Skip to main content

Technical Skills in Surgery

  • Chapter
  • First Online:
Career Skills for Surgeons

Abstract

Much of surgery is operating, a technical craft. Much of what we do is with our hands, whether it’s using the scalpel, the scissors, the forceps, the needle, the drill or saw, the endoscope, the arthroscope or laparoscope, the robot or microscope. Technical dexterity is an important skill to develop. At the same time the ability to plan for surgery, and the ability to be movement and time efficient, are important skills to acquire.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Famous Quotes at Brainy Quote. https://www.brainyquote.com/quotes/quotes. Accessed 25 Mar 2017.

  2. Popular Quotes. Goodreads. http://www.goodreads.com/quotes. Accessed 31 Mar 2017.

  3. Fitts PM, Posner MI. Human performance. Belmont, CA: Brooks/Cole Pub. Co; 1967.

    Google Scholar 

  4. Arora KS, Khan N, Abboudi H, Khan MS, Dasgupta P, Ahmed K. Learning curves for cardiothoracic and vascular surgical procedures–a systematic review. Postgrad Med. 2015;127(2):202–14.

    Article  PubMed  Google Scholar 

  5. Arai T, Romano M, Lefèvre T, Hovasse T, Bouvier E, Morice MC, Farge A, Garot P, Chevalier B. Impact of procedural volume on outcome optimization in transaortic transcatheter aortic valve implantation. Int J Cardiol. 2016;223:292–6.

    Article  PubMed  Google Scholar 

  6. Hartford JM, Bellino MJ. The learning curve for the direct anterior approach for total hip arthroplasty: a single surgeon's first 500 cases. Hip Int. 2017;17:0. doi:10.5301/hipint.5000488.

    Article  Google Scholar 

  7. Al-Harazi A, Goel R, Tan CT, Cheah WK, Lomanto D. Laparoscopic ventral hernia repair: defining the learning curve. Surg Laparosc Endosc Percutan Tech. 2014;24(6):475–7.

    PubMed  Google Scholar 

  8. Yoshizawa J, Ashizuka S, Kuwashima N, Kurobe M, Tanaka K, Ohashi S, Hiramatsu T, Baba Y, Kanamori D, Kaji S, Ohki T. Laparoscopic percutaneous extraperitoneal closure for inguinal hernia: learning curve for attending surgeons and residents. Pediatr Surg Int. 2013;29(12):1281–5.

    Article  PubMed  Google Scholar 

  9. Hohmann E, Bryant A, Tetsworth K. Tunnel positioning in anterior cruciate ligament reconstruction: how long is the learning curve? Knee Surg Sports Traumatol Arthrosc. 2010;18(11):1576–82. doi:10.1007/s00167-010-1183-4.

    Article  PubMed  Google Scholar 

  10. Yount KW, Yarboro LT, Narahari AK, Ghanta RK, Tribble CG, Kron IL, Kern JA, Ailawadi G. outcomes of trainees performing coronary artery bypass grafting: does resident experience matter? Ann Thorac Surg. 2017;103(3):975–81. doi:10.1016/j.athoracsur.2016.10.016.

    Article  PubMed  Google Scholar 

  11. Sakpal SV, Bindra SS, Chamberlain RS. Laparoscopic cholecystectomy conversion rates two decades later. JSLS. 2010;14(4):476–83.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Csikesz NG, Singla A, Murphy MM, Tseng JF, Shah SA. Surgeon volume metrics in laparoscopic cholecystectomy. Dig Dis Sci. 2010;55(8):2398–405.

    Article  PubMed  Google Scholar 

  13. Yeo HL, Abelson JS, Mao J, O'Mahoney PR, Milsom JW, Sedrakyan A. Surgeon annual and cumulative volumes predict early postoperative outcomes after rectal cancer resection. Ann Surg. 2017;265(1):151–7.

    Article  PubMed  Google Scholar 

  14. Adam MA, Thomas S, Youngwirth L, Hyslop T, Reed SD, Scheri RP, Roman SA, Sosa JA. Is there a minimum number of thyroidectomies a surgeon should perform to optimize patient outcomes? Ann Surg. 2017;265(2):402–7.

    Article  PubMed  Google Scholar 

  15. Karamlou T, Jacobs ML, Pasquali S, He X, Hill K, O'Brien S, McMullan DM, Jacobs JP. Surgeon and center volume influence on outcomes after arterial switch operation: analysis of the STS congenital heart surgery database. Ann Thorac Surg. 2014;98(3):904–11.

    Article  PubMed  Google Scholar 

  16. Weiner MM, Hofer I, Lin HM, Castillo JG, Adams DH, Fischer GW. Relationship among surgical volume, repair quality, and perioperative outcomes for repair of mitral insufficiency in a mitral valve reference center. J Thorac Cardiovasc Surg. 2014;148(5):2021–6.

    Article  PubMed  Google Scholar 

  17. Ericsson AK, Krampe RT, Tesch-Romer C. The role of deliberate practice in the acquisition of expert performance. Psychol Rev. 1993;100(3):363–406.

    Article  Google Scholar 

  18. Ericsson AK. Deliberate practice and the acquisition and maintenance of expert performance in medicine and related domains. Acad Med. 2004;79:S70–81.

    Article  PubMed  Google Scholar 

  19. Brydges R, Carnahan H, Backstein D, Dubrowski A. Application of motor learning principles to complex surgical tasks: searching for the optimal practice schedule. J Mot Behav. 2007;39(1):40–8.

    Article  CAS  PubMed  Google Scholar 

  20. Willaert W, Aggarwal R, Harvey K, Cochennec F, Nestel D, Darzi A, et al. Efficient implementation of patient-specific simulated rehearsal for the carotid artery stenting procedure: part-task rehearsal. Eur J Vasc Endovasc Surg. 2011;42(2):158–66.

    Article  CAS  PubMed  Google Scholar 

  21. Wickens CD, Hutchins S, Carolan T, Cumming J. Effectiveness of part-task training and increasing-difficulty training strategies: a meta-analysis approach. Hum Factors. 2013;55(2):461–70.

    Article  PubMed  Google Scholar 

  22. Lee TD, Genovese ED. Distribution of practice in motor skill acquisition: learning and performance effects reconsidered. Res Q Exerc Sport. 1988;59:277–87.

    Article  Google Scholar 

  23. Donovan JJ, Radosevich DJ. A meta-analytic review of the distribution of practice effect: now you see it, now you don't. J Appl Psychol. 1999;84:795–805.

    Article  Google Scholar 

  24. Moulton CA, Dubrowski A, Macrae H, Graham B, Grober E, Reznick R. Teaching surgical skills: what kind of practice makes perfect?: a randomized, controlled trial. Ann Surg. 2006;244(3):400–9.

    PubMed  PubMed Central  Google Scholar 

  25. Luft AR, Buitrago MM. Stages of motor skill learning. Mol Neurobiol. 2005;32:205–16.

    Article  CAS  PubMed  Google Scholar 

  26. Whitley JD. Effects of practice distribution on learning a fine motor task. Res Q. 1970;41:576–83.

    CAS  PubMed  Google Scholar 

  27. Sanders CW, Sadoski M, van Walsum K, Bramson R, Wiprud R, Fossum TW. Learning basic surgical skills with mental imagery: using the simulation centre in the mind. Med Educ. 2008;42(6):607–12.

    Article  PubMed  Google Scholar 

  28. Cocks M, Moulton CA, Luu S, Cil T. What surgeons can learn from athletes: mental practice in sports and surgery. J Surg Educ. 2014;71(2):262–9.

    Article  PubMed  Google Scholar 

  29. Malouin F, Richards CL. Mental practice for relearning locomotor skills. Phys Ther. 2010;90(2):240–51.

    Article  PubMed  Google Scholar 

  30. Malouin F, Richards CL, Jackson PL, Dumas F, Doyon J. Brain activations during motor imagery of locomotor-related tasks: a PET study. Hum Brain Mapp. 2003;19:47–62.

    Article  PubMed  Google Scholar 

  31. Bakker M, De Lange FP, Helmich RC, et al. Cerebral correlates of motor imagery of normal and precision gait. Neuroimage. 2008;41:998–1010.

    Article  CAS  PubMed  Google Scholar 

  32. Arora S, Aggarwal R, Sirimanna P, Moran A, Grantcharov T, Kneebone R, Sevdalis N, Darzi A. Mental practice enhances surgical technical skills: a randomized controlled study. Ann Surg. 2011;253(2):265–70.

    Article  PubMed  Google Scholar 

  33. Sanders CW, Sadoski M, Bramson R, Wiprud R, Van Walsum K. Comparing the effects of physical practice and mental imagery rehearsal on learning basic surgical skills by medical students. Am J Obstet Gynecol. 2004;191(5):1811–4.

    Article  PubMed  Google Scholar 

  34. Bathalon S, Dorion D, Darveau S, Martin M. Cognitive skills analysis, kinesiology, and mental imagery in the acquisition of surgical skills. J Otolaryngol. 2005;34(5):328–32.

    Article  PubMed  Google Scholar 

  35. Thomas GW, Johns BD, Marsh JL, Anderson DD. A review of the role of simulation in developing and assessing orthopaedic surgical skills. Iowa Orthop J. 2014;34:181–9.

    PubMed  PubMed Central  Google Scholar 

  36. Tan SS, Sarker SK. Simulation in surgery: a review. Scott Med J. 2011;56(2):104–9.

    Article  PubMed  Google Scholar 

  37. Weller JM, Cumin D, Civil ID, Torrie J, Garden A, MacCormick AD, Gurusinghe N, Boyd MJ, Frampton C, Cokorilo M, Tranvik M, Carlsson L, Lee T, Ng WL, Crossan M, Merry AF. Improved scores for observed teamwork in the clinical environment following a multidisciplinary operating room simulation intervention. N Z Med J. 2016;129(1439):59–67.

    PubMed  Google Scholar 

  38. Franzeck FM, Rosenthal R, Muller MK, Nocito A, Wittich F, Maurus C, Dindo D, Clavien PA, Hahnloser D. Prospective randomized controlled trial of simulator-based versus traditional in-surgery laparoscopic camera navigation training. Surg Endosc. 2012;26(1):235–41. doi:10.1007/s00464-011-1860-5.

    Article  PubMed  Google Scholar 

  39. Waterman BR, Martin KD, Cameron KL, Owens BD, Belmont PJ Jr. Simulation training improves surgical proficiency and safety during diagnostic shoulder arthroscopy performed by residents. Orthopedics. 2016;39(3):e479–85.

    Article  PubMed  Google Scholar 

  40. Dawe SR, Pena GN, Windsor JA, Broeders JA, Cregan PC, Hewett PJ, Maddern GJ. Systematic review of skills transfer after surgical simulation-based training. Br J Surg. 2014;101(9):1063–76.

    Article  CAS  PubMed  Google Scholar 

  41. Porte MC, Xeroulis G, Reznick RK, Dubrowski A. Verbal feedback from an expert is more effective than self-accessed feedback about motion efficiency in learning new surgical skills. Am J Surg. 2007;193(1):105–10.

    Article  PubMed  Google Scholar 

  42. Xeroulis GJ, Park J, Moulton CA, Reznick RK, Leblanc V, Dubrowski A. Teaching suturing and knot-tying skills to medical students: a randomized controlled study comparing computer-based video instruction and (concurrent and summary) expert feedback. Surgery. 2007;141(4):442–9.

    Article  PubMed  Google Scholar 

  43. Walsh CM, Ling SC, Wang CS, Carnahan H. Concurrent versus terminal feedback: it may be better to wait. Acad Med. 2009;84(10 Suppl):S54–7.

    Article  PubMed  Google Scholar 

  44. Charalambous CP. Procedural skills. In career skills for doctors. Switzerland: Springer international publishing; 2015. p. 109–18.

    Google Scholar 

  45. Regenbogen SE, Greenberg CC, Studdert DM, Lipsitz SR, Zinner MJ, Gawande AA. Patterns of technical error among surgical malpractice claims: an analysis of strategies to prevent injury to surgical patients. Ann Surg. 2007;246(5):705–11.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Panayiotou Charalambous, C. (2017). Technical Skills in Surgery. In: Career Skills for Surgeons. Springer, Cham. https://doi.org/10.1007/978-3-319-57490-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57490-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57489-9

  • Online ISBN: 978-3-319-57490-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics