Skip to main content

Seismic Source Characterization

  • Chapter
  • First Online:
An Overview of the SIGMA Research Project

Part of the book series: Geotechnical, Geological and Earthquake Engineering ((GGEE,volume 42))

  • 390 Accesses

Abstract

Seismic sources characterization (SSC) relies on the interpretation and integration of a variety of parameters and data primarily collected in a geological, geophysical, geotechnical and seismological database (D4-41, Carbon et al. 2012). It has three fundamental objectives:

  • The identification (location and geometry) of all seismic sources contributing to the total hazard at the site of interest. According to the seismotectonic context of the site, and to the considered hazard return period, this involves developing the database within a radius of a few hundred kilometres around the site and to consider different scales of analysis especially when individual faults are considered.

  • The characterization of the seismic activity with a large number of uncertain parameters: the maximum magnitude of these seismic sources, their activity rate and the models for seismicity distribution.

  • The consideration of all inherent epistemic and aleatory uncertainties and the influence of the different uncertainties in the hazard results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akinci A (2010) HAZGRIDX: earthquake forecasting model for M L ≥ 5.0 earthquakes in Italy based on spatially smoothed seismicity. Ann Geophys 53(3):51–61

    Google Scholar 

  • Albarello D, D’Amico V, Peruzza L (2013) D6.1 – report on model validation procedures. DPC-INGV-S2 project 2012–2013. https://sites.google.com/site/ingvdpc2012progettos2/deliverables/d6

  • Ameri G, Baumont D, Gomes C, Le Dortz K, Le Goff B, Martin C, Secanell R. (2015) On the choice of maximum earthquake magnitude for seismic hazard assessment in metropolitan France – insight from the Bayesian approach. 9ième Colloque Nat. AFPS, Marne-La-Vallée

    Google Scholar 

  • Bommer JJ, Scherbaum F (2008) The use and misuse of logic trees in probabilistic seismic hazard analyses. Earthquake Spectra 24(4):997–1009

    Article  Google Scholar 

  • Carbon D, Drouet S, Gomes C, Leon A, Martin Ch, Secanel R (2012) Initial probabilistic seismic hazard model for France’s Southeast ¼. SIGMA deliverable n° D4–41

    Google Scholar 

  • Denieul M (2014) Seismic moment magnitude and Crustal Wave Coda. EOST PhD thesis (Institut de Physique du Globe de Strasbourg)

    Google Scholar 

  • Denieul M, Sèbe O, Cara M, Cansi Y (2015) Mw estimation from crustal coda-waves recorded on analog seismograms. Bull Seismol Soc Am 105(2A):831–849

    Google Scholar 

  • EPRI (Electric Power Research Institute) (1994) The earthquakes of stable continental regions – volume 5: seismicity database programs and maps, Report EPRI TR-102261-V5. Electric Power Research Institute, Palo Alto

    Google Scholar 

  • Faccioli E (1992) Selected aspects of the characterization of seismic site effects, including some recent European contributions. In: Proceedings of international symposium on the effects of surface geology on seismic motion (ESG 1992), vol I, pp 65–96, March 25–27, 1992, Odawara, Japan

    Google Scholar 

  • Faccioli E, Vanini M, Villani M, Galadini F (2012) Preliminary PSHAs at selected sites, based on state of the art earthquake source models and attenuation relationships, considering both outcropping bedrock and soil conditions. SIGMA deliverable n° D4–29

    Google Scholar 

  • Faccioli E (2013) Recent evolution and challenges in the seismic hazard analysis of the Po Plain region, Northern Italy. Bull Earthq Eng 11(1):5–33

    Article  Google Scholar 

  • Faccioli E, Paolucci R, Vanini M (2015) Evaluation of probabilistic site-specific seismic hazard methods and associated uncertainties, with applications in the Po Plain, Northern Italy. Bull Seismol Soc Am 105(5):2787–2807

    Article  Google Scholar 

  • Gardner JK, Knopoff L (1974) Is the sequence of earthquakes in southern California, with aftershocks removed, poissonian? Bull Seismol Soc Am 64(15):1363–1367

    Google Scholar 

  • Gutenberg B, Richter CF (1956) Seismicity of the earth and associated phenomena, 2nd edn. Princeton University Press, New York, p 310

    Google Scholar 

  • Helmstetter A, Kagan YY, Jackson DD (2007) High-resolution time-independent grid-based forecast for M #5 earthquakes in California. Seismol Res Lett 78:78–86

    Article  Google Scholar 

  • International Atomic Energy Agency (2010) Seismic hazards in site evaluation for nuclear installations. In: Specific Safety Guide SSG-9. International Atomic Energy Agency, Vienna

    Google Scholar 

  • Letort J, Vergoz J, Guilbert J, Cotton F, Sebe O, Cano Y (2014) Moderate earthquake teleseismic depth estimations: new methods and use of the comprehensive nuclear-test-ban treaty organization network data. Bull Seism Soc Am 104(2):593–607

    Google Scholar 

  • Letort J, Guilbert J, Cotton F, Bondar I, Cano Y, Vergoz J (2015) A new, improved and fully automatic method for teleseismic depth estimation of moderate earthquakes (4.5<M<5.5): application to the Guerrero subduction zone (Mexico). Geophys J Int 201(3):1834–1848

    Google Scholar 

  • Marsan D, Lengliné O (2008) Extending earthquakes’ reach through cascading. Science 319:1076–1079

    Article  Google Scholar 

  • Marsan D, Lengliné O (2010) A new estimation of the decay of aftershock density with distance to the mainshock. J Geophys Res 115(B09302):1–16

    Google Scholar 

  • Meletti C, Galadini F, Valensise G, Stucchi M, Basili R, Barba S, Vannucci G, Boschi E (2008) A seismic source model for the seismic hazard assessment of the Italian territory. Tectonophysics (online version) 450:85–108

    Article  Google Scholar 

  • Moschetti M, Petersen M (2012) Smoothing methods for background seismicity, CEUS in 2014 National Seismic Hazard Map. In: CEUS workshop – 22–23 Feb 2012, Memphis, TN

    Google Scholar 

  • Motazedian D, Atkinson GM (2005) Stochastic finite-fault modeling based on a dynamic corner frequency. Bull Seismol Soc Am 95(3):995–1010

    Article  Google Scholar 

  • NRC (2012) Practical implementation guidelines for SSHAC Level 3 and 4 hazard studies, NUREG-2117, Rev. 1. NRC, Washington, DC

    Google Scholar 

  • Reasenberg P (1985) Second-order moment of central California seismicity, 1969–1982. J Geophys Res 90(B7):5479–5495

    Article  Google Scholar 

  • Rovida A, Camassi R, Gasperini P, Stucchi M (eds) (2011) CPTI11, the 2011 version of the parametric catalogue of Italian earthquakes. Milano, Bologna, Italy. http://emidius.mi.ingv-it/CPTI

  • SHARE (2013) Seismic hazard harmonization in Europe. http://share-eu.org

  • Weichert DH (1980) Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes. Bull Seismol Soc Am 70(4):1337–1346

    Google Scholar 

  • Youngs RR, Coppersmith KJ (1985) Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates. Bull Seismol Soc Am 75:939–964

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pecker, A., Faccioli, E., Gurpinar, A., Martin, C., Renault, P. (2017). Seismic Source Characterization. In: An Overview of the SIGMA Research Project. Geotechnical, Geological and Earthquake Engineering, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-319-58154-5_3

Download citation

Publish with us

Policies and ethics