Skip to main content

Nanomaterials for Clothing and Textile Products

  • Chapter
  • First Online:

Abstract

Textile is referred to any woven fabric or cloth, also to the raw material suitable to be made into cloth (e.g., fiber or yarn), while clothing is defined as an article designed to cover, protect, or adorn the body, while fashion is the area of activity that involves styles of clothing and appearance (Collins Dict. 2016).

Clothes make the man. Naked people have little or no influence on society.

Mark Twain

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Avila, A.G., Hinestroza, J.P.: Smart textiles: tough cotton. Nat. Nanotechnol. 3, 458–459 (2008)

    Google Scholar 

  • Babu, M.K., Ravindra, K.B.: Bioactive antimicrobial agents for finishing of textiles for health care products. J. Text. Inst. 106(7), 706–717 (2014)

    Google Scholar 

  • Behabtua, N., Greena, M.J., Pasquali, M.: Carbon nanotube-based neat fibers. NanoToday 3, 5–6, Elsevier (2008). ISSN 1748 0132

    Google Scholar 

  • Becheri, B.A., Dürr, M., Lo Nostro, P. and Baglioni, P.: Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J. Nanopart. Res. 10, 679–689 (2008)

    Google Scholar 

  • Bormahsneko, E.: Why does the Cassie–Baxter equation apply? Colloids Surf., A 324, 47–50 (2008)

    Google Scholar 

  • Campos Payá, J., Diáz-Garciá, P., Montava, I., P Miró-Martínez and Bonet, M.: A new development for determining the ultraviolet protection factor. J. Ind. Text. 45(6), 1571–1586 (2015)

    Google Scholar 

  • Chapman, R.: Smart textiles for protection, Elsevier (2012). ISBN 9780857097620, eBook ISBN 9780857097620

    Google Scholar 

  • Collins English Dictionary. Copyright © HarperCollins Publishers (2016). https://www.collinsdictionary.com/dictionary/english/textile https://www.collinsdictionary.com/dictionary/english/antibacterial https://www.collinsdictionary.com/dictionary/english/clothes

  • Coyle, S., Wu, Y., Lau, K.-T., Rossi, D.D., Wallace, G., Diamond, D.: Smart nanotextiles: a review of materials and applications. MRS Bull. 32, 434–442 (2007)

    Google Scholar 

  • Cui, H.-W., Suganuma, K., Uchida, H.: Highly stretchable, electrically conductive textiles fabricated from silver nanowires and cupro fabrics using a simple dipping–drying method. Nano Research 8(5), 1604–1614 (2015)

    Google Scholar 

  • Das, I., De, G.: Zirconia based superhydrophobic coatings on cotton fabrics exhibiting excellent durability for versatile use. Sci. Rep. 5, 18503 (2015)

    Google Scholar 

  • Dastjerdi, R., Montazer, M.: A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties, colloids surf. b biointerfaces. 79, 5–18 (2010). doi:10.1016/j.colsurfb.2010.03.029

  • Eletskii, A.V.: Uglerodnye nanotrubki. Uspehi fizicheskyh nauk 167(9), 945–972 (1997). PACS numbers: 61.46. + w, 85.42. + m

    Google Scholar 

  • Encyclopedia Britannica. (2011)

    Google Scholar 

  • Fang, S., Zhang, M., Zakhidov, A.A., Baughman, R.H.: Structure and process-dependent properties of solid-state spun carbon nanotube yarns. J. Phys.: Condens. Matter 22, 334221(6 pp) (2010)

    Google Scholar 

  • Farouk, A., Moussa, S., Ulbricht, M., Textor, T.: ZnO nanoparticles-chitosan composite as antibacterial finish for textiles. Int. J. Carbohydr. Chem. Volume 2012, Article ID 693629, 8 p, (2012). doi:10.1155/2012/693629

  • Grifoni, D., Bacci, L., Zipoli, G., Albanese, L., Sabatini, F.: The role of natural dyes in the UV protection of fabrics made of vegetable fibres. Dyes Pigm. 91, 279–285 (2011)

    Google Scholar 

  • Hong, S.: Method for producing metal nanofibers, yarns and textiles. Patent US 7562433 B2, 2004

    Google Scholar 

  • Hossain, M.A., Rahman, M.: A review of nano particle usage on textile material against ultra violet radiation. J. Text. Sci. Technol. 1, 93–100 (2015)

    Google Scholar 

  • Huang, K.S., Yang, C.-H., Huang, S.-L., Chen, C.-Y., Lu, Y.-Y., Lin, Y.-S.: Recent advances in antimicrobial polymers. Int. J. Mol. Sci. 17, 1578 (2016)

    Google Scholar 

  • Hui, F., Debiemme-Chouvy, C.: Antimicrobial N‑Halamine Polymers and Coatings: A Review of Their Synthesis, Characterization, and Applications, Biomacromolecules 14, 585−601 (2013). doi:10.1021/bm301980q

  • Huynh, C.P., Hawkins, S.C.: Understanding the synthesis of directly spinnable carbon nanotube forests. Carbon 48, 1105–1115 (2010)

    Google Scholar 

  • Kaushik, V., Lee, J., Hong, J., Lee, S., Lee, S., Seo, J. et al.: Textile-based electronic components for energy applications: principles, problems, and perspective. Nanomaterials 5(3), 1493–1531 (2015)

    Google Scholar 

  • Kralchevsky, P., Miller, R., Ravera, F.: Colloid and Interface Chemistry for Nanotechnology. CRC Press, 560 pages, (2016). ISBN 9781466569058—CAT# K16416

    Google Scholar 

  • Li, X., Liu, Y., Liu, Y., Du, J., Li, R., Ren, X. et al.: Biocidal activity of n-halamine methylenebisacrylamide grafted cotton. J. Eng. Fibers Fabr. 10(2), 147–154 (2015)

    Google Scholar 

  • Li, Z.: Physics essay: the nature of charge, principle of charge interaction and coulomb’s law. Appl. Phy. Res. 7, (6) (2015). doi: 10.5539/apr.v7n6p52. ISSN 1916-9639

  • Liu, K., Sun, Y., Zhou, R., Zhu, H., Wang, J., Liu, L.: Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method. Nanotechnology 21(4), 045708 (2010)

    Google Scholar 

  • Marmur, A.: Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be? Langmuir 19, 8343–8348 (2003)

    Article  Google Scholar 

  • Marmur, A.: The lotus effect: superhydrophobicity and metastability. Langmuir 20, 3517–3519 (2004)

    Article  Google Scholar 

  • Ngô, C., Voorde, M.H.V.: Nanotechnology for the textile industry. Nanotechnology in a Nutshell, pp. 321–329, Springer (2014)

    Google Scholar 

  • Padmanabhuni, R.V., Luo, J., Cao, Z., Su, Y.: Preparation and characterization of N-Halamine-based antimicrobial fillers. Ind. Eng. Chem. Res. 51, 5148–5156 (2012)

    Article  Google Scholar 

  • Pan, N., Sun, G.: Functional textiles for improved performance. Protection and Health, 552 pages, Elsevier (2011). eBook ISBN 9780857092878, Hardcover ISBN 9781845697235

    Google Scholar 

  • Park, Y. H., Kim, Y. K. and Nam, S. W.: Preparation and electrostatic properties of antistatic acrylics. J. Appl. Polym. Sci. 43, 1307–1313 (1991)

    Google Scholar 

  • Rogers, J.A., Ghaffari, R., Kim, D.-H.: Stretchable Bioelectronics for Medical Devices and Systems. Springer (2016)

    Google Scholar 

  • Sayed, U., Sharma, K.: Development of antistatic finish in textiles. Int. J. Adv. Sci. Eng. 2 (2), 69–74, (2015). ISSN 2349

    Google Scholar 

  • Schindler, W.D., Hauser, P.J.: Chemical finishing of textiles. First published 2004, Woodhead Publishing Ltd and CRC Press LLC (2004). Hardcover ISBN 9781855739055, eBook ISBN 9781845690373

    Google Scholar 

  • Shipman, J., Wilson, J.D., Higgins, C.A., Torres, O.: An Introduction to Physical Science. Cengage Learning, 800 pages (2015) ISBN 1133104096, 9781133104094

    Google Scholar 

  • Subramanian, S.M.: Handbook of Sustainable Apparel Production. CRC Press, 556 pages (2015), ISBN 9781482299373—CAT# K24465

    Google Scholar 

  • Syduzzaman, Md., Patwary, S.U., Farhana, K., Ahmed, S.: Smart textiles and nano-technology: a general overview. J. Textile Sci. Eng. 5(1), (2015). doi:10.4172/2165-8064.1000181

  • Takamatsu, S., Lonjaret, T., Crisp, D., Badier, J.-M., Malliaras, G.G., Ismailova, E.: Direct patterning of organic conductors on knitted textiles for long-term electrocardiography. Sci. Rep. 5, 15003 (2015)

    Google Scholar 

  • Thilagavathi, G., Raja, A.S.M., Kannaian, T.: Nanotechnology and protective clothing for defence personnel. Defence Sci. J. 5(4), 451–459 (2008)

    Google Scholar 

  • Tran, C.D., Humphries, W., Smith, S.M., Huynh, C., Lucas, S.: Improving the tensile strength of carbon nanotube spun yarns using a modified spinning process. Carbon 47, 2662–2670 (2009)

    Article  Google Scholar 

  • Vihodceva, S., Kukle, S.: Improvement of UV Protection Properties of the Textile from Natural Fibres by the Sol-gel Method. Mater. Sci. Eng. 49, 012022 (2013)

    Google Scholar 

  • Vilatela, J.J., Elliott, J.A., Windle, A.H.: A model for the strength of yarn-like carbon nanotube fibers. ACS Nano 5(3), 1921–1927 (2011)

    Google Scholar 

  • Walp, L.E.: Antistatic Agents, Kirk-Othmer Encyclopedia of Chemical Technology. Copyright © 2001 by John Wiley & Sons, Inc (2001)

    Google Scholar 

  • Wang, J.N., Luo, X.G., Wu, T. & Chen, Y. (2014). High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity, Nat. Commun. 5,3848

    Google Scholar 

  • Wei, Q.: Surface Modification of Textiles. A volume in Woodhead Publishing Series in Textiles, Elsevier, (2009). ISBN 978-1-84569-419-7

    Google Scholar 

  • Worley, S.D., Eknoian, M.W., Li, Y.: Surface active N-Halamine compounds. US 6469177 B1, 1997

    Google Scholar 

  • Xiao, X., Liu, X., Cao, G., Zhang, C., Xia, L., Xu, W., Xiao, S. Atomic layer deposition TiO2/Al2O3 nanolayer of dyed polyamide/aramid blend fabric for high intensity UV light protection. Polym. Eng. Sci. 55, 1296–1302 (2015)

    Google Scholar 

  • Yetisen, A.K., Qu, H., Amir Manbachi, A., Butt, H., Dokmeci, M.R., Hinestroza, J.P. et al.: Nanotechnology in textiles. ACS Nano 10, 3042–3068 (2016)

    Google Scholar 

  • Yin, R., Tao, X.M. & Xu, B.G.: Mathematical modeling of yarn dynamics in a generalized twisting system. Sci. Rep. 6, 24432 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhypargul Abdullaeva .

Appendices

Questions and Exercises

  1. 1.

    What are the characteristics of inorganic nanostructured materials used for textiles?

  2. 2.

    Describe methods used for surface modification of textiles.

  3. 3.

    Give examples for nanotechnology produced fabrics available on market.

  4. 4.

    What kind of materials can be used for preparation of conductive textiles?

  5. 5.

    What kind of nanomaterials can be used for wear-resistant textiles preparation?

  6. 6.

    Describe the relation between carbon nanotube yarn diameter and strength.

  7. 7.

    Define twisting as the factor for changing of CNT fiber mechanical properties.

  8. 8.

    Describe the relation between the Lennard-Jones potential and the CNT bundles interactive energy.

  9. 9.

    Describe experimental procedure of continuous spinning method for producing of CNT fibers according to Fig. 6.2.

  10. 10.

    What kind of nanomaterials can be used for preparation of waterproof textiles?

  11. 11.

    What is the difference between homogenous and heterogeneous wetting models?

  12. 12.

    What is importance of the Cassie-Baxter model in textile manufacturing, and what conditions are necessary for achieving of this model?

  13. 13.

    Describe the features of heterogeneous wetting on a hydrophobic rough surface.

  14. 14.

    What are the properties of antistatic textiles, and what kind of nanomaterials can be used for antistatic textiles manufacture?

  15. 15.

    Classify antistatic finishing agents used for textile applications.

  16. 16.

    Describe mechanism of textile treatment by antistatic and fixing agents according to the Fig. 6.6.

  17. 17.

    Explain the law of charged substances and their relation with antistatic textiles.

  18. 18.

    Define the ultraviolet protection factor (UPF) and its value characteristics for UV-protective textiles manufacture.

  19. 19.

    Describe nanoparticles used for anti UV textiles preparation.

  20. 20.

    What kind of agents and compounds are used for antimicrobial textile manufacture?

  21. 21.

    Describe the action mechanisms of antibacterial polymeric compounds.

  22. 22.

    Write down the halogenation reaction mechanism of N-halamines.

  23. 23.

    Classify N-halamine compounds and draw the structures for 6-phenyl-1,3,5-triazinane-2,4-dione and the tetramethyl-2-imidazolidinone.

  24. 24.

    Describe features of the wearable sensors based on PEDOT/PSS for medical textile applications.

Problems drills

  1. 1.

    Calculate the active chlorine content (%) in chlorinated chitosan after iodometric/thiosulfate titration, if 0.3 g of chitosan was titrated by Na2S2O3 concentration of 0.02 N, and the volume of titrant used was 75 mL.

  2. 2.

    Calculate volume of the Br2 gas necessary for halogenation of 20 g of 8-hydroxyquinoline used for antibacterial textile manufacturing. Halogenation was carried out by the following mechanism:

  1. 3.

    Find the active chlorine content (Cl+ (%)) for Cl-DMH-UA sample after iodometric/thiosulfate titration, if 0.05 g of sample was titrated by 0.01 N concentrated Na2S2O3, the initial and final volumes of Na2S2O3 used for titration were 150 mL and 45 mL, respectively.

  2. 4.

    According to the illustration (Eletskii 1997) below, consider the diameter for single-walled carbon nanotubes (SWCNTs) used for wear-resistant fibers preparation. The chiral vectors m and n in the hexagonal carbon lattice are equal to 30 and 30.6, respectively.

Answers:

  1. 1.

    8.875%.

  2. 2.

    1.538 gallons.

  3. 3.

    37.275%.

  4. 4.

    2.373 nm.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Abdullaeva, Z. (2017). Nanomaterials for Clothing and Textile Products. In: Nanomaterials in Daily Life. Springer, Cham. https://doi.org/10.1007/978-3-319-57216-1_6

Download citation

Publish with us

Policies and ethics