Skip to main content

Bioprecipitation of Metals and Metalloids

  • Chapter
  • First Online:
Sustainable Heavy Metal Remediation

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 8))

Abstract

Heavy metals are toxic, carcinogenic and unlike organic contaminants are not biodegradable, and thus accumulate in organisms. Approximately 60% of the polluted areas in the world, suffer from the harmful effects of metals including Cd, Ni, Cu, Pb, Zn, Hg and Co. Mining, fertilizer, tanneries, paper, batteries and electroplating industries are the main sources of heavy metal containing waters. For example, in China, the annual amount of heavy metal containing electroplating industry wastewater has exceeded 4 billion tons. Up to 1000 mg/kg heavy metal concentration in sediments has been reported due to repeated discharges. We reviewed the sources of heavy metal containing water and metal precipitation techniques including metal sulfide, hydroxide, ferrihydrite, geothite, jarosite as well as schwertmannite precipitation. Metal sulfide precipitation relies on the biological generation of H2S and near complete metal removal is possible with both organic (i.e. ethanol) and inorganic (i.e. hydrogen) electron donors. The utilization of soluble electron donors provides high rate and dense metal precipitates with metal recovery of over 80% (usually 100%). Additionally, metals can be recovered separately as various metal sulfides by adjusting pH. Biological oxidation/reduction processes facilitate the formation of insoluble metal precipitates for uranium (U6+ to U4+); chromium (Cr6+ to Cr3+) or iron (Fe2+ to Fe3+). The major points extracted from the study are: (1) metal sulfide precipitation is fast, results in low residual metal concentrations and allows for selective recovery of various metals with a wide variety of different reactor configurations, (2) high rate biological metal recovery is possible with cultures which use metals as electron acceptors which eliminates the drawbacks such as chemical costs and huge sludge volume production in chemical reduction, (3) animal manure, leaf mulch, sawdust, wood chips, sewage sludge, cellulose could be used in passive treatment systems and therefore operational costs could be optimized, (4) some heavy metals can be precipitated through biological oxidation (i.e. Fe2+ to Fe3+) and (5) possible iron precipitates include hematite (Fe2O3); geothite (FeOOH); ferric hydroxide Fe(OH)3; jarosite Fe3(SO4)2(OH)6; schwertmannite Fe16O16(SO4)2(OH)12.n(H2O) and scorodite (FeAsO4.2H2O).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EC:

European Commission

EPA:

Environmental Protection Agency

MS:

Metal sulfide

SI:

Saturation index

WHO:

World Health Organization

References

  • Alowitz MJ, Scherer MM (2002) Kinetics of nitrate, nitrite, and Cr(vi) reduction by iron metal. Environ Sci Technol 36:299–306. doi:10.1021/es011000h

    Article  CAS  Google Scholar 

  • Altun M, Sahinkaya E, Durukan I, Bektas S, Komnitsas K (2014) Arsenic removal in a sulfidogenic fixed-bed column bioreactor. J Hazard Mater 269:31–37. doi:10.1016/j.jhazmat.2013.11.047

    Article  CAS  Google Scholar 

  • Battaglia-Brunet F, Crouzet C, Morin D, Joulian C, Burnol A, Coulon S, Morin D, Joulian C (2012) Precipitation of arsenic sulphide from acidic water in a fixed-film bioreactor. Water Res 46:3923–3933. doi:10.1016/j.watres.2012.04.035

    Article  CAS  Google Scholar 

  • Bigham JM, Nordstrom DK (2000) Iron and aluminum hydroxysulfates from acid sulfate waters. Rev Mineral Geochem 40(1):351–403. doi:10.2138/rmg.2000.40.7

    Article  CAS  Google Scholar 

  • Bigham JM, Schwertmann U, Traina SJ, Winland RL, Wolf M (1996) Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim Cosmochim Acta 60:2111–2121. doi:10.1016/0016-7037(96)00091-9

    Article  CAS  Google Scholar 

  • Bigham JM, Jones FS, Özkaya B, Sahinkaya E, Puhakka JA, Tuovinen OH (2010) Characterization of jarosites produced by chemical synthesis over a temperature gradient from 2 to 40 °C. Int J Miner Process 94(3–4):121–128. https://doi.org/10.1016/j.minpro.2010.01.005

    Article  CAS  Google Scholar 

  • Bijmans MFM (2008) Sulfate reduction under acidic conditions for selective metal recovery. Wageningen University, Wageningen

    Google Scholar 

  • Bijmans MFM, van Helvoort PJ, Buisman CJN, Lens PNL (2009a) Effect of the sulfide concentration on zinc bio-precipitation in a single stage sulfidogenic bioreactor at pH 5.5. Sep Purif Technol 69:243–248. doi:10.1016/j.seppur.2009.07.023

    Article  CAS  Google Scholar 

  • Bijmans MFM, van Helvoort PJ, Dar SA, Dopson M, Lens PNL, Buisman CJN (2009b) Selective recovery of nickel over iron from a nickel-iron solution using microbial sulfate reduction in a gas-lift bioreactor. Water Res 43:853–861. doi:10.1016/j.watres.2008.11.023

    Article  CAS  Google Scholar 

  • Boshoff G, Duncan J, Rose PD (2004) Tannery effluent as a carbon source for biological sulphate reduction. Water Res 38:2651–2658. doi:10.1016/j.watres.2004.03.030

    Article  CAS  Google Scholar 

  • Brum MC, Capitaneo JL, Oliveira JF (2010) Removal of hexavalent chromium from water by adsorption onto surfactant modified montmorillonite. Miner Eng 23:270–272. doi:10.1016/j.mineng.2009.10.008

    Article  CAS  Google Scholar 

  • Chabalala S, Chirwa EMN (2010) Removal of uranium(VI) under aerobic and anaerobic conditions using an indigenous mine consortium. Miner Eng 23:526–531. doi:10.1016/j.mineng.2010.01.012

    Article  CAS  Google Scholar 

  • Chang IS, Kim BH (2007) Effect of sulfate reduction activity on biological treatment of hexavalent chromium [Cr(VI)] contaminated electroplating wastewater under sulfate-rich condition. Chemosphere 68:218–226. doi:10.1016/j.chemosphere.2007.01.031

    Article  CAS  Google Scholar 

  • Chang IS, Shin PK, Kim BH (2000) Biological treatment of acid mine drainage under sulphate-reducing conditions with solid waste materials as substrate. Water Res 34:1269–1277. doi:10.1016/S0043-1354(99)00268-7

    Article  CAS  Google Scholar 

  • Cheong YW, Min JS, Kwon KS (1998) Metal removal efficiencies of substrates for treating acid mine drainage of the Dalsung mine, South Korea. J Geochem Explor 64:147–152. doi:10.1016/S0375-6742(98)00028-4

    Article  CAS  Google Scholar 

  • Chirwa EMN, Wang YT (1997) Hexavalent chromium reduction by Bacillus sp. in a packed-bed bioreactor. Environ Sci Technol 31:1446–1451. doi:10.1021/es9606900

    Article  CAS  Google Scholar 

  • Chung J, Nerenberg R, Rittmann BE (2006) Bio-reduction of soluble chromate using a hydrogen-based membrane biofilm reactor. Water Res 40:1634–1642. doi:10.1016/j.watres.2006.01.049

    Article  CAS  Google Scholar 

  • Chung J, Rittmann BE, Her N, Lee SH, Yoon Y (2010) Integration of H2-based membrane biofilm reactor with RO and NF membranes for removal of chromate and selenate. Water Air Soil Pollut 207:29–37. doi:10.1007/s11270-009-0116-7

    Article  CAS  Google Scholar 

  • Claassen JO, Meyer EHO, Rennie J, Sandenbergh RF (2002) Iron precipitation from zinc-rich solutions: defining the Zincor process. Hydrometallurgy 67:87–108. doi:10.1016/S0304-386X(02)00141-X

    Article  CAS  Google Scholar 

  • Costa MC, Santos ES, Barros RJ, Pires C, Martins M (2009) Wine wastes as carbon source for biological treatment of acid mine drainage. Chemosphere 75:831–836. doi:10.1016/j.chemosphere.2008.12.062

    Article  CAS  Google Scholar 

  • Coulton R, Bullen C, Hallett C (2003) The design and optimisation of active mine water treatment plants. L Contam Reclam 11:273–279. doi:10.2462/09670513.825

    Article  Google Scholar 

  • Dogan NM, Kantar C, Gulcan S, Dodge CJ, Yilmaz BC, Mazmanci MA (2011) Chromium(VI) bioremoval by Pseudomonas bacteria: role of microbial exudates for natural attenuation and biotreatment of Cr(VI) contamination. Environ Sci Technol 45:2278–2285. doi:10.1021/es102095t

    Article  CAS  Google Scholar 

  • Drouet C, Navrotsky A (2006) Synthesis, characterization, and thermochemistry of K-Na-H3O jarosites. Geochim Cosmochim Acta 67:2063–2076. doi:10.1016/S0016-7037(02)01299-1

    Article  CAS  Google Scholar 

  • Dutrizac JE (1990) Converting jarosite residues into compact hematite products. JOM – The J Min Metal Mater Soc (TMS) 42:36–39. doi:10.1007/BF03220521

    Article  CAS  Google Scholar 

  • Dutrizac JE (1999) The effectiveness of jarosite species for precipitating sodium jarosite. JOM - The J Min Metal Mater Soc (TMS) 51:30–32. doi:10.1007/s11837-999-0168-6

  • EPA-440/1-84/091 (1984) Guidance manual for electroplating and metal finishing pretreatment standards. 401 M Street S.W. Washington, DC 20460, USA

    Google Scholar 

  • Fabbricino M, Naviglio B, Tortora G, d’Antonio L (2013) An environmental friendly cycle for Cr(III) removal and recovery from tannery wastewater. J Environ Manag 117:1–6. doi:10.1016/j.jenvman.2012.12.012

    Article  CAS  Google Scholar 

  • Fang D, Zhang R, Zhou L, Li J (2011) A combination of bioleaching and bioprecipitation for deep removal of contaminating metals from dredged sediment. J Hazard Mater 192:226–233. doi:10.1016/j.jhazmat.2011.05.008

    CAS  Google Scholar 

  • Flege AE (2001) Sulfate reduction in five constructed wetlands receiving acid mine drainage. University of Cincinnati, Cincinnati

    Google Scholar 

  • Foucher S, Battaglia-Brunet F, Ignatiadis I, Morin D (2001) Treatment by sulfate-reducing bacteria of Chessy acid-mine drainage and metals recovery. Chem Eng Sci 56:1639–1645. doi:10.1016/S0009-2509(00)00392-4

    Article  CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418. doi:10.1016/j.jenvman.2010.11.011

    Article  CAS  Google Scholar 

  • Gao W, Francis AJ (2008) Reduction of uranium(VI) to uranium(IV) by Clostridia. Appl Environ Microbiol 74:4580–4584. doi:10.1128/AEM.00239-08

    Article  CAS  Google Scholar 

  • García C, Moreno DA, Ballester A, Blázquez ML, González F (2001) Bioremediation of an industrial acid mine water by metal-tolerant sulphate-reducing bacteria. Miner Eng 14:997–1008. doi:10.1016/S0892-6875(01)00107-8

    Article  Google Scholar 

  • Gemici Ü, Tarcan G, Helvaci C, Somay AM (2008) High arsenic and boron concentrations in groundwaters related to mining activity in the Bigadiç borate deposits (Western Turkey). Appl Geochem 23:2462–2476. doi:10.1016/j.apgeochem.2008.02.013

    Article  CAS  Google Scholar 

  • Hao TW, Xiang PY, Mackey HR, Chi K, Lu H, Chui HK, van Loosdrecht MCM, Chen GH (2014) A review of biological sulfate conversions in wastewater treatment. Water Res 65:1–21. doi:10.1016/j.watres.2014.06.043

    Article  CAS  Google Scholar 

  • Hedrich S, Johnson DB (2012) A modular continuous flow reactor system for the selective bio-oxidation of iron and precipitation of schwertmannite from mine-impacted waters. Bioresour Technol 106:44–49. doi:10.1016/j.biortech.2011.11.130

    Article  CAS  Google Scholar 

  • Huisman JL, Schouten G, Schultz C (2006) Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry. Hydrometallurgy 83:106–113. doi:10.1016/j.hydromet.2006.03.017

    Article  CAS  Google Scholar 

  • Hulshoff Pol LW, Lens PN, Stams AJ, Lettinga G (1998) Anaerobic treatment of sulphate-rich wastewaters. Biodegradation 9:213–224. doi:10.1023/A:1008307929134

    Article  CAS  Google Scholar 

  • Jambor JL, Dutrizac JE (1998) Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide. Chem Rev 98:2549–2586. doi:10.1021/cr970105t

    Article  CAS  Google Scholar 

  • Jong T, Parry DL (2003) Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs. Water Res 37:3379–3389. doi:10.1016/S0043-1354(03)00165-9

    Article  CAS  Google Scholar 

  • Kaksonen AH, Puhakka JA (2007) Sulfate reduction based bioprocesses for the treatment of acid mine drainage and the recovery of metals. Eng Life Sci 7:541–564. doi:10.1002/elsc.200720216

    Article  CAS  Google Scholar 

  • Kaksonen AH, Riekkola-Vanhanen ML, Puhakka JA (2003a) Optimization of metal sulphide precipitation in fluidized-bed treatment of acidic wastewater. Water Res 37:255–266. doi:10.1016/S0043-1354(02)00267-1

    Article  CAS  Google Scholar 

  • Kaksonen AH, Franzmann PD, Puhakka JA (2003b) Performance and ethanol oxidation kinetics of a sulfate-reducing fluidized-bed reactor treating acidic metal-containing wastewater. Biodegradation 14:207–217. doi:10.1023/A:1024262607099

    Article  CAS  Google Scholar 

  • Kaksonen AH, Plumb JJ, Franzmann PD, Puhakka JA (2004) Simple organic electron donors support diverse sulfate-reducing communities in fluidized-bed reactors treating acidic metal- and sulfate-containing wastewater. FEMS Microbiol Ecol 47:279–289. doi:10.1016/S0168-6496(03)00284-8

    Article  CAS  Google Scholar 

  • Kaksonen AH, Morris C, Rea S, Li J, Usher KM, McDonald RG, Hilario F, Hosken T, Jackson M, Chris A, du Plessis CA (2014a) Biohydrometallurgical iron oxidation and precipitation: Part II – Jarosite precipitate characterisation and acid recovery by conversion to hematite. Hydrometallurgy 147–148:264–272. doi:10.1016/j.hydromet.2014.04.015

  • Kaksonen AH, Morris C, Rea S, Li J, Wylie J, Usher KM, Ginige MP, Cheng KY, Hilario F, du Plessis CA (2014b) Biohydrometallurgical iron oxidation and precipitation: Part I – Effect of pH on process performance. Hydrometallurgy 147-148:255–263. doi:10.1016/j.hydromet.2014.04.016

  • Kaksonen AH, Morris C, Hilario F, Rea SM, Li J, Usher KM, Wylie J, Ginige MP, Yu K, Cheng KY, du Plessis C (2014c) Iron oxidation and jarosite precipitation in a two-stage airlift bioreactor. Hydrometallurgy 150:227–235. doi:10.1016/j.hydromet.2014.05.020

    Article  CAS  Google Scholar 

  • Kalyanaraman C, Sri K, Kameswari B, Raghava J (2014) Studies on enhancing the biodegradation of tannins by ozonation and Fenton’s oxidation process. J Ind Eng Chem. doi:10.1016/j.jiec.2014.11.012

    Google Scholar 

  • Kashefi K, Lovley DR (2000) Reduction of Fe(III), Mn(IV), and toxic metals at 100°C by Pyrobaculum islandicum. Appl Environ Microbiol 66:1050–1056. doi:10.1128/AEM.66.3.1050-1056.2000

    Article  CAS  Google Scholar 

  • Kieft TL, Fredrickson JK, Onstott TC, Gorby YA, Kostandarithes HM, Bailey TJ, Kennedy DW, Li SW, Plymale AE, Spadoni CM, Gray MS (1999) Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermus isolate. Appl Environ Microbiol 65:1214–1221

    CAS  Google Scholar 

  • Kinnunen PHM, Puhakka JA (2005) High-rate iron oxidation at below pH 1 and at elevated iron and copper concentrations by a Leptospirillum ferriphilum dominated biofilm. Process Biochem 40:3536–3541. doi:10.1016/j.procbio.2005.03.050

    Article  CAS  Google Scholar 

  • Kurt U, Apaydin O, Gonullu MT (2007) Reduction of COD in wastewater from an organized tannery industrial region by Electro-Fenton process. J Hazard Mater 143:33–40. doi:10.1016/j.jhazmat.2006.08.065

    Article  CAS  Google Scholar 

  • Lakaniemi AM, Nevatalo LM, Kaksonen AH, Puhakka JA (2010) Mine wastewater treatment using Phalaris arundinacea plant material hydrolyzate as substrate for sulfate-reducing bioreactor. Bioresour Technol 101:3931–3939. doi:10.1016/j.biortech.2010.01.020

    Article  CAS  Google Scholar 

  • Lee SE, Lee JU, Chon HT, Lee JS (2008) Reduction of Cr(VI) by indigenous bacteria in Cr-contaminated sediment under aerobic condition. J Geochem Explor 96:144–147. doi:10.1016/j.gexplo.2007.04.005

    Article  CAS  Google Scholar 

  • Lens PNL, Kuenen JG (2001) The biological sulfur cycle: novel opportunities for environmental biotechnology. Water Sci Technol 44:57–66

    CAS  Google Scholar 

  • Lewis A, Van Hille R (2006) An exploration into the sulphide precipitation method and its effect on metal sulphide removal. Hydrometallurgy 81:197–204. doi:10.1016/j.hydromet.2005.12.009

    Article  CAS  Google Scholar 

  • Liamleam W, Annachhatre AP (2007) Electron donors for biological sulfate reduction. Biotechnol Adv 25:452–463. doi:10.1016/j.biotechadv.2007.05.002

    Article  CAS  Google Scholar 

  • Liu H, Zhu M, Gao S (2014) Application of three tailing-based composites in treating comprehensive electroplating wastewater. Water Sci Technol 70(1):47–54. doi:10.2166/wst.2014.191

    Article  CAS  Google Scholar 

  • Lofrano G, Meriç S, Emel G, Orhon D (2013a) Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: a review. Sci Total Environ 462:265–281. doi:10.1016/j.scitotenv.2013.05.004

    Article  CAS  Google Scholar 

  • Lofrano G, Meriç S, Emel G, Orhon D, Zengin GE, Orhon D (2013b) Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: a review. Sci Total Environ 461–462:265–281. doi:10.1016/j.scitotenv.2013.05.004

    Article  CAS  Google Scholar 

  • Lors C, Tiffreau C, Laboudigue A (2004) Effects of bacterial activities on the release of heavy metals from contaminated dredged sediments. Chemosphere 56:619–630. doi:10.1016/j.chemosphere.2004.04.009

    Article  CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1992) Reduction of uranium by Desulfovibrio desulfuricans. Appl Environ Microbiol 58:850–856

    CAS  Google Scholar 

  • Luna-Velasco A, Sierra-Alvarez R, Castro B, Field JA (2010) Removal of nitrate and hexavalent uranium from groundwater by sequential treatment in bioreactors packed with elemental sulfur and zero-valent iron. Biotechnol Bioeng 107:933–942. doi:10.1002/bit.22881

    Article  CAS  Google Scholar 

  • Mandal T, Dasgupta D, Mandal S, Datta S (2010) Treatment of leather industry wastewater by aerobic biological and Fenton oxidation process. J Hazard Mater 180:204–211. doi:10.1016/j.jhazmat.2010.04.014

    Article  CAS  Google Scholar 

  • Martins M, Faleiro ML, da Costa AMR, Chaves S, Tenreiro R, Matos AP, Costa MC (2010) Mechanism of uranium (VI) removal by two anaerobic bacterial communities. J Hazard Mater 184:89–96. doi:10.1016/j.jhazmat.2010.08.009

    Article  CAS  Google Scholar 

  • Mazumder D, Ghosh D, Bandyopadhyay P (2011) Treatment of electroplating wastewater by adsorption technique. Int J Civ Environ Eng 3:101–110

    Google Scholar 

  • Melitas N, Chuffe-Moscoso O, Farrell J (2001) Kinetics of soluble chromium removal from contaminated water by zerovalent iron media: corrosion inhibition and passive oxide effects. Environ Sci Technol 35:3948–3953. doi:10.1021/es001923x

    Article  CAS  Google Scholar 

  • Merroun ML, Selenska-Pobell S (2008) Bacterial interactions with uranium: an environmental perspective. J Contam Hydrol 102:285–295. doi:10.1016/j.jconhyd.2008.09.019

    Article  CAS  Google Scholar 

  • Meunier N, Drogui P, Montané C, Hausler R, Mercier G, Blais J-F (2006) Comparison between electrocoagulation and chemical precipitation for metals removal from acidic soil leachate. J Hazard Mater 137:581–590. doi:10.1016/j.jhazmat.2006.02.050

    Article  CAS  Google Scholar 

  • Molokwane PE, Meli CK, Chirwa EMN (2008) Chromium (VI) reduction in activated sludge bacteria exposed to high chromium loading. Water Sci Technol 58:399–405. doi:10.2166/wst.2008.669

    Article  CAS  Google Scholar 

  • Naser HA (2013) Assessment and management of heavy metal pollution in the marine environment of the Arabian Gulf: a review. Mar Pollut Bull 72:6–13. doi:10.1016/j.marpolbul.2013.04.030

    Article  CAS  Google Scholar 

  • Natarajan KA (2008) Microbial aspects of acid mine drainage and its bioremediation. Trans Nonferrous Met Soc China (English Ed) 18:1352–1360. doi:10.1016/S1003-6326(09)60008-X

    Article  CAS  Google Scholar 

  • Newman DK, Beveridge TJ, Morel FMM (1997a) Precipitation of arsenic trisulfide by Desulfotomaculum auripigmentum. Appl Environ Microbiol 63:2022–2028

    CAS  Google Scholar 

  • Newman DK, Kennedy EK, Coates JD, Ahmann D, Ellis DJ, Lovley DR, Morel FMM (1997b) Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Arch Microbiol 168:380–388. doi:10.1007/s002030050512

    Article  CAS  Google Scholar 

  • Nurmi P (2009) Oxidation and control of iron in bioleaching solutions. Tampere University of Technology, Tampere

    Google Scholar 

  • Nurmi P, Özkaya B, Sasaki K, Kaksonen AH, Riekkola-Vanhanen M, Tuovinen OH, Puhakka JA (2010) Biooxidation and precipitation for iron and sulfate removal from heap bioleaching effluent streams. Hydrometallurgy 101:7–14. doi:10.1016/j.hydromet.2009.11.004

    Article  CAS  Google Scholar 

  • Omil F, Lens P, Visser A, Hulshoff Pol LW, Lettinga G (1998) Long-term competition between sulfate reducing and methanogenic bacteria in UASB reactors treating volatile fatty acids. Biotechnol Bioeng 57:676–685. doi:10.1002/(SICI)1097-0290(19980320)57:6<676::AID-BIT5>3.0.CO;2-I

    Article  CAS  Google Scholar 

  • Ozkaya B, Sahinkaya E, Nurmi P, Kaksonen AH, Puhakka J A. (2007) Iron oxidation and precipitation in a simulated heap leaching solution in a Leptospirillum ferriphilum dominated biofilm reactor. Hydrometallurgy 88:67–74. doi:10.1016/j.hydromet.2007.02.009

    Article  CAS  Google Scholar 

  • Ram B, Bajpai PK, Parwana HK (1999) Kinetics of chrome-tannery effluent treatment by the activated-sludge system. Process Biochem 35:255–265. doi:10.1016/S0032-9592(99)00062-X

    Article  CAS  Google Scholar 

  • Rohwerder T, Rohwerder T, Gehrke T, Gehrke T, Kinzler K, Kinzler K, Sand W, Sand W (2003) Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63:239–248. doi:10.1007/s00253-003-1448-7

    Article  CAS  Google Scholar 

  • Sahinkaya E (2009) Microbial sulfate reduction at low (8°C) temperature using waste sludge as a carbon and seed source. Int Biodeterior Biodegrad 63:245–251. doi:10.1016/j.ibiod.2008.09.006

    Article  CAS  Google Scholar 

  • Sahinkaya E, Kilic A (2014) Heterotrophic and elemental-sulfur-based autotrophic denitrification processes for simultaneous nitrate and Cr(VI) reduction. Water Res 50:278–286. doi:10.1016/j.watres.2013.12.005

    Article  CAS  Google Scholar 

  • Sahinkaya E, Gungor M, Bayrakdar A, Yucesoy Z, Uyanik S (2009) Separate recovery of copper and zinc from acid mine drainage using biogenic sulfide. J Hazard Mater 171:901–906. doi:10.1016/j.jhazmat.2009.06.089

    Article  CAS  Google Scholar 

  • Sahinkaya E, Gunes FM, Ucar D, Kaksonen AH (2011) Sulfidogenic fluidized bed treatment of real acid mine drainage water. Bioresour Technol 102:683–689. doi:10.1016/j.biortech.2010.08.042

    Article  CAS  Google Scholar 

  • Sahinkaya E, Kilic A, Altun M, Komnitsas K, Lens PNL (2012a) Hexavalent chromium reduction in a sulfur reducing packed-bed bioreactor. J Hazard Mater 219–220:253–259. doi:10.1016/j.jhazmat.2012.04.002

    Article  CAS  Google Scholar 

  • Sahinkaya E, Altun M, Bektas S, Komnitsas K (2012b) Bioreduction of Cr(VI) from acidic wastewaters in a sulfidogenic ABR. Miner Eng 32:38–44. doi:10.1016/j.mineng.2012.03.014

    Article  CAS  Google Scholar 

  • Sahinkaya E, Dursun N, Ozkaya B, Kaksonen AH (2013) Use of landfill leachate as a carbon source in a sulfidogenic fluidized-bed reactor for the treatment of synthetic acid mine drainage. Miner Eng 48:56–60. doi:10.1016/j.mineng.2012.10.019

    Article  CAS  Google Scholar 

  • Sampaio RMM, Timmers RA, Xu Y, Keesman KJ, PNL L (2009) Selective precipitation of Cu from Zn in a pS controlled continuously stirred tank reactor. J Hazard Mater 165:256–265. doi:10.1016/j.jhazmat.2008.09.117

    Article  CAS  Google Scholar 

  • Sampaio RMM, Timmers RA, Kocks N, André V, Duarte MT, Van Hullebusch ED, Farges F, Lens PNL (2010) Zn-Ni sulfide selective precipitation: the role of supersaturation. Sep Purif Technol 74:108–118. doi:10.1016/j.seppur.2010.05.013

    Article  CAS  Google Scholar 

  • Schwertmann U, Bigham JM, Murad E (1995) The 1st occurrence of schwertmannite in a natural stream environment. Eur J Mineral 7:547–552. doi:10.1127/ejm/7/3/0547

    Article  CAS  Google Scholar 

  • Sharma SK, Petrusevski B, Amy G (2008) Chromium removal from water: a review. J Water Supply Res Technol - AQUA 57:541–553. doi:10.2166/aqua.2008.080

  • Shelobolina ES, Sullivan SA, O’Neill KR, Nevin KP, Lovley DR (2004) Isolation, characterization, and U(VI)-reducing potential of a facultatively anaerobic, acid-resistant bacterium from low-pH, nitrate- and U(VI)-contaminated subsurface sediment and description of Salmonella subterranean sp. nov. Appl Environ Microbiol 70:2959–2965

    Article  CAS  Google Scholar 

  • Singh R, Kumar A, Kirrolia A, Kumar R, Yadav N, Bishnoi NR, Lohchab RK (2011) Removal of sulphate, COD and Cr(VI) in simulated and real wastewater by sulphate reducing bacteria enrichment in small bioreactor and FTIR study. Bioresour Technol 102:677–682. doi:10.1016/j.biortech.2010.08.041

    Article  CAS  Google Scholar 

  • Sipma J, Begoña Osuna M, Lettinga G, Stams AJM, Lens PNL (2007) Effect of hydraulic retention time on sulfate reduction in a carbon monoxide fed thermophilic gas lift reactor. Water Res 41:1995–2003. doi:10.1016/j.watres.2007.01.030

    Article  CAS  Google Scholar 

  • Smith WL, Gadd GM (2000) Reduction and precipitation of chromate by mixed culture sulphate-reducing bacterial biofilms. J Appl Microbiol 88:983–991. doi:10.1046/j.1365-2672.2000.01066.x

    Article  CAS  Google Scholar 

  • Suzuki Y, Kelly SD, Kemner KM, Banfield JF (2005) Direct microbial reduction and subsequent preservation of uranium in natural near-surface sediment. Appl Environ Microbiol 71:1790–1797. doi:10.1128/AEM.71.4.1790-1797.2005

    Article  CAS  Google Scholar 

  • Tammaro M, Salluzo A, Perfetto R, Lancia A (2014) A comparative evaluation of biological activated carbon and activated sludge processes for the treatment of tannery wastewater. J Environ Chem Eng 2(3):1445–1455. doi:10.1016/j.jece.2014.07.004

    Article  CAS  Google Scholar 

  • Tang K, Baskaran V, Nemati M (2009) Bacteria of the sulphur cycle: an overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochem Eng J 44:73–94. doi:10.1016/j.bej.2008.12.011

    Article  CAS  Google Scholar 

  • Teclu D, Tivchev G, Laing M, Wallis M (2008) Bioremoval of arsenic species from contaminated waters by sulphate-reducing bacteria. Water Res 42:4885–4893. doi:10.1016/j.watres.2008.09.010

    Article  CAS  Google Scholar 

  • Ucar D, Bekmezci OK, Kaksonen AH, Sahinkaya E (2011) Sequential precipitation of Cu and Fe using a three-stage sulfidogenic fluidized-bed reactor system. Miner Eng 24:1100–1105. doi:10.1016/j.mineng.2011.02.005

    Article  CAS  Google Scholar 

  • Villa-Gomez D, Ababneh H, Papirio S, Rousseau DPL, Lens PNL (2011) Effect of sulfide concentration on the location of the metal precipitates in inversed fluidized bed reactors. J Hazard Mater 192:200–207. doi:10.1016/j.jhazmat.2011.05.002

    CAS  Google Scholar 

  • Wakeman KD, Erving L, Riekkola-Vanhanen ML, Puhakka JA (2010) Silage supports sulfate reduction in the treatment of metals- and sulfate-containing waste waters. Water Res 44:4932–4939. doi:10.1016/j.watres.2010.07.025

    Article  CAS  Google Scholar 

  • Wang H, Bigham JM, Tuovinen OH (2006) Formation of schwertmannite and its transformation to jarosite in the presence of acidophilic iron-oxidizing microorganisms. Mater Sci Eng C 26:588–592. doi:10.1016/j.msec.2005.04.009

    Article  CAS  Google Scholar 

  • Wu WM, Carley J, Gentry T, Ginder-Vogel MA, Fienen M, Mehlhorn T, Yan H, Caroll S, Pace MN, Nyman J, Luo J, Gentile ME, Fields MW, Hickey RF, Gu B, Watson D, Cirpka OA, Zhou J, Fendorf S, Kitanidis PK, Jardine PM, Criddle CS (2006) Pilot-scale in situ bioremedation of uranium in a highly contaminated aquifer. 2. Reduction of U(VI) and geochemical control of U(VI) bioavailability. Environ Sci Technol 40:3986–3995. doi:10.1021/es051960u

    Article  CAS  Google Scholar 

  • Yi ZJ, Tan KX, Tan AL, Yu ZX, Wang SQ (2007) Influence of environmental factors on reductive bioprecipitation of uranium by sulfate reducing bacteria. Int Biodeterior Biodegrad 60:258–266. doi:10.1016/j.ibiod.2007.04.001

    Article  CAS  Google Scholar 

  • Zhou C, Ontiveros-Valencia A, Cornette de Saint Cyr L, Zevin AS, Carey SE, Krajmalnik-Brown R, Rittmann BE (2014) Uranium removal and microbial community in a H2-based membrane biofilm reactor. Water Res 64:255–264. doi:10.1016/j.watres.2014.07.013

    Article  CAS  Google Scholar 

  • Zhu J, Gan M, Zhang D, Hu Y, Chai L (2013) The nature of schwertmannite and jarosite mediated by two strains of Acidithiobacillus ferrooxidans with different ferrous oxidation ability. Mater Sci Eng C Mater Biol Appl 33:2679–2685. doi:10.1016/j.msec.2013.02.026

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erkan Sahinkaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sahinkaya, E., Uçar, D., Kaksonen, A.H. (2017). Bioprecipitation of Metals and Metalloids. In: Rene, E., Sahinkaya, E., Lewis, A., Lens, P. (eds) Sustainable Heavy Metal Remediation. Environmental Chemistry for a Sustainable World, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-58622-9_7

Download citation

Publish with us

Policies and ethics