizing over
several cells as described in Sect. 3.3 below.

– Repeat this procedure until all cells are assigned to a partition.

– For each partition, create a second layer of partitions analogously.
– Create an integer cell indexing according to the double partitioning.

Note that the algorithm is analogous to one described in [9] with the only
difference that the connectivity graph uses the dependency of the face integrals
instead of the degrees of freedom shared at the element boundary in continuous
finite elements.

3.2 Parallel evaluation through for loops

An alternative approach to avoid simultaneous writes into the same vector po-
sitions is to introduce temporary data structures that hold information for each
face integral separately. A common approach in discontinuous Galerkin meth-
ods [2, 3] is to interpolate the function uh to all the faces. In the context of
integration where the differential operator is implemented by quadrature and
tensor products are involved, the most efficient approach is to perform an inter-
polation step in face-normal direction and store this data in a global auxiliary
variable. This gives the following algorithm for the SIP discretization (2):

1. Loop over all cells K ∈ Th:

– Read values from input vector.
– Interpolate elemental input values to all 2d faces for both values

and the reference-cell normal derivative. This gives 2(k+ 1)d−1 data
values per face that are stored in a global auxiliary vector.

– Perform cell integration by sum factorization and write result into
destination vector.

2. Loop over all inner faces F ∈ F i
h:



9

– Load the values and normal derivatives from the global auxiliary
vector from the element storage on both elements K− and K+ and
local face numbers f− and f+ involved in the face.

– Sum factorization provides values and reference gradients in face
quadrature points.

– On each quadrature point, implement all face terms involved in (2).
– Sum over quadrature points and multiplication by test function v±h

and unit cell gradient ∇v±h with sum factorization.
– Write the resulting contribution to value and normal derivative to be

tested back into the global auxiliary vector, indexed by the element
numbers K− and K+ and local face numbers f− and f+ involved in
the face.

3. Loop over all boundary faces F ∈ Fb
h : Similar steps to inner faces.

4. Loop over all cells K ∈ Th:

– Read global auxiliary vector for values and normal derivatives on
each face.

– Finalize integration step by expanding the test functions into the
elements.

– Add resulting contribution into destination vector.

This algorithm has the advantage that all quantities accessed inside the loops
are independent from one another. This includes the face loops where different
faces access different sections in the auxiliary vector also when they refer to the
same element. Thus, a simple parallel for loops can be used. The price to pay
for this alternative is the global auxiliary vector which needs to be transferred
from/to main memory five times, twice for the initial write operation (write,
including read-for-ownership), twice during the face loops (read and write), and
once for the final interpolation (read). This increased memory access possibly
reduces performance in memory-constrained situations.

3.3 Vectorization

An essential ingredient to high performance of the matrix-free operator evalu-
ation is to use SIMD instructions. Automatic vectorization or OpenMP-SIMD
annotations apply vectorization to the innermost loops, which is not the optimal
strategy for the complex data flow in local integration with sum factorization
that runs through the local vectors in different orders when passing through one
direction at a time. Also, the subsequent operations on quadrature points use
yet another data access pattern. Thus, full vectorization would involve a series
of cross-lane permutations on each element. In addition, some lanes might re-
main empty or non-vectorized peel and remainder loops arise in case the number
of degrees of freedom per direction, k+ 1, is not a multiple of the SIMD width,
reducing the effective throughput. Finally, we note that vectorization in the
sum factorization kernel alone is not enough, as the operation on quadrature
points can account for 10 to 50% of the instructions on non-vectorized code [11],



10

with higher values for more complex operators like the convective term in the
incompressible Navier–Stokes equations.

Instead, our work follows the approach proposed in [11], evaluating the con-
tributions from several cells or faces within a SIMD instruction. This is prof-
itable since the operation on each element is the same, albeit with different data
from the vector and different geometries and coefficients. This approach only
involves a single cross-lane or gather operation when the global vector data is
read and written in the task-based algorithm according to Sect. 3.1. The data in
solution vectors is stored contiguously for each element and needs to be “trans-
posed” in this step for putting the same nodal point on all elements involved in
the SIMD array next to each other. This transposition transforms an array of
structures into a structure-of-array data layout. For the loop-based approach
from Sect. 3.2, there are two additional transpose operations involved, one when
cells access the auxiliary vector in steps 1 and 4 and one when faces access the
auxiliary vector in steps 2 and 3, the latter accessing different components as
compared to the cell. Note that some transpositions could be avoided by storing
the solution vector in an array-of-structure-of-array data layout. However, the
access into at least half of the faces would be considerably more complicated,
involving gather and scatter operations where each index points into different
cache lines, an operation which typically serializes the data access on contem-
porary hardware implementations and is less efficient than the vectorized access
proposed here.

On Haswell, SIMD instructions process four cells/faces (double precision) or
eight cells/faces (single precision) at once. On Knights Landing, the numbers
are eight for double precision and 16 for single precision, whereas the numbers
are two and four on Power8. A disadvantage of the proposed vectorization
scheme is that the size of the scratch data fields holding temporary results from
sum factorization increases with increasing vector width. The size of the scratch
data used for processing a cell integral scales as 6(k + 1)d, which is multiplied
by 32 or 64 bytes in case of Haswell and Knights Landing, respectively. Thus,
the scratch data spills L1 caches of Haswell for k = 5 and for k = 4 on KNL,
relying on fast next-level caches for higher degrees. However, the results below
show that memory hierarchies are sufficiently capable on both systems, with
the exception of KNL on high degrees k ≥ 9 when the L2 cache capacity is
exhausted.

4 Performance tuning

The performance tuning is driven by identifying the most significant bottlenecks
in our code and making appropriate changes that reduce or eliminate the effect
of these bottlenecks. Node level tuning is performed using the Intel VTune Am-
plifier Tool [4]. We conduct our analysis and optimization on a dual-socket Intel
Xeon E5-2697 v3 according to Table 1 using the double-precision matrix-vector
product. To reduce the amount of collected information the hot spot analysis is
performed using one thread. The vector load intrinsic operation _mm256_loadu_pd



11

Figure 2: Top-Down view of the function call stack for the Cartesian grid case.

Figure 3: Top-Down view of the function call stack for curvilinear grid case.

which is called several times from the function vectorized_load_and_transpose is
the most time-consuming operation as can be seen from the top-down view of
the function call stack for the case of the Cartesian grid configuration shown in
Fig. 2, which appears inside the aforementioned transposition step. The loop in
the function vectorized_load_and_transpose_base performs vector load operations
based on offset values inside a loop. We could improve this code by moving
the redundant calculation of the offset indices outside the loop by introducing
double pointers that can be held in registers.

Furthemore the same function vectorized_load_and_transpose appears in the
code vectorization analysis performed by Intel Advisor. The analysis shows an
inefficient use of vector registers due to the complex structures of the array in-
dices. Keeping this in mind, we modify the function vectorized_load_and_transpose

correspondingly. To help the compiler performing vectorization of the loop we
additionally inserted an OMP SIMD pragma.

Going to the case of a curvilinear grid configuration, Fig. 3 identifies the same
function vectorized_load_and_transpose among the hot spots. However, the most
time consuming function in this case is the overloaded += operation called from
the function get_gradient. The source code has multiple layers of abstractions for
performing SIMD data additions. However, this function representing the actual
arithmetic work maps to optimal assembler code, including fused multiply-add
instruction identified by the compiler.



12

5 Performance comparison

All code was compiled with the gcc compiler, version 6.2, at optimization level
-O3 -march=native. The performance with gcc is within 2% of the perfor-
mance with the Intel compiler (v. 16.0 and 17.0) when compiled at -O3 -xhost

on Haswell. The similar performance is due to the explicit vectorization and
it depends on the particular instruction scheduling and loop unrolling which of
these two compilers performs slightly better. On KNL, the code generated by
gcc provides around 1.5 times higher throughput because the Intel compiler for
KNL is not able to merge vectorized multiplications and additions arising in the
high-level C++ implementation in deal.II into fused multiply-add instructions
for m512d data types. For the Power8 system the code is compiled using the
Advanced Toolchain for PowerLinux.9.0 with the IBM’s Mathematical Acceler-
ation Subsystem (MASS) libraries. It exploits the advanced capabilities for the
POWER vector instruction set from the Vector Multimedia eXtension (VMX).
Scalability tests on Power8 are performed by varying the number of hardware
threads in each core via the SMT option.

All times are reported as the minimal run time of the matrix-vector product
out of ten experiments. Since Intel TBB dynamically distributes the tasks to
threads without direct pinning [13], we use the “affinity partitioner” in the for

loop variant to ensure that repeated loops run on the same threads. This is
beneficial for the non-uniform memory access on the Haswell system where a
first-touch page assignment of the data stored on cells such as Jacobian trans-
formations for the loop-based algorithm from Sect. 3.2 is used. No affinity can
be used for the task-based scheme. For KNL, MCDRAM memory is config-
ured in “flat” mode where it is mapped to physical address space and exposed
as a NUMA node (allocatable memory) in all experiments except the detailed
analysis in Sect. 5.4.

5.1 Comparison of task and loop parallelization

Fig. 4 compares the parallel scaling of a code with Q4 elements and 32.8 million
degrees of freedom for the two algorithmic variants presented in Sect. 3 on the
Haswell, Knights Landing, and Power8 architectures.

On a single Haswell core, the task-based scheme is faster than the loop-based
scheme that splits computations into several parts, using 0.72 s rather than
1.17 s. This is due to the lower memory transfer and better cache utilization.
An analysis of the matrix-vector product with the likwid tool2 on a single core
reports 0.63 GB of read transfer and 0.32 GB of write transfer to main memory
for the layout from Sect. 3.1 (one solution vector: 0.26 GB). Conversely, the
for loop from Sect. 3.2 involves 2.76 GB of reads and 1.82 GB of writes (size of
auxiliary vector: 0.63 GB).

Despite the advantage in terms of memory transfer, the parallel task imple-
mentation scales considerably worse than the for loops. Therefore, the latter

2https://github.com/RRZE-HPC/likwid, retrieved on September 18, 2016



13

1 4 16 64 256

10−1

100

number of threads

c
o
m

p
u
te

ti
m

e
[s

]

KNL tasks

KNL loops

Power8 tasks

Power8 loops

HSW tasks

HSW loops

Figure 4: Parallel scaling study of various task parallelization schemes on
Haswell and Knights Landing using a problem with Q4 elements on a 643 Carte-
sian mesh, using 32.7 million degrees of freedom. Dashed lines indicate the step
to logical cores with simultaneous multithreading (SMT).

reaches 0.068 s on 28 Haswell cores, faster than the task-based scheme at 0.092 s.
Power8 is slower with a single thread than Haswell due to the narrower SIMD
width, but reaches similar performance to Haswell at higher thread counts and
in particular with SMT thanks to more parallelism inside the cores and presum-
ably a better memory controller.

On a single core, the Knights Landing system is slowest with a wall time of
around 1.7 s according to Fig. 4. Given that a KNL core is weak with only half
the clock frequency of Haswell and restricted capabilities, a slowdown of only
about 30% is remarkable particularly for the loop kernel and shows the effect
of wider vectorization. The loop-based algorithm shows excellent strong scaling
when increasing the core count to 64, reaching a parallel speedup of more than
50 (and 55 when going to 128 cores). For comparison, the parallel speedup is
17 on the Haswell system.

The task-based parallelization from Sect. 3.1 shows worse behavior on both
Intel systems, in particular the KNL system with more cores. Since the code
analysis shows that CPUs are mostly busy in that case, we suspect that the
dynamic scheduling of tasks with complex dependencies results in less optimal
usage of the memory hierarchy such as prefetchers and caches.

5.2 Analysis of vectorization

In order to leverage the higher performance of single-precision arithmetics, our
solvers use mixed precision: The outer residual computations and matrix-vector
products according to Eq. (2) are done with double precision for algorithmic
stability, whereas it is enough to use single precision for preconditioning the
linear systems, which applies to the full multigrid V-cycle in the Poisson solver.



14

104 105 106 107 108
0

0.5

1

1.5

2
·109

problem size: number of DoFs

th
ro

u
g
h
p
u
t:

D
o
F

s/
s

KNL, float

KNL, double

HSW, float

HSW, double

Figure 5: Performance of matrix-vector product on discontinuous Q3 elements.
Loop parallelization from Sect. 3.2.

Thus, the throughput of operator evaluation is recorded for both single precision
and double precision. Fig. 5 displays the number of degrees of freedom processed
per second on the Haswell and Knights Landing architectures, respectively. For
large problem sizes, evaluation in single precision is between 1.6 and 1.9 times
as fast. The gap to the ideal factor 2 is mainly because the global loops are half
as long when the number of element batches due to SIMD halves. This can be
seen from the fact that the gap still widens as the problem size increases and
more parallelism becomes available.

When turning to the absolute throughput numbers, our results show that
the dual-socket Haswell system can evaluate the DG operator (2) for up to
480 million degrees of freedom per second in double precision, whereas Knights
landing reaches 1.1 billion degrees of freedom per second. This speedup of a
factor of 2.3 at a somewhat lower power consumption shows the capabilities of
the KNL system for throughput-oriented tasks such as the massively parallel
integration tasks in DG. On the other hand, initialization routines including
many indirections and a mix of integer and floating point code run half as fast
on KNL as on Haswell when both systems are fully populated.

Fig. 6 evaluates the effectiveness of the explicit vectorization over elements
as described in Sect. 3.3 by comparison with auto-vectorization explored by the
compiler. In order to increase the possibilities for automatic vectorization, the
pointers inside the sum-factorization kernels are annotated with the C/C++
restrict keyword and OMP SIMD pragmas to exclude pointer aliasing. In

all configurations, the explicit vectorization holds a clear performance advan-
tage with up to a factor of 4.3. For Knights Landing with wider vector units,
the gain with explicit vectorization is larger than on Haswell. Likewise, single
precision shows larger gains than double precision. We note that the explicit
vectorization path performs essentially all arithmetic operations in packed form.



15

105 106 107 108

1

2

3

4

problem size: number of DoFs

th
ro

u
g
h
p
u
t

in
c
re

a
se

:
in

tr
in

si
c
s

v
s

a
u
to

v
e
c
t

KNL, float

KNL, double

HSW, float

HSW, double

Figure 6: Effectiveness of vectorization measured as the ratio in throughput of
auto-vectorized code and the explicit vectorization over several elements with
intrinsics according to Sect. 3.3 for Q3 elements. Numbers larger than 1 point
to an advantage of the explicit vectorization.

Measurements of the Haswell code with the likwid tool shows that more than
99% of floating point instructions in the relevant sections are on 256-bit packed
data, whereas only up to 15% of arithmetic operations are vectorized by auto-
vectorization according to the likwid analysis, both measured for Q3 elements.
Despite a potential fourfold improvement for AVX vectorization on Haswell, the
actual speedup is between 20% and 80% because of memory bottlenecks in the
wider code. This is explained by a substantially higher instruction through-
put for the non-vectorized code at 2.38 instructions per clock cycle versus 1.47
instructions per cycle for the explicitly vectorized code.

The comparison of vectorization efficiency of Haswell and KNL also allows for
projections about the run time on future systems: As soon as Intel Xeon CPUs
move to AVX-512 instructions with the Skylake Server architecture, we expect
them to surpass KNL in efficiency on computation bound kernels on Cartesian
meshes with twice the theoretical throughput of Haswell. However, we expect
KNL to remain faster due to the higher memory throughput of MCDRAM on
the curved mesh which is memory bound.

5.3 Performance metrics of loop kernel

Table 3 details the run time of the individual components in the loop paral-
lelization according to Sect. 3.2 together with an analysis of memory transfer
and arithmetic operations measured with the likwid tool. Steps 2+3 as well as
the part that computes the cell integral in step 1 involve more arithmetics as
compared to the other operations. For the cell integration, Haswell reaches an
arithmetic throughput of almost 400 GFLOP/s when counting FMA instruc-



16

Table 3: Run time analysis of loop-parallel code in terms of memory transfer and
GFLOP/s as measured with the likwid tool on 32.7 million degrees of freedom
with Q4 elements.

Haswell 56 threads KNL 128 threads
time [s] GB/s GFLOP/s time [s] GB/s GFLOP/s

step 1, all 0.026 80 230 0.013 160 460
step 1, cell part 0.012 67 386 0.0092 87 510
steps 2+3 0.024 55 210 0.012 110 420
step 4 0.020 60 72 0.0063 190 220

tions as two operations.3 About 55% of the arithmetic instructions are FMAs
and the others separate additions and multiplications. This relatively low pro-
portion of FMAs is due to our implementation that targets minimal execution
time rather than maximal FLOP rates by using the so-called even-odd decompo-
sition [8]. With these numbers, the cell integration part from step 1 reaches more
than 60% of arithmetic peak on Haswell. In the memory-dominated parts, the
complicated access patterns and possible issues in the memory pipeline prevent
the implementation to reach the full memory performance which is measured
as 95 GB/s for the STREAM add kernel on the Haswell system and 430 GB/s
on KNL. Due to different memory intensities in these four steps, the complete
matrix-vector product is relatively far away from the performance limits of the
architectures, reaching 67 GB/s and 182 GFLOP/s on Haswell and 150 GB/s
and 406 GFLOP/s on KNL. KNL is generally a bit farther from theoretical
performance limits, showing the impact of the weaker core with instruction-
scheduling bottlenecks.

As a metric for the performance in different application scenarios, Fig. 7
shows the throughput of the matrix-vector product as a function of the polyno-
mial degree. Results have been generated for problem sizes between 16 and 134
million degrees of freedom on the Cartesian mesh and 4.5 to 25 million degrees
of freedom on the curved mesh, both chosen such that the local kernels fit into
the 16 GB MCDRAM memory of KNL that is operated in flat mode. As the
polynomial degree increases, there are jumps in the number of elements which
have a slight effect on the throughput, namely between k = 3 and k = 4 and
between k = 7 and k = 8, respectively. The results show more than a two-
fold advantage of KNL over Haswell on moderate polynomial degrees k ≤ 6.
Moreover, the advantage is more pronounced on the curved mesh case which
has a lower arithmetic intensity (2 FLOP/byte versus 5 FLOP/byte). This re-
sult highlights the importance of fast MCDRAM memory as compared to the

3As a complement to the numbers given by likwid that count FMAs as one FLOP, we
recorded FMAs and additions and multiplication separately with the Intel software develop-
ment emulator.



17

0 2 4 6 8 10
0

0.5

1

·109

element degree k

d
e
g
re

e
s

o
f

fr
e
e
d
o
m

p
e
r

se
c
o
n
d

KNL Cartesian

KNL curved

HSW Cartesian

HSW curved

Power8 Cartesian

Power8 curved

Figure 7: Performance of double-precision matrix-vector product on discontin-
uous elements as a function of the polynomial degree.

Haswell system, see also the results in Table 4 below.

5.4 Memory mode of KNL

For the KNL system, the fast MCDRAM is an essentialy ingredient to reach high
performance, in particular due to the high dependence on memory throughput
documented by the kernel analysis in Sect. 5.3. In Table 4 the performance
of “flat” mode is compared to “cache” mode. For the “flat” mode, we use
numactl to ensure that all memory allocations go to the MCDRAM or the DDR4
RAM, respectively. In flat mode, the code runs two to three times faster from
MCDRAM than from DDR4 memory. When comparing the results of the flat
mode with the cache mode, we see that the cache mode reaches similar or even
slightly better performance than the flat mode for algorithms which repeatedly
access the same memory. According to the numbers shown in Table 2, the fluid
dynamics application is an ideal target for this mode: The application code does
not need to specify at compile time where the memory should be allocated (like
when using hbwmalloc through memkind [5] going to MCDRAM): In case the
whole application fits into MCDRAM, full performance is reached in the steady
state of many time steps. In case the overall program exceeds the MCDRAM
cache, all steps except for the explicit convection step (with only one sweep
through data) involve iterations with repeated access to at most one tenth of
global resident memory.

6 Conclusions and outlook

In this paper, we have discussed the portability of a matrix-free discontinuous
Galerkin code to the new KNL and Power8 architectures. We have analyzed



18

Table 4: Comparison of memory modes on KNL, measured as degrees of freedom
processed per second (DoFs/s).

Cache mode Flat mode
1st run avg 100 runs MCDRAM DDR4

Cartesian mesh Q2 0.46 · 109 0.89 · 109 0.89 · 109 0.53 · 109

curved mesh Q2 0.25 · 109 0.68 · 109 0.66 · 109 0.20 · 109

Cartesian mesh Q4 0.44 · 109 1.22 · 109 1.08 · 109 0.59 · 109

curved mesh Q4 0.24 · 109 0.82 · 109 0.75 · 109 0.24 · 109

Cartesian mesh Q8 0.41 · 109 1.16 · 109 0.92 · 109 0.53 · 109

curved mesh Q8 0.30 · 109 0.75 · 109 0.68 · 109 0.22 · 109

and optimized node-level performance by vectorization and thread parallelism
with two different algorithms. The first algorithm is based on tasks scheduled
according to nearest-neighbor dependencies, while the second is based on simple
for loops. While the latter parallelization scheme is simpler and allows for
more regular data access, it comes with the overhead of additional transfer from
RAM memory for temporary face data buffers. Due to the memory overhead
this option performs generally worse for low order elements where the amount of
face data as compared to cell data is larger and the arithmetic intensity is lower.
Nonetheless, it performs considerably better when parallelized on the many-core
KNL, highlighting that for loops with regular scheduling is beneficial.

Our code implements an explicit vectorization of the integrals which im-
proves runtime significantly as compared to automatic vectorization. This effect
is more pronounced for wider vector units, rendering this feature essential for
new Intel architectures with 512-bit vector units. Explicit vectorization makes
the double-precision kernel run around 2.5 times faster and the single-precision
kernel more than four times faster on KNL. When going from Haswell to KNL,
we obtain a speedup of a factor 1.5 to 2.5 for our matrix-vector products. De-
spite different hardware architectures, the IBM Power8 and the Intel Haswell
system showed very similar performance, with a slight advantage of the for-
mer on memory-heavy operations and a slight advantage of the latter on more
arithmetic-heavy parts.

In the future, we plan to combine shared-memory performance obtained on
single KNL nodes with MPI in a hybrid parallelization scheme to obtain results
in computational engineering with unprecedented accuracy on emerging KNL
clusters.



19

Acknowledgements

The authors acknowledge the support given by the Bayerische Kompetenznetzw-
erk für Technisch-Wissenschaftliches Hoch- und Höchstleistungsrechnen (KON-
WIHR) in the framework of the project High performance finite difference sten-
cils for modern parallel processors. This work was supported by the German Re-
search Foundation (DFG) under the project High-order discontinuous Galerkin
for the exa-scale (ExaDG) within the priority program Software for Exascale
Computing (SPPEXA). The authors gratefully acknowledge the Gauss Centre
for Supercomputing e.V. (www.gauss-centre.eu) for funding this project by
providing computing time on the GCS Supercomputer SuperMUC at Leibniz
Supercomputing Centre (LRZ, www.lrz.de) through project id pr83te.

The authors acknowledge collaboration with Benjamin Krank, Niklas Fehn,
and Matthias Brehm.

References

[1] Bangerth, W., Davydov, D., Heister, T., Heltai, L., Kanschat, G., Kronbichler,
M., Maier, M., Turcksin, B., Wells, D.: The deal.II library, version 8.4. J.
Numer. Math. 24(3), 135–141 (2016), www.dealii.org. doi:10.1515/jnma-2016-
1045

[2] Hesthaven, J.S., Warburton, T.: Nodal discontinuous Galerkin methods: Al-
gorithms, analysis, and applications, Texts in Applied Mathematics, vol. 54.
Springer (2008). doi:10.1007/978-0-387-72067-8

[3] Hindenlang, F., Gassner, G., Altmann, C., Beck, A., Staudenmaier, M., Munz,
C.D.: Explicit discontinuous Galerkin methods for unsteady problems. Comput.
Fluids 61, 86–93 (2012). doi:10.1016/j.compfluid.2012.03.006

[4] Intel Corporation: Intel VTune Amplifier XE 2017,
https://software.intel.com/en-us/intel-vtune-amplifier-xe

[5] Jeffers, J., Reinders, J., Sodani, A.: Intel Xeon Phi Processor High Performance
Programming, Knights Landing edition. Morgan Kaufmann, Cambridge, MA
(2016)

[6] Karniadakis, G.E., Sherwin, S.J.: Spectral/hp element methods for com-
putational fluid dynamics. Oxford University Press, 2nd edn. (2005).
doi:10.1093/acprof:oso/9780198528692.001.0001

[7] Karniadakis, G.E., Israeli, M., Orszag, S.A.: High-order splitting methods for
the incompressible Navier–Stokes equations. J. Comput. Phys. 97(2), 414 – 443
(1991). doi:10.1016/0021-9991(91)90007-8

[8] Kopriva, D.: Implementing spectral methods for partial differential equations.
Springer (2009). doi:10.1007/978-90-481-2261-5

[9] Kormann, K., Kronbichler, M.: Parallel finite element operator application:
Graph partitioning and coloring. In: Proc. 7th IEEE Int. Conf. eScience. pp.
332–339 (2011). doi:10.1109/eScience.2011.53

[10] Krank, B., Fehn, N., Wall, W.A., Kronbichler, M.: A high-order semi-explicit
discontinuous Galerkin solver for 3D incompressible flow with application to DNS
and LES of turbulent channel flow. arXiv preprint arXiv:1607.01323 (2016)



20

[11] Kronbichler, M., Kormann, K.: A generic interface for parallel cell-based
finite element operator application. Comput. Fluids 63, 135–147 (2012).
doi:10.1016/j.compfluid.2012.04.012

[12] Kronbichler, M., Wall, W.A.: A performance comparison of continuous and
discontinuous Galerkin methods with fast multigrid solvers. arXiv preprint
arXiv:1611.03029 (2016)

[13] Reinders, J.: Intel Threading Building Blocks. O’Reilly (2007)


