Skip to main content

Mechanisms and Maintenance

  • Chapter
  • First Online:
Book cover Mutualisms and Insect Conservation
  • 681 Accesses

Abstract

Ever since Darwin’s (1862) well-known prediction that a Madagascan orchid with an unusually long nectary spur could be pollinated only by a moth with an equivalently long proboscis, such highly specific associations between species have stimulated much thought on mutualisms and coevolution, and the corollary of coextinction. Darwin had received specimens of the orchid Angraecum sesquipedale, and marvelled at the length of the flower as ‘nearly a foot long’. He suggested that the then-unknown pollinator must be a large moth, but the sole known pollinator, the African sphingid Xanthopan morganii (earlier suggested by Wallace 1867, as a likely candidate), was not confirmed to be present in Madagascar until 1903.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson B, Johnson SD (2008) The geographical mosaic of coevolution in a plant-pollinator mutualism. Evolution 62:220–225

    Article  PubMed  Google Scholar 

  • Archetti M, Ubeda F, Fudenberg D, Green J, Pierce NE, Yu DW (2011) Let the right one in: a microeconomic approach to partner choice in mutualisms. Am Nat 177:75–85

    Article  PubMed  Google Scholar 

  • Arditti J, Elliott J, Kitching IJ, Wasserthal LT (2012) ‘Good heavens what insect can suck it’ – Charles Darwin, Angraecum sesquipedale and Xanthopan morganii praedicta. Bot J Linn Soc 169:403–432

    Article  Google Scholar 

  • Bascompte J, Jordano P, Melian CJ, Olesen JM (2003) The nested assembly of plant-animal mutualistic networks. Proc Natl Acad Sci 100:9383–9387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauder JA-S, Lieskonig NR, Krenn HW (2011) The extremely long-tongued Neotropical butterfly Eurybia lycisca (Riodinidae): proboscis morphology and flower handling. Arthropod Struct Develop 40:122–127

    Article  Google Scholar 

  • Bauder JA-S, Warren AD, Krenn HW (2015) The ecological role of extremely long-proboscid Neotropical butterflies (Lepidoptera: Hesperiidae) in plant-pollinator networks. Arthropod-Plant Interact 9:415–424

    Article  Google Scholar 

  • Borges RM (2015) How mutualisms between plants and insects are stabilized. Curr Sci 108:1862–1868

    Google Scholar 

  • Bronstein JL (ed) (2015) Mutualism. Oxford University Press, Oxford

    Google Scholar 

  • Burkle LA, Marlin JC, Knight TM (2013) Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339:1611–1615

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Song Q, Proffit M, Bessiere J-M, Li Z, Hossaert-McKey M (2009) Private channel: a single unusual compound assures specific pollinator attraction in Ficus semicordata. Funct Ecol 232:941–950

    Article  Google Scholar 

  • Chomicki G, Staedler YM, Schonenberger J, Renner SS (2016) Partner choice through concealed floral sugar rewards evolved with the specialization of ant-plant mutualisms. New Phytol 211(4):1358–1370. doi:10.1111/nph.13990

    Article  CAS  PubMed  Google Scholar 

  • Colwell DD, Otranto D, Stevens JR (2009) Oestrid flies: eradication and extinction versus biodiversity. Trends Parasitol 25:500–504

    Article  PubMed  Google Scholar 

  • Colwell RK, Dunn RR, Harris NC (2012) Coextinction and persistence of dependent species in a changing world. Annu Rev Ecol Evol Syst 43:183–203

    Google Scholar 

  • Connor RC (1986) Pseudo-reciprocity: investing in mutualism. Anim Behav 34:1562–1584

    Article  Google Scholar 

  • Darwin CR (1862) The various contrivances by which British and foreign orchids are fertilised by insects, and on the good effects of intercrossing. John Murray, London. (later printing consulted)

    Google Scholar 

  • de Freitas JD, Rossi MN (2015) Interaction between trophobiont insects and ants: the effect of mutualism on the associated arthropod community. J Insect Conserv 19:627–638

    Article  Google Scholar 

  • Dunn RR, Harris NC, Colwell RK, Koh LP, Sodhi NS (2009) The sixth mass coextinction: are most endangered species parasites and mutualists? Proc R Soc Lond B 276:3037–3045

    Article  Google Scholar 

  • Foster KR, Wenseleers T (2006) A general model for the evolution of mutualisms. J Europ Soc Evol Biol 19:1283–1293. doi:10.1111/j.1420-9101.2005.01703.x

    Article  CAS  Google Scholar 

  • Frederickson ME (2013) Rethinking mutualism stability: cheaters and the evolution of sanctions. Q Rev Biol 88:269–295

    Article  PubMed  Google Scholar 

  • Frederickson ME, Gordon DM (2009) The intertwined population biology of two Amazonian myrmecophytes and their symbiotic ants. Ecology 90:1595–1607

    Article  PubMed  Google Scholar 

  • Frederickson ME, Ravenscroft A, Miller GSA, Hernandez LMA, Booth G, Pierce NE (2012) The direct and ecological costs of an ant-plant symbiosis. Am Nat 179:768–778

    Article  PubMed  Google Scholar 

  • Goto R, Okamoto T, Kiers ET, Kawakita A, Kato M (2010) Selective flower abortion maintains moth cooperation in a newly discovered pollination mutualism. Ecol Lett 13:321–329

    Article  PubMed  Google Scholar 

  • Heath KD, Stinchcombe JR (2013) Explaining mutualism variation: a new evolutionary paradox? Evolution 68:309–317

    Article  PubMed  Google Scholar 

  • Heil M, Gonzalez-Teuber M, Clement LW, Kautz S, Verhaagh M, Bueno JCS (2009) Divergent investment strategies of Acacia myrmecophytes and the coexistence of mutualists and exploiters. Proc Natl Acad Sci 106:18091–18096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoeksema JD, Bruna EM (2000) Pursuing the big questions about interspecific mutualism: a review of theoretical approaches. Oecologia 125:321–330

    Article  PubMed  Google Scholar 

  • Huth CJ, Pellmyr O (1999) Yucca moth oviposition and pollination behavior is affected by past flower visitors: evidence for a host-marking pheromone. Oecologia 119:593–599

    Article  PubMed  Google Scholar 

  • Jones EI, Bronstein JL, Ferriere R (2012) The fundamental role of competition in the ecology and evolution of mutualisms. Ann N Y Acad Sci 1256:66–88

    Article  PubMed  Google Scholar 

  • Kiers ET, Palmer TM, Ives AR, Bruno JF, Bronstein JL (2010) Mutualisms in a changing world: an evolutionary perspective. Ecol Lett 13:1459–1474

    Article  Google Scholar 

  • Koh LP, Sodhi NS, Brook BW (2004) Co-extinctions of tropical butterflies and their hostplants. Biotropica 36:272–274

    Google Scholar 

  • Maloof JE, Inouye DW (2000) Are nectar robbers cheaters or mutualists? Ecology 81:2651–2661

    Article  Google Scholar 

  • Miller TEX (2007) Does having multiple partners weaken the benefits of facultative mutualism? A test with cacti and cacti-tending ants. Oikos 116:500–512

    Article  Google Scholar 

  • Moir ML, Vesk PA, Brennan KEC, Keith DA, Hughes L, McCarthy MA (2010) Current constraints and future directions in estimating coextinction. Conserv Biol 24:682–690

    Article  PubMed  Google Scholar 

  • Moir ML, Vesk PA, Brennan KEC, Keith DA, McCarthy MA, Hughes L (2011) Identifying and managing threatened invertebrates through assessment of coextinction risk. Conserv Biol 25:787–796

    Article  PubMed  Google Scholar 

  • Orona-Tamayo D, Heil M (2013) Stabilizing mutualisms threatened by exploiters: new insights from ant-plant research. Biotropica 45:654–665

    Article  Google Scholar 

  • Pellmyr O (1997) Pollinating seed eaters: why is active pollination so rare? Ecology 78:1655–1660

    Article  Google Scholar 

  • Powell FA (2011) Can early loss of affiliates explain the coextinction paradox? An example from Acacia-inhabiting psyllids (Hemiptera: Psylloidea). Biodivers Conserv 20:1533–1544

    Article  Google Scholar 

  • Ringel MS, Hu HH, Anderson G (1996) The stability and persistence of mutualisms embedded in community interactions. Theoret Popul Biol 50:281–297

    Article  CAS  Google Scholar 

  • Sachs JL, Simms EL (2006) Pathways to mutualism breakdown. Trends Ecol Evol 21:585–592

    Article  PubMed  Google Scholar 

  • Savage AM, Peterson MA (2007) Mutualism in a community context: the positive feedback between an ant-aphid mutualism and a gall-making midge. Oecologia 151:280–291

    Article  PubMed  Google Scholar 

  • Schatz B, Kjellberg F, Nyawa S, Hossaert-McKey M (2008) Fig wasps: a staple food for ants on Ficus. Biotropica 40:190–195

    Article  Google Scholar 

  • Stachowicz JJ (2001) Mutualism, facilitation, and the structure of ecological communities. Bioscience 51:235–246

    Article  Google Scholar 

  • Stadler B, Fiedler K, Kawecki TJ, Weisser WW (2001) Costs and benefits for phytophagous myrmecophiles: when ants are not always available. Oikos 92:467–478

    Article  Google Scholar 

  • Stanton ML (2003) Interacting guilds: moving beyond the pairwise perspective on mutualisms. Am Nat 162:S10–S23

    Article  PubMed  Google Scholar 

  • Svensson GP, Okamoto T, Kawakita A, Goto R, Kato M (2010) Chemical ecology of obligate pollination mutualisms: testing the ‘private channel’ hypothesis in the Breynia-Epicephala association. New Phytol 186:995–1004

    Article  CAS  PubMed  Google Scholar 

  • Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363

    Article  PubMed  Google Scholar 

  • Ueda S, Okubo T, Itioka T, Shimizu-kaya U, Yago M, Inui Y, Itino T (2012a) Timing of butterfly parasitization of a plant-ant-scale symbiosis. Ecol Res 27:437–443

    Article  CAS  Google Scholar 

  • Ueda S, Quek S-P, Itioka T, Onamori K, Sato Y, Murase K, Itino T (2012b) An ancient tripartite symbiosis of plants, ants and scale insects. Proc R Soc Lond B 275:2319–2326

    Article  Google Scholar 

  • Wallace AR (1867) Creation by law. Q J Sci 4:471–488

    Google Scholar 

  • Weyl EG, Frederickson ME, Yu DW, Pierce NE (2010) Economic contract theory tests models of mutualism. Proc Natl Acad Sci 107:15712–15716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yen AL (1980) The taxonomy and comparative ecology of selected psyllids (Insecta: Hemiptera: Psylloidea) on Acacia species (Mimosaceae). PhD thesis, La Trobe University, Melbourne

    Google Scholar 

  • Yu DW, Davidson DW (1997) Experimental studies of species-specificity in Cecropia-ant relationships. Ecol Monogr 67:273–294

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

New, T.R. (2017). Mechanisms and Maintenance. In: Mutualisms and Insect Conservation. Springer, Cham. https://doi.org/10.1007/978-3-319-58292-4_2

Download citation

Publish with us

Policies and ethics