Skip to main content

Nanotechnology Interaction with Environment

  • Living reference work entry
  • First Online:
Handbook of Environmental Materials Management
  • 819 Accesses

Abstract

Nanotechnology is the manipulation of matter at the nanoscale. The National Nanotechnology Initiative defines nanotechnology as the manipulation of matter with one or more external dimensions of less than 100 nanometers (one billionth of a meter). The field of nanotechnology is a broad and multidisciplinary area that includes a variety of scientific endeavors such as organic chemistry, molecular biology, materials engineering, semiconductor physics, and fabrication, to name a few. Nanotechnology has the potential to create numerous new solutions to current social, economic, and technological challenges. Novel materials and devices manufactured using nanotechnology have applications in medicine, electronics, energy conversion and storage, water purification, and consumer products. However, the implications of unethical and uncontrolled use of nanotechnology have created an ongoing debate in the scientific community. For example, concerns about the toxicity and environmental impact of these new solutions are fears commonly associated with this emerging field. The growing number of applications that utilize nanotechnology has resulted in the generation of waste containing synthetic (or engineered) nanomaterials. Recent exponential growth in the development of nanomaterials (NMs) and nanoproducts is premised on the provision of novel benefits to the society, but these NMs and nanoproducts have increased in quantity and volume from few kilograms to thousands of tonnes over the last 15 to 20 years, and their uncontrolled release into the environment is anticipated to grow dramatically in future. However, their potential impacts to the biological systems are unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med 56:300–306

    Article  Google Scholar 

  • Allianz Group. Small sizes that matter (2005) Opportunities and risks of nanotechnologies

    Google Scholar 

  • Arnot IA, Mackay D, Webster E (2006) Screening level risk assessment model for chemical fate and effects in the environment. Environ Sci Technol 41:2316–2323

    Article  Google Scholar 

  • Balbus JM, Florini K, Denison RA, Walsh SA (2007) Protecting workers and the environment: an environmental NGO’s perspective on nanotechnology. J Nanotechnol 9:11–22

    Google Scholar 

  • Ball P (2001) Roll-up for the evolution. Nature 414:142–144

    Article  Google Scholar 

  • Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17:387–395

    Article  Google Scholar 

  • Bell CL, Austin S, Duvall MN, Cheng JC, Votaw J (2006) Regulation of nanoscale materials under the Toxic Substances Control Act. American Bar Association. Section of Environment, Energy, and Resources

    Google Scholar 

  • Biswas P, CY W (2005) Nanoparticles and the environment. J Air Waste Manage Assoc 55:708–746

    Article  Google Scholar 

  • Blaise C, Gagńe F, Frard JF, Eullaffroy P (2008) Ecotoxicity of selected nanomaterials to aquatic organisms. Environ Toxicol. https://doi.org/10.1002/tox

  • Boxall ABA, Chaudhry Q, Sinclair C, Jones A, Aitken R, Jefferson B, et al (2007) Current and future predicted environmental exposure to nanoparticles. Report for the Department of Environment Food and Rural Affairs

    Google Scholar 

  • Brant JA, Labille J, Bottero JY, Wiesner MR (2006) Characterizing the impact of preparation method on fullerene cluster structure and chemistry. Langmuir 22:3878–3885

    Article  Google Scholar 

  • Breggin LK, Pendergrass J (2007) Where does the nano go? Woodrow Wilson International Centre for Scholars on Emerging Nanotechnology, Washington, DC, 10; 2006

    Google Scholar 

  • Cheng XK, Kan AT, Tomsom MB (2004) Naphthalene adsorption and desorption from aqueous C-60 fullerene. J Chem Eng Data 49:675–683

    Article  Google Scholar 

  • Cientifica (2004) The nanotechnology opportunity report. http://www.cientifica.com/

  • Cientifica (2005) Nanotubes production survey. http://www.cientifica.com/

  • Colvin VL (2003) The potential environmental impact of nanomaterials. Nat Biotechnol 21(10):1166–1170

    Article  Google Scholar 

  • Crane M, Handy RD, Garrod J, Owen R (2008) Ecotoxicity test methods and environmental hazard assessment for nanoparticles. Ecotoxicology 17:421–437

    Article  Google Scholar 

  • Davies JC (2006) Managing the effects of nanotechnology. Woodrow Wilson International Centre for Scholars on Emerging Nanotechnology, Washington, DC

    Google Scholar 

  • Dick CAJ, Brown DM, Donaldson K, Stone V (2003) The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types. Inhal Toxicol 15(1):39–52

    Article  Google Scholar 

  • ETC (2003) The big down: atom tech—technologies converging at the atomic scale. Action Group on Erosion, Technology and Concentration, Winnipeg

    Google Scholar 

  • European Environmental Agency (2001) Late lessons from early warnings: the precautionary principle 1896–2000. Copenhagen: European Environmental Agency 2001

    Google Scholar 

  • Feynman R (1991) There’s plenty of room at the bottom. Science 254:1300–1301

    Article  Google Scholar 

  • Fortner JD, Lyon DY, Sayes CM, Boyd AM, Falkner JC, Hotze EM et al (2005) C60 in water: nanocrystal formation and microbial response. Environ Sci Technol 39:4307–4316

    Article  Google Scholar 

  • Franco A, Hansen SF, Olsen SI, Butti L (2007) Limits and prospects of the “incremental approach” and the European legislation on the management of risks related to nanomaterials. Regul Toxicol Pharmacol 48:171–183

    Article  Google Scholar 

  • Gao J, Bonzongo JCJ, Bitton G, Li Y, CY W (2008) Nanowastes and the environment: using mercury as an example pollutant to assess the environmental fate of chemicals adsorbed onto manufactured nanomaterials. Environ Toxicol Chem 27(4):808–810

    Article  Google Scholar 

  • Gharbi N, Pressac M, Hadchouel M, Szwarc H, Wilson SR, Moussa F (2005) [60]fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett 5:2578–2585

    Article  Google Scholar 

  • Gotovac S, Honda H, Hattori Y, Takahashi K, Kanoh H, Kaneko K (2007) Effect of nanoscale curvature of single-walled carbon nanotubes on adsorption of polycyclic aromatic hydrocarbons. Nano Lett 7:583–587

    Article  Google Scholar 

  • Hallock MF, Greenley P, DiBerardinis L, Kallin D (2009) Potential risks of nanomaterials and how to safely handle materials of uncertain toxicity. J Chem Health Saf 16(1):16–23

    Article  Google Scholar 

  • Handy RD, von der Kammer F, Lead JR, Hassellöv M, Owen R, Crane M (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314

    Article  Google Scholar 

  • Helland A, Wick P, Koehler A, Schmid K, Som C (2007) Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ Health Perspect 115(8):1125–1131

    Article  Google Scholar 

  • Henry TB, Menn FM, Fleming JT, Wilgus J, Compton RN, Sayler GS (2007) Attributing effects of aqueous C60 nano-aggregates to tetrahydrofuran decomposition products in larval zebrafish by assessment of gene expression. Environ Health Perspect 115:1059–1065

    Article  Google Scholar 

  • Hester T. (2006) RCRA (Resource Conservation and Recovery Act) regulation of wastes from the production, use, and disposal of nanomaterials. American Bar Association, Section of Environment, Energy, and Resources

    Google Scholar 

  • Hoet PHM, Brüske-Hohlfeld I, Salata OV (2004) Nanoparticles—known and unknown health risks. J Nanobiotechnol 2:12

    Article  Google Scholar 

  • Holbrook RD, Murphy KE, Morrow JB, Ken D, Cole KD (2008) Trophic transfer of nanoparticles in a simplified invertebrate food web. Nat Nanotechnol 3:352–355

    Article  Google Scholar 

  • Hu X, Liu J, Mayer P, Jiang G (2008) Impacts of some environmentally relevant parameters on the sorption of polycyclic hydrocarbons to aqueous suspensions of fullerene. Environ Toxicol Chem 27(9):1868–1874

    Article  Google Scholar 

  • Kahru A, Dubourguier HC (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269:105–119

    Article  Google Scholar 

  • Kashiwada S (2006) Distribution of nanoparticles in the see-through Medaka (Oryzias latipes). Environ Health Perspect 114(11):1697–1702

    Google Scholar 

  • Ke PC, Qiao R (2007) Carbon nanomaterials in biological systems. J Phys Conden Matter 19:1–25

    Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY et al (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851

    Article  Google Scholar 

  • Klaper R, Crago J, Barr J, Arndt D, Setyowati K, Chen J (2009) Toxicity biomarkerexpression in daphnids exposed to manufactured nanoparticles: changes in toxicitywith functionalization. Environ Poll 157:1152–1156

    Google Scholar 

  • Kleiner K, Hogan J (2003) How safe is nanotech? New Sci 177:14–15

    Google Scholar 

  • Knauer K, Sobek A, Bucheli TD (2007) Reduced toxicity of diuron to the freshwater green alga Pseudokirchneriella subcapitata in the presence of black carbon. Aquat Toxicol 83:143–148

    Article  Google Scholar 

  • Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL (2006) A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 36:189–217

    Article  Google Scholar 

  • Lecoanet HF, Bottero JY, Wiesner MR (2004) Laboratory assessment of the mobility of nanomaterials in porous media. Environ Sci Technol 38(19):5164–5169

    Article  Google Scholar 

  • Leppard GG, Mavrocordatos D, Perret D (2003) Electron-optical characterization of nano- and micro-particles in raw and treated waters: an overview. In: Boller M, editor. Proceedings of nano and microparticles in water and wastewater treatment. Water Sci Technol 50(12):1–8

    Google Scholar 

  • Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ (2007) Exposure of nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41(11):4158–4163

    Article  Google Scholar 

  • Limbach LK, Bereiter R, Müller E, Krebs R, Gälli R, Stark WJ (2008) Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearing efficiency. Environ Sci Technol 42(15):5828–5833

    Article  Google Scholar 

  • Lin AC (2007) Size matters: regulating nanotechnology. Research paper no. 90. Harv Environ Law Rev 31:1–77

    Google Scholar 

  • Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B (2006) Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol 40(14):4347–4352

    Article  Google Scholar 

  • Lovern SB, Klaper RD (2006) Daphnia magna mortality when exposed to titanium nanoparticles and fullerene (C60) nanoparticles. Environ Toxicol Chem 25:1132–1137

    Article  Google Scholar 

  • Lyon DY, Fortner JD, Sayes CM, Colvin VL, Hughes JB (2005) Bacterial cell association and antimicrobial activity of a C60 water suspension. Environ Toxicol Chem 24(11):2757–2762

    Article  Google Scholar 

  • Mackay D, McCarty LS, MacLeod M (2001) On the validity of classifying chemicals for persistence, bioaccumulation, toxicity, and potential for long-range transport. Environ Toxicol Chem 20:1491–1498

    Article  Google Scholar 

  • Maynard AD (2007) Nanotechnology: assessing the risks. Nano Today 1(2):22–33

    Article  Google Scholar 

  • Maynard AD, Aitken RJ (2007) Assessing exposure to airborne nanomaterials: current abilities and future requirements. Nanotoxicol 1(1):26–41

    Article  Google Scholar 

  • Maynard AD, Kuempel ED (2005) Airborne nanostructured particles and occupational health. J Nanotechnol Res 7(6):587–614

    Google Scholar 

  • Mazzolla L (2003) Commercializing nanotechnology. Nat Biotechnol 21(10):1137–1143

    Article  Google Scholar 

  • Meridian Institute (2005) Nanotechnology and the poor: opportunities and risks, closing the gaps within the society within and between sectors of the society. www.nanoandthepoor.org

  • Moore MN (2006) Do nanoparticles present toxicological risks for the health of the aquatic environment? Environ Int 32:967–976

    Article  Google Scholar 

  • Moudgil B (2004) A conference report on: developing experimental approaches for the evaluation of toxicological interactions of nanoscale materials. University of Florida. http://www.stormingmedia.us/52/5200/A520044.html

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42(12):4447–4453

    Article  Google Scholar 

  • Musee N (2011) Nanowastes and the environment: potential new waste management paradigm. Environ Int 37:112–128

    Article  Google Scholar 

  • Musee N, Lorenzen L, Aldrich C (2008) New methodology for hazardous waste classification using fuzzy set theory. Part I Knowledge acquisition. J Hazard Mater 154:1040–1051

    Article  Google Scholar 

  • Nanowerk Nanomaterial Database Inventory (2009) http://www.nanowerk.com/phpscripts/n_dbsearch.php. Accessed on 28 May 2009

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nano level. Science 311:622–627

    Article  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behaviour and effects of nanoparticles in the environment. Environ Poll 150:5–22

    Article  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839

    Article  Google Scholar 

  • Oberdörster E, Zhu SQ, Blickley TM, Clellan-Green P, Haasch ML (2006) Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C-60) on aquatic organisms. Carbon 44:1112–1120

    Article  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia Coli. Appl Environ Microbiol 73:1712–1720

    Article  Google Scholar 

  • Paull R, Wolfe J, Herbert P, Sinkula M (2003) Investing in nanotechnology. Nat Biotechnol 21(10):1144–1147

    Article  Google Scholar 

  • Pitkethly MJ (2003) Nanomaterials—the driving force. NanoToday 12:20–29

    Google Scholar 

  • Powell MC, Griffin MPA, Tai S (2008) Bottom-up risk regulation? How nanotechnology risk knowledge gaps challenge federal and state environmental agencies. Environ Manag 42:426–443

    Article  Google Scholar 

  • Re M (2002) Nanotechnology—what is in store for us? Munich Re Group, Munich

    Google Scholar 

  • Re S (2004) Nanotechnology: small matter, many unknowns. Swiss Re Group, Zurich

    Google Scholar 

  • Reijinders L (2006) Cleaner nanotechnology and hazard reduction of manufactured nanoparticles. J Clean Prod 67(1):87–108

    Google Scholar 

  • Roberts AP, Mount AS, Seda B, Souther J, Quio R, Lin S et al (2007) In vivo biomodification of lipid-coated carbon nanotubes by Daphnia Magna. Environ Sci Technol 41:3025–3029

    Article  Google Scholar 

  • Robichaud CO, Tanzil D, Weilenman U, Wiesner MR (2005) Relative risk analysis of several manufactured nanomaterials: an insurance industry context. Environ Sci Technol 39(22):8985–8994

    Article  Google Scholar 

  • Royal Society and Royal Academy of Engineering Report on Nanotechnology (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. The Royal Society and Royal Academy of Engineering

    Google Scholar 

  • Schmid K, Riediker M (2008) Use of nanoparticles in Swiss Industry: a targeted survey. Environ Sci Technol 42(7):2253–2260

    Article  Google Scholar 

  • Shelley SA (2005) Nanotechnology: turning basic science into reality. In: Theorode L, Kuntz RG (eds) Nanotechnology: environmental implications and solutions. Hoboken, Wiley, pp 61–107

    Google Scholar 

  • Singer PA (2004) Will Prince Charles et al diminish the opportunities of developing countries in nanotechnology? http://nanotechweb.org/articles/society/3/1/1/1

  • Smith CJ, Shaw BJ, Handy RD (2007) Toxicity of single walled carbon nanotubes on rainbow trout, (Oncorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects. Aquat Toxicol 82:94–109

    Article  Google Scholar 

  • Sun H, Zhang X, Niu Q, Chen Y, Crittenden HC (2007) Enhanced accumulation of arsenate in carp in the presence of titanium dioxide nanoparticles. Water Air Soil Poll 178:245–254

    Article  Google Scholar 

  • Swanson MB, Davis GS, Kincaid LE, Schultz TW, Bartmess JE (1997) A screening method for ranking and scoring chemicals by potential human health and environmental impacts. Environ Toxicol Chem 16:371–383

    Article  Google Scholar 

  • Templeton RC, Ferguson PL, Washburn KM, Scrivens WA, Chandler GT (2006) Life-cycle effects of single-walled carbon nanotubes (SWNTs) on an estuarine meiobenthic copepod. Environ Sci Technol 40(23):7387–7393

    Article  Google Scholar 

  • Thomas K, Sayre P (2005) Research strategies for safety evaluation of nanomaterials, part I: evaluating human health implications for exposure to nanomaterials. Toxicol Sci 87(2):316–321

    Article  Google Scholar 

  • Tiede K, Hassellöv M, Breitbarth E, Chaudhry Q, Boxall ABA (2009) Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for nanoparticles. J Chromatogr A 1216:503–509

    Article  Google Scholar 

  • UNEP (1996) Pentachlorophenol and its salts and esters. Operation of the prior informed consent procedure for banned or severely restricted chemicals in international trade. Decision Guidance Document. Food and Agriculture Organization of the United Nations, United Nations Environment Programme, Rome, 1991, amended; 1996

    Google Scholar 

  • Warheit DB (2008) How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicol Sci 101:183–185

    Article  Google Scholar 

  • Warheit DB, Hoke RA, Finla C, Donner EM, Reed KL, Sayes CM (2007) Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett 171:99–110

    Article  Google Scholar 

  • Westerhoff P, Zhang Y, Crittenden J, Chen Y (2008) Properties of commercial nanoparticles that affect their removal during water treatment. In: Grassian VH (ed) Nanoscience and nanotechnology: environmental and health impacts. Wiley, Hoboken, pp 71–90

    Google Scholar 

  • Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40(14):4336–4345

    Article  Google Scholar 

  • Wiesner MR, Hotze EM, Brant JA, Espinasse B (2008) Nanomaterials as possible contaminants: the fullerene example. Wat Sci Technol 57:305–310

    Article  Google Scholar 

  • Wolfe J, Paull R, Herbert P (2003) The nanotech report. Lux Capital, New York

    Google Scholar 

  • Woodrow Wilson International Centre for Scholars (2008) A nanotechnology consumer products inventory. Project on Emerging Nanotechnologies; www.nanotechproject.org. Accessed on 15 Jan 2009

  • Yang K, Zhu L, Xing B (2006) Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ Sci Technol 40(6):1855–1861

    Article  Google Scholar 

  • Zhang Y, Chen Y, Westerhoff P, Hristovski K, John C, Crittenden JC (2008) Stability of commercial metal oxide nanoparticles in water. Wat Res 42:2204–2212

    Article  Google Scholar 

  • Zhu S, Oberdörster E, Haasch ML (2006) Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow. Mar Environ Res 62:S5–S9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rigers Bakiu .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bakiu, R. (2018). Nanotechnology Interaction with Environment. In: Hussain, C. (eds) Handbook of Environmental Materials Management. Springer, Cham. https://doi.org/10.1007/978-3-319-58538-3_150-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58538-3_150-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58538-3

  • Online ISBN: 978-3-319-58538-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics