Skip to main content

The Elephant in the Room: The Role of Microtubules in Cancer

  • Chapter
  • First Online:
Cell Division Machinery and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1002))

Abstract

Microtubules are the backbone of all eukaryotic cells cytoskeleton. Their dynamic behaviour constitutes the basis for many biological processes such as cellular motility, cytoplasmic transport and cell division. Some the most effective chemotherapeutics, such as the taxanes, are microtubule interfering drugs. Moreover, many studies suggest that microtubule dynamics are altered in cancer cell divisions and linked to chromosomal instability, aneuploidy and development of drug resistances. The elephant in the room, however, is that despite all these evidences, the exact role of microtubules in malignancies remains elusive, partially due to the lack of clear genetic alterations linking microtubules to cancer. This review will discuss the molecular mechanisms that might alter microtubule dynamics in cancer cells, the pro and cons of the different theories linking these alterations to cancer progression, and the possible directions to address future key questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312:237–242

    Article  CAS  PubMed  Google Scholar 

  2. Kirschner M, Mitchison T (1986) Beyond self-assembly: from microtubules to morphogenesis. Cell 45:329–342

    Article  CAS  PubMed  Google Scholar 

  3. Boveri T (1902) Über mehrpolige Mitosen als Mittel zur Analyse des Zellkerns. Verhandl Phys-Med Ges Würzburg, 67–90

    Google Scholar 

  4. Galeotti G (1893) Beitrag zum Studium des Chromatins in den Epithelzellen der Carcinome. Beitr Pathol Anat Allg Pathol 14:249–271

    Google Scholar 

  5. Hansemann D (1890) Ueber asymmetrische Zelltheilung in Epithelkrebsen und deren biologische Bedeutung. Virchows Archiv 119:299–326

    Google Scholar 

  6. Mertens F, Johansson B, Höglund M, Mitelman F (1997) Chromosomal imbalance maps of malignant solid tumors: a cytogenetic survey of 3185 neoplasms. Cancer Res 57:2765–2780

    CAS  PubMed  Google Scholar 

  7. Bakhoum SF, Thompson SL, Manning AL, Compton DA (2009b) Genome stability is ensured by temporal control of kinetochore-microtubule dynamics. Nat Cell Biol 11:27–35

    Article  CAS  PubMed  Google Scholar 

  8. Parker AL, Kavallaris M, McCarroll JA (2014) Microtubules and their role in cellular stress in cancer. Front Oncol 4

    Google Scholar 

  9. Etemad B, Kops GJ (2016) Attachment issues: kinetochore transformations and spindle checkpoint silencing. Curr Opin Cell Biol 39:101–108

    Article  CAS  PubMed  Google Scholar 

  10. Musacchio A (2015) The molecular Biology of spindle assembly checkpoint signaling dynamics. Curr Biol 25:R1002–R1018

    Article  CAS  PubMed  Google Scholar 

  11. Rusan NM, Fagerstrom CJ, Yvon AM, Wadsworth P (2001) Cell cycle-dependent changes in microtubule dynamics in living cells expressing green fluorescent protein-alpha tubulin. Mol Biol Cell 12:971–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhai Y, Kronebusch PJ, Borisy GG (1995) Kinetochore microtubule dynamics and the metaphase-anaphase transition. J Cell Biol 131:721–734

    Article  CAS  PubMed  Google Scholar 

  13. Bakhoum SF, Genovese G, Compton DA (2009a) Deviant kinetochore microtubule dynamics underlie chromosomal instability. Curr Biol 19:1937–1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cimini D, Wan X, Hirel CB, Salmon ED (2006) Aurora kinase promotes turnover of kinetochore microtubules to reduce chromosome segregation errors. Curr Biol 16:1711–1718

    Article  CAS  PubMed  Google Scholar 

  15. McIntosh JR, Hays T (2016) A brief history of research on mitotic mechanisms. Biology 5:55

    Article  PubMed Central  Google Scholar 

  16. Cimini D, Howell B, Maddox P, Khodjakov A, Degrassi F, Salmon ED (2001) Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells. J Cell Biol 153:517–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Duijf PHG, Schultz N, Benezra R (2013) Cancer cells preferentially lose small chromosomes. Int J Cancer 132:2316–2326

    Article  CAS  PubMed  Google Scholar 

  18. Lengauer C, Kinzler KW, Vogelstein B (1997) Genetic instability in colorectal cancers. Nature 386:623–627

    Article  CAS  PubMed  Google Scholar 

  19. Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396:643–649

    Article  CAS  PubMed  Google Scholar 

  20. Thompson SL, Bakhoum SF, Compton DA (2010) Mechanisms of chromosomal instability. Curr Biol 20:R285–R295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Weaver BAA, Cleveland DW (2006) Does aneuploidy cause cancer? Curr Opin Cell Biol 18:658–667

    Article  CAS  PubMed  Google Scholar 

  22. Holland AJ, Cleveland DW (2012) Losing balance: the origin and impact of aneuploidy in cancer. EMBO Rep 13:501–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pfau SJ, Amon A (2012) Chromosomal instability and aneuploidy in cancer: from yeast to man. EMBO Rep 13:515–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Choi C-M, Seo KW, Jang SJ, Oh Y-M, Shim T-S, Kim WS, Lee D-S, Lee S-D (2009) Chromosomal instability is a risk factor for poor prognosis of adenocarcinoma of the lung: fluorescence in situ hybridization analysis of paraffin-embedded tissue from Korean patients. Lung Cancer 64:66–70

    Article  PubMed  Google Scholar 

  25. Gao C, Furge K, Koeman J, Dykema K, Su Y, Cutler ML, Werts A, Haak P, Vande Woude GF (2007) Chromosome instability, chromosome transcriptome, and clonal evolution of tumor cell populations. Proc Natl Acad Sci U S A 104:8995–9000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Heilig CE, Löffler H, Mahlknecht U, Janssen JW, Ho AD, Jauch A, Krämer A (2010) Chromosomal instability correlates with poor outcome in patients with myelodysplastic syndromes irrespectively of the cytogenetic risk group. J Cell Mol Med 14:895–902

    Article  PubMed  Google Scholar 

  27. Kuukasjärvi T, Karhu R, Tanner M, Kähkönen M, Schäffer A, Nupponen N, Pennanen S, Kallioniemi A, Kallioniemi OP, Isola J (1997) Genetic heterogeneity and clonal evolution underlying development of asynchronous metastasis in human breast cancer. Cancer Res 57:1597–1604

    PubMed  Google Scholar 

  28. Lee AJX, Endesfelder D, Rowan AJ, Walther A, Birkbak NJ, Futreal PA, Downward J, Szallasi Z, Tomlinson IPM, Howell M et al (2011) Chromosomal instability confers intrinsic multidrug resistance. Cancer Res 71:1858–1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McClelland SE, Burrell RA, Swanton C (2009) Chromosomal instability: a composite phenotype that influences sensitivity to chemotherapy. Cell Cycle (Georgetown, Tex) 8:3262–3266

    Google Scholar 

  30. Cimini D, Fioravanti D, Salmon ED, Degrassi F (2002) Merotelic kinetochore orientation versus chromosome mono-orientation in the origin of lagging chromosomes in human primary cells. J Cell Sci 115:507–515

    CAS  PubMed  Google Scholar 

  31. Ertych N, Stolz A, Stenzinger A, Weichert W, Kaulfuß S, Burfeind P, Aigner A, Wordeman L, Bastians H (2014) Increased microtubule assembly rates influence chromosomal instability in colorectal cancer cells. Nat Cell Biol 16:779–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Silkworth WT, Nardi IK, Paul R, Mogilner A, Cimini D (2012) Timing of centrosome separation is important for accurate chromosome segregation. Mol Biol Cell 23:401–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thompson SL, Compton DA (2008) Examining the link between chromosomal instability and aneuploidy in human cells. J Cell Biol 180:665–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gregan J, Polakova S, Zhang L, Tolic-Norrelykke IM, Cimini D (2011) Merotelic kinetochore attachment: causes and effects. Trends Cell Biol 21:374–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lampson MA, Grishchuk EL (2017) Mechanisms to avoid and correct erroneous kinetochore-microtubule attachments. Biology 6:1

    Article  PubMed Central  Google Scholar 

  36. Tanaka TU (2010) Kinetochore-microtubule interactions: steps towards bi-orientation. EMBO J 29:4070–4082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu D, Vader G, Vromans MJ, Lampson MA, Lens SM (2009) Sensing chromosome bi-orientation by spatial separation of Aurora B kinase from kinetochore substrates. Science 323:1350–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Welburn JP, Vleugel M, Liu D, Yates JR 3rd, Lampson MA, Fukagawa T, Cheeseman IM (2010) Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface. Mol Cell 38:383–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Foley EA, Kapoor TM (2013) Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat Rev Mol Cell Biol 14:25–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Godek KM, Kabeche L, Compton DA (2015) Regulation of kinetochore-microtubule attachments through homeostatic control during mitosis. Nat Rev Mol Cell Biol 16:57–64

    Article  CAS  PubMed  Google Scholar 

  41. Krenn V, Musacchio A (2015) The Aurora B kinase in chromosome bi-orientation and spindle checkpoint signaling. Front Oncol 5

    Google Scholar 

  42. Lampson MA, Cheeseman IM (2011) Sensing centromere tension: Aurora B and the regulation of kinetochore function. Trends Cell Biol 21:133–140

    Article  CAS  PubMed  Google Scholar 

  43. Loncarek J, Kisurina-Evgenieva O, Vinogradova T, Hergert P, La Terra S, Kapoor TM, Khodjakov A (2007) The centromere geometry essential for keeping mitosis error free is controlled by spindle forces. Nature 450:745–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Manning AL, Compton DA (2007) Mechanisms of spindle-pole organization are influenced by kinetochore activity in mammalian cells. Curr Biol 17:260–265

    Article  CAS  PubMed  Google Scholar 

  45. Barisic M, Aguiar P, Geley S, Maiato H (2014) Kinetochore motors drive congression of peripheral polar chromosomes by overcoming random arm-ejection forces. Nat Cell Biol 16:1249–1256

    Article  CAS  PubMed  Google Scholar 

  46. Chmátal L, Yang K, Schultz RM, Lampson MA (2015) Spatial regulation of kinetochore microtubule attachments by destabilization at spindle poles in meiosis I. Curr Biol 25:1835–1841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Ye AA, Deretic J, Hoel CM, Hinman AW, Cimini D, Welburn JP, Maresca TJ (2015) Aurora a kinase contributes to a pole-based error correction pathway. Curr Biol 25:1842–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kabeche L, Compton DA (2013) Cyclin a regulates kinetochore microtubules to promote faithful chromosome segregation. Nature 502:110–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Manning AL, Bakhoum SF, Maffini S, Correia-Melo C, Maiato H, Compton DA (2010) CLASP1, astrin and Kif2b form a molecular switch that regulates kinetochore-microtubule dynamics to promote mitotic progression and fidelity. EMBO J 29:3531–3543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schmidt JC, Kiyomitsu T, Hori T, Backer CB, Fukagawa T, Cheeseman IM (2010) Aurora B kinase controls the targeting of the Astrin–SKAP complex to bioriented kinetochores. J Cell Biol 191:269–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Domnitz SB, Wagenbach M, Decarreau J, Wordeman L (2012) MCAK activity at microtubule tips regulates spindle microtubule length to promote robust kinetochore attachment. J Cell Biol 197:231–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wordeman L, Wagenbach M, von Dassow G (2007) MCAK facilitates chromosome movement by promoting kinetochore microtubule turnover. J Cell Biol 179:869–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Andrews PD, Ovechkina Y, Morrice N, Wagenbach M, Duncan K, Wordeman L, Swedlow JR (2004) Aurora B regulates MCAK at the mitotic centromere. Dev Cell 6:253–268

    Article  CAS  PubMed  Google Scholar 

  54. Lan W, Zhang X, Kline-Smith SL, Rosasco SE, Barrett-Wilt GA, Shabanowitz J, Hunt DF, Walczak CE, Stukenberg PT (2004) Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr Biol 14:273–286

    Article  CAS  PubMed  Google Scholar 

  55. Biggins S, Murray AW (2001) The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle checkpoint. Genes Dev 15:3118–3129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ditchfield C, Johnson VL, Tighe A, Ellston R, Haworth C, Johnson T, Mortlock A, Keen N, Taylor SS (2003) Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J Cell Biol 161:267–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hauf S, Cole RW, LaTerra S, Zimmer C, Schnapp G, Walter R, Heckel A, van Meel J, Rieder CL, Peters J-M (2003) The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol 161:281–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kallio MJ, McCleland ML, Stukenberg PT, Gorbsky GJ (2002) Inhibition of Aurora B kinase blocks chromosome segregation, overrides the spindle checkpoint, and perturbs microtubule dynamics in mitosis. Curr Biol 12:900–905

    Article  CAS  PubMed  Google Scholar 

  59. Lampson MA, Renduchitala K, Khodjakov A, Kapoor TM (2004) Correcting improper chromosome-spindle attachments during cell division. Nat Cell Biol 6:232–237

    Article  CAS  PubMed  Google Scholar 

  60. Tanaka TU, Rachidi N, Janke C, Pereira G, Galova M, Schiebel E, Stark MJR, Nasmyth K (2002) Evidence that the Ipl1-Sli15 (Aurora kinase-INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections. Cell 108:317–329

    Article  CAS  PubMed  Google Scholar 

  61. Bakhoum SF, Kabeche L, Murnane JP, Zaki BI, Compton DA (2014) DNA-damage response during mitosis induces whole-chromosome missegregation. Cancer Discov 4:1281–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sotillo R, Hernando E, Diaz-Rodriguez E, Teruya-Feldstein J, Cordon-Cardo C, Lowe SW, Benezra R (2007) Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell 11:9–23

    Article  CAS  PubMed  Google Scholar 

  63. Ertych N, Stolz A, Valerius O, Braus GH, Bastians H (2016) CHK2-BRCA1 tumor-suppressor axis restrains oncogenic Aurora-a kinase to ensure proper mitotic microtubule assembly. Proc Natl Acad Sci U S A 113:1817–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lüddecke S, Ertych N, Stenzinger A, Weichert W, Beissbarth T, Dyczkowski J, Gaedcke J, Valerius O, Braus GH, Kschischo M et al (2016) The putative oncogene CEP72 inhibits the mitotic function of BRCA1 and induces chromosomal instability. Oncogene 35:2398–2406

    Article  PubMed  CAS  Google Scholar 

  65. Stolz A, Ertych N, Bastians H (2010) Loss of the tumour-suppressor genes CHK2 and BRCA1 results in chromosomal instability. Biochem Soc Trans 38:1704–1708

    Article  CAS  PubMed  Google Scholar 

  66. Antoni L, Sodha N, Collins I, Garrett MD (2007) CHK2 kinase: cancer susceptibility and cancer therapy - two sides of the same coin? Nat Rev Cancer 7:925–936

    Article  CAS  PubMed  Google Scholar 

  67. Barr AR, Gergely F (2007) Aurora-a: the maker and breaker of spindle poles. J Cell Sci 120:2987–2996

    Article  CAS  PubMed  Google Scholar 

  68. Bartek J, Lukas J (2003) Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3:421–429

    Article  CAS  PubMed  Google Scholar 

  69. Lens SM, Voest EE, Medema RH (2010) Shared and separate functions of polo-like kinases and Aurora kinases in cancer. Nat Rev Cancer 10:825–841

    Article  CAS  PubMed  Google Scholar 

  70. Thompson D, Easton DF, Breast Cancer Linkage C (2002) Cancer incidence in BRCA1 mutation carriers. J Natl Cancer Inst 94:1358–1365

    Article  CAS  PubMed  Google Scholar 

  71. Kaseda K, McAinsh AD, Cross RA (2012) Dual pathway spindle assembly increases both the speed and the fidelity of mitosis. Biol Open 1:12–18

    Article  PubMed  Google Scholar 

  72. McHedlishvili N, Wieser S, Holtackers R, Mouysset J, Belwal M, Amaro AC, Meraldi P (2012) Kinetochores accelerate centrosome separation to ensure faithful chromosome segregation. J Cell Sci 125:906–918

    Article  CAS  PubMed  Google Scholar 

  73. Janicke MA, Lasko L, Oldenbourg R, LaFountain JR (2007) Chromosome Malorientations after meiosis II arrest cause nondisjunction. Mol Biol Cell 18:1645–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Thompson SL, Compton DA (2011) Chromosome missegregation in human cells arises through specific types of kinetochore-microtubule attachment errors. Proc Natl Acad Sci U S A 108:17974–17978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Torosantucci L, De Santis Puzzonia M, Cenciarelli C, Rens W, Degrassi F (2009) Aneuploidy in mitosis of PtK1 cells is generated by random loss and nondisjunction of individual chromosomes. J Cell Sci 122:3455–3461

    Article  CAS  PubMed  Google Scholar 

  76. Crasta K, Ganem NJ, Dagher R, Lantermann AB, Ivanova EV, Pan Y, Nezi L, Protopopov A, Chowdhury D, Pellman D (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482:53–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang R, Alushin GM, Brown A, Nogales E (2015) Mechanistic origin of microtubule dynamic instability and its modulation by EB proteins. Cell 162:849–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Janssen A, Medema RH (2013) Genetic instability: tipping the balance. Oncogene 32:4459–4470

    Article  CAS  PubMed  Google Scholar 

  79. Thompson SL, Compton DA (2010) Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. J Cell Biol 188:369–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ganem NJ, Storchova Z, Pellman D (2007) Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev 17:157–162

    Article  CAS  PubMed  Google Scholar 

  81. Jeganathan K, Malureanu L, Baker DJ, Abraham SC, van Deursen JM (2007) Bub1 mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis. J Cell Biol 179:255–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Michel LS, Liberal V, Chatterjee A, Kirchwegger R, Pasche B, Gerald W, Dobles M, Sorger PK, Murty VVVS, Benezra R (2001) MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409:355–359

    Article  CAS  PubMed  Google Scholar 

  83. Ricke RM, Jeganathan KB, van Deursen JM (2011) Bub1 overexpression induces aneuploidy and tumor formation through Aurora B kinase hyperactivation. J Cell Biol 193:1049–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. van Ree JH, Jeganathan KB, Malureanu L, van Deursen JM (2010) Overexpression of the E2 ubiquitin-conjugating enzyme UbcH10 causes chromosome missegregation and tumor formation. J Cell Biol 188:83–100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Weaver BA, Silk AD, Montagna C, Verdier-Pinard P, Cleveland DW (2007) Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 11:25–36

    Article  CAS  PubMed  Google Scholar 

  86. Funk LC, Zasadil LM, Weaver BA (2016) Living in CIN: mitotic infidelity and its consequences for tumor promotion and suppression. Dev Cell 39:638–652

    Article  CAS  PubMed  Google Scholar 

  87. Giam M, Rancati G (2015) Aneuploidy and chromosomal instability in cancer: a jackpot to chaos. Cell Div 10:3

    Article  PubMed  PubMed Central  Google Scholar 

  88. Yuen KWY (2010) Chromosome instability (CIN), aneuploidy and cancer. In: Encyclopedia of life sciences. Wiley, Chichester

    Google Scholar 

  89. Torres EM, Sokolsky T, Tucker CM, Chan LY, Boselli M, Dunham MJ, Amon A (2007) Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 317:916–924

    Article  CAS  PubMed  Google Scholar 

  90. Williams BR, Prabhu VR, Hunter KE, Glazier CM, Whittaker CA, Housman DE, Amon A (2008) Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science 322:703–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sheltzer JM, Ko JH, Replogle JM, Habibe Burgos NC, Chung ES, Meehl CM, Sayles NM, Passerini V, Storchova Z, Amon A (2017) Single-chromosome gains commonly function as tumor suppressors. Cancer Cell 31:240–255

    Article  CAS  PubMed  Google Scholar 

  92. Holland AJ, Cleveland DW (2009) Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat Rev Mol Cell Biol 10:478–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Levine MS, Bakker B, Boeckx B, Moyett J, Lu J, Vitre B, Spierings DC, Lansdorp PM, Cleveland DW, Lambrechts D et al (2017) Centrosome amplification is sufficient to promote spontaneous tumorigenesis in mammals. Dev Cell 40(313–322):e315

    Google Scholar 

  94. Schvartzman J-M, Sotillo R, Benezra R (2010) Mitotic chromosomal instability and cancer: mouse modelling of the human disease. Nat Rev Cancer 10:102–115

    Article  CAS  PubMed  Google Scholar 

  95. García-Castillo H, Vásquez-Velásquez AI, Rivera H, Barros-Núñez P (2008) Clinical and genetic heterogeneity in patients with mosaic variegated aneuploidy: delineation of clinical subtypes. Am J Med Genet A 146A:1687–1695

    Article  PubMed  Google Scholar 

  96. Hanks S, Coleman K, Reid S, Plaja A, Firth H, FitzPatrick D, Kidd A, Méhes K, Nash R, Robin N et al (2004) Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat Genet 36:1159–1161

    Article  CAS  PubMed  Google Scholar 

  97. Snape K, Hanks S, Ruark E, Barros-Núňez P, Elliott A, Murray A, Lane AH, Shannon N, Callier P, Chitayat D et al (2011) Mutations in CEP57 cause mosaic variegated aneuploidy syndrome. Nat Genet 43:527–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Suijkerbuijk SJE, van Osch MHJ, Bos FL, Hanks S, Rahman N, Kops GJPL (2010) Molecular causes for BUBR1 dysfunction in the human cancer predisposition syndrome mosaic variegated aneuploidy. Cancer Res 70:4891–4900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Brito DA, Yang Z, Rieder CL (2008) Microtubules do not promote mitotic slippage when the spindle assembly checkpoint cannot be satisfied. J Cell Biol 182:623–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hood EA, Kettenbach AN, Gerber SA, Compton DA (2012) Plk1 regulates the kinesin-13 protein Kif2b to promote faithful chromosome segregation. Mol Biol Cell 23:2264–2274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Liu D, Davydenko O, Lampson MA (2012) Polo-like kinase-1 regulates kinetochore–microtubule dynamics and spindle checkpoint silencing. J Cell Biol 198:491–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Asteriti IA, Giubettini M, Lavia P, Guarguaglini G (2011) Aurora-a inactivation causes mitotic spindle pole fragmentation by unbalancing microtubule-generated forces. Mol Cancer 10:131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kinoshita K, Noetzel TL, Pelletier L, Mechtler K, Drechsel DN, Schwager A, Lee M, Raff JW, Hyman AA (2005) Aurora a phosphorylation of TACC3/maskin is required for centrosome-dependent microtubule assembly in mitosis. J Cell Biol 170:1047–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang X, Ems-McClung SC, Walczak CE (2008) Aurora a phosphorylates MCAK to control ran-dependent spindle bipolarity. Mol Biol Cell 19:2752–2765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kabeche L, Compton DA (2012) Checkpoint-independent stabilization of kinetochore-microtubule attachments by Mad2 in human cells. Curr Biol 22:638–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nakamura Y, Tanaka F, Haraguchi N, Mimori K, Matsumoto T, Inoue H, Yanaga K, Mori M (2007) Clinicopathological and biological significance of mitotic centromere-associated kinesin overexpression in human gastric cancer. Br J Cancer 97:543–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shimo A, Tanikawa C, Nishidate T, Lin M-L, Matsuda K, Park J-H, Ueki T, Ohta T, Hirata K, Fukuda M et al (2008) Involvement of kinesin family member 2C/mitotic centromere-associated kinesin overexpression in mammary carcinogenesis. Cancer Sci 99:62–70

    CAS  PubMed  Google Scholar 

  108. Ishikawa Y, Akishima-Fukasawa Y, Ito K, Akasaka Y, Yokoo T, Ishii T, Behavior TSGfCB (2008) Histopathologic determinants of regional lymph node metastasis in early colorectal cancer. Cancer 112:924–933

    Article  PubMed  Google Scholar 

  109. Ganguly A, Yang H, Cabral F (2011a) Overexpression of mitotic centromere associated kinesin stimulates microtubule detachment and confers resistance to paclitaxel. Mol Cancer Ther 10:929–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ganguly A, Yang H, Pedroza M, Bhattacharya R, Cabral F (2011b) Mitotic centromere-associated kinesin (MCAK) mediates paclitaxel resistance. J Biol Chem 286:36378–36384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Agnese V, Bazan V, Fiorentino FP, Fanale D, Badalamenti G, Colucci G, Adamo V, Santini D, Russo A (2007) The role of Aurora-a inhibitors in cancer therapy. Ann Oncol 18:vi47–vi52

    PubMed  Google Scholar 

  112. Casimiro MC, Crosariol M, Loro E, Li Z, Pestell RG (2012) Cyclins and cell cycle control in cancer and disease. Genes Cancer 3:649–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fu J, Bian M, Jiang Q, Zhang C (2007) Roles of Aurora kinases in mitosis and tumorigenesis. Mol Cancer Res 5:1–10

    Article  CAS  PubMed  Google Scholar 

  114. Hollander Jd, Rimpi S, Doherty JR, Rudelius M, Buck A, Hoellein A, Kremer M, Graf N, Scheerer M, Hall MA et al (2010) Aurora kinases a and B are up-regulated by Myc and are essential for maintenance of the malignant state. Blood 116:1498–1505

    Article  CAS  Google Scholar 

  115. Malumbres M, Barbacid M (2007) Cell cycle kinases in cancer. Curr Opin Genet Dev 17:60–65

    Article  CAS  PubMed  Google Scholar 

  116. Portella G, Passaro C, Chieffi P (2011) Aurora B: a new prognostic marker and therapeutic target in cancer. Curr Med Chem 18:482–496

    Article  CAS  PubMed  Google Scholar 

  117. Diaz-Rodríguez E, Sotillo R, Schvartzman J-M, Benezra R (2008) Hec1 overexpression hyperactivates the mitotic checkpoint and induces tumor formation in vivo. Proc Natl Acad Sci U S A 105:16719–16724

    Article  PubMed  PubMed Central  Google Scholar 

  118. Kuo T-C, Chang P-Y, Huang S-F, Chou C-K, Chao CC-K (2012) Knockdown of HURP inhibits the proliferation of hepacellular carcinoma cells via downregulation of gankyrin and accumulation of p53. Biochem Pharmacol 83:758–768

    Article  CAS  PubMed  Google Scholar 

  119. Nagahara M, Nishida N, Iwatsuki M, Ishimaru S, Mimori K, Tanaka F, Nakagawa T, Sato T, Sugihara K, Hoon DSB et al (2011) Kinesin 18A expression: clinical relevance to colorectal cancer progression. Int J Cancer 129:2543–2552

    Article  CAS  PubMed  Google Scholar 

  120. Rucksaken R, Khoontawad J, Roytrakul S, Pinlaor P, Hiraku Y, Wongkham C, Pairojkul C, Boonmars T, Pinlaor S (2012) Proteomic analysis to identify plasma orosomucoid 2 and kinesin 18A as potential biomarkers of cholangiocarcinoma. Cancer Biomarkers Section A Dis Markers 12:81–95

    CAS  Google Scholar 

  121. Wright C, Brooks WS (2013) Overexpression of the kinetochore-associated proteins SKAP and astrin in human breast cancer. Bios 84:136–141

    Article  CAS  Google Scholar 

  122. Yuan B, Xu Y, Woo J-H, Wang Y, Bae YK, Yoon D-S, Wersto RP, Tully E, Wilsbach K, Gabrielson E (2006) Increased expression of mitotic checkpoint genes in breast cancer cells with chromosomal instability. Clin Cancer Res 12:405–410

    Article  CAS  PubMed  Google Scholar 

  123. Zhang C, Zhu C, Chen H, Li L, Guo L, Jiang W, Lu SH (2010) Kif18A is involved in human breast carcinogenesis. Carcinogenesis 31:1676–1684

    Article  CAS  PubMed  Google Scholar 

  124. Thiru P, Kern DM, McKinley KL, Monda JK, Rago F, Su K-C, Tsinman T, Yarar D, Bell GW, Cheeseman IM (2014) Kinetochore genes are coordinately up-regulated in human tumors as part of a FoxM1-related cell division program. Mol Biol Cell 25:1983–1994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Dehmelt L, Halpain S (2005) The MAP2/tau family of microtubule-associated proteins. Genome Biol 6:204

    Article  PubMed  Google Scholar 

  126. Folker ES, Baker BM, Goodson HV (2005) Interactions between CLIP-170, tubulin, and microtubules: implications for the mechanism of CLIP-170 plus-end tracking behavior. Mol Biol Cell 16:5373–5384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Giodini A, Kallio MJ, Wall NR, Gorbsky GJ, Tognin S, Marchisio PC, Symons M, Altieri DC (2002) Regulation of microtubule stability and mitotic progression by survivin. Cancer Res 62:2462–2467

    CAS  PubMed  Google Scholar 

  128. Komarova YA, Akhmanova AS, Kojima S-I, Galjart N, Borisy GG (2002) Cytoplasmic linker proteins promote microtubule rescue in vivo. J Cell Biol 159:589–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rosa J, Canovas P, Islam A, Altieri DC, Doxsey SJ (2006) Survivin modulates microtubule dynamics and nucleation throughout the cell cycle. Mol Biol Cell 17:1483–1493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sun X, Shi X, Liu M, Li D, Zhang L, Liu X, Zhou J (2011) Mdp3 is a novel microtubule-binding protein that regulates microtubule assembly and stability. Cell Cycle 10:3929–3937

    Article  CAS  PubMed  Google Scholar 

  131. Tirnauer JS, Grego S, Salmon ED, Mitchison TJ (2002) EB1-microtubule interactions in Xenopus egg extracts: role of EB1 in microtubule stabilization and mechanisms of targeting to microtubules. Mol Biol Cell 13:3614–3626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kadavath H, Hofele RV, Biernat J, Kumar S, Tepper K, Urlaub H, Mandelkow E, Zweckstetter M (2015) Tau stabilizes microtubules by binding at the interface between tubulin heterodimers. Proc Natl Acad Sci U S A 112:7501–7506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Mandelkow E, Mandelkow EM (1995) Microtubules and microtubule-associated proteins. Curr Opin Cell Biol 7:72–81

    Article  CAS  PubMed  Google Scholar 

  134. Iqbal K, Liu F, Gong C-X (2016) Tau and neurodegenerative disease: the story so far. Nat Rev Neurol 12:15–27

    Article  CAS  PubMed  Google Scholar 

  135. Rouzier R, Rajan R, Wagner P, Hess KR, Gold DL, Stec J, Ayers M, Ross JS, Zhang P, Buchholz TA et al (2005) Microtubule-associated protein tau: a marker of paclitaxel sensitivity in breast cancer. Proc Natl Acad Sci U S A 102:8315–8320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Don S, Verrills NM, Liaw TYE, Liu MLM, Norris MD, Haber M, Kavallaris M (2004) Neuronal-associated microtubule proteins class III beta-tubulin and MAP2c in neuroblastoma: role in resistance to microtubule-targeted drugs. Mol Cancer Ther 3:1137–1146

    Article  CAS  PubMed  Google Scholar 

  137. Soltani MH, Pichardo R, Song Z, Sangha N, Camacho F, Satyamoorthy K, Sangueza OP, Setaluri V (2005) Microtubule-associated protein 2, a marker of neuronal differentiation, induces mitotic defects, inhibits growth of melanoma cells, and predicts metastatic potential of cutaneous melanoma. Am J Pathol 166:1841–1850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Tala N, Xie S, Sun X, Sun X, Ran J, Zhang L, Li D, Liu M, Bao G, Zhou J (2014) Microtubule-associated protein Mdp3 promotes breast cancer growth and metastasis. Theranostics 4:1052–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Diamantopoulos GS, Perez F, Goodson HV, Batelier G, Melki R, Kreis TE, Rickard JE (1999) Dynamic localization of CLIP-170 to microtubule plus ends is coupled to microtubule assembly. J Cell Biol 144:99–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bilbe G, Delabie J, Brüggen J, Richener H, Asselbergs FA, Cerletti N, Sorg C, Odink K, Tarcsay L, Wiesendanger W (1992) Restin: a novel intermediate filament-associated protein highly expressed in the reed-Sternberg cells of Hodgkin’s disease. EMBO J 11:2103–2113

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Delabie J, Bilbe G, Brüggen J, Van Leuven F, De Wolf-Peeters C (1993) Restin in Hodgkin’s disease and anaplastic large cell lymphoma. Leuk Lymphoma 12:21–26

    Article  CAS  PubMed  Google Scholar 

  142. Sun X, Li D, Yang Y, Ren Y, Li J, Wang Z, Dong B, Liu M, Zhou J (2012) Microtubule-binding protein CLIP-170 is a mediator of paclitaxel sensitivity. J Pathol 226:666–673

    Article  CAS  PubMed  Google Scholar 

  143. Sun X, Li F, Dong B, Suo S, Liu M, Li D, Zhou J (2013) Regulation of tumor angiogenesis by the microtubule-binding protein CLIP-170. Protein Cell 4:266–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Vitre B, Coquelle FM, Heichette C, Garnier C, Chretien D, Arnal I (2008) EB1 regulates microtubule dynamics and tubulin sheet closure in vitro. Nat Cell Biol 10:415–421

    Article  CAS  PubMed  Google Scholar 

  145. Dong X, Liu F, Sun L, Liu M, Li D, Su D, Zhu Z, Dong J-T, Fu L, Zhou J (2010) Oncogenic function of microtubule end-binding protein 1 in breast cancer. J Pathol 220:361–369

    CAS  PubMed  Google Scholar 

  146. Kumar M, Mehra S, Thakar A, Shukla NK, Roychoudhary A, Sharma MC, Ralhan R, Chauhan SS (2016) End binding 1 (EB1) overexpression in oral lesions and cancer: a biomarker of tumor progression and poor prognosis. Clin Chim Acta 459:45–52

    Article  CAS  PubMed  Google Scholar 

  147. Morimura S, Takahashi K (2011) Rac1 and Stathmin but not EB1 are required for invasion of breast cancer cells in response to IGF-I. Int J Cell Biol 2011:e615912

    Article  CAS  Google Scholar 

  148. Morrison EE, Wardleworth BN, Askham JM, Markham AF, Meredith DM (1998) EB1, a protein which interacts with the APC tumour suppressor, is associated with the microtubule cytoskeleton throughout the cell cycle. Oncogene 17:3471–3477

    Article  CAS  PubMed  Google Scholar 

  149. Nishigaki R, Osaki M, Hiratsuka M, Toda T, Murakami K, Jeang K-T, Ito H, Inoue T, Oshimura M (2005) Proteomic identification of differentially-expressed genes in human gastric carcinomas. Proteomics 5:3205–3213

    Article  CAS  PubMed  Google Scholar 

  150. Orimo T, Ojima H, Hiraoka N, Saito S, Kosuge T, Kakisaka T, Yokoo H, Nakanishi K, Kamiyama T, Todo S et al (2008) Proteomic profiling reveals the prognostic value of adenomatous polyposis coli-end-binding protein 1 in hepatocellular carcinoma. Hepatology 48:1851–1863

    Article  CAS  PubMed  Google Scholar 

  151. Stypula-Cyrus Y, Mutyal NN, Cruz MAD, Kunte DP, Radosevich AJ, Wali R, Roy HK, Backman V (2014) End-binding protein 1 (EB1) up-regulation is an early event in colorectal carcinogenesis. FEBS Lett 588:829–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Altieri DC (2003) Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene 22:8581–8589

    Article  CAS  PubMed  Google Scholar 

  153. Charrasse S, Mazel M, Taviaux S, Berta P, Chow T, Larroque C (1995) Characterization of the cDNA and pattern of expression of a new gene over-expressed in human hepatomas and colonic tumors. Eur J Biochem 234:406–413

    Article  CAS  PubMed  Google Scholar 

  154. Brouhard GJ, Stear JH, Noetzel TL, Al-Bassam J, Kinoshita K, Harrison SC, Howard J, Hyman AA (2008) XMAP215 is a Processive microtubule polymerase. Cell 132:79–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Gutiérrez-Caballero C, Burgess SG, Bayliss R, Royle SJ (2015) TACC3–ch-TOG track the growing tips of microtubules independently of clathrin and Aurora-a phosphorylation. Biol Open 4:170–179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Widlund PO, Stear JH, Pozniakovsky A, Zanic M, Reber S, Brouhard GJ, Hyman AA, Howard J (2011) XMAP215 polymerase activity is built by combining multiple tubulin-binding TOG domains and a basic lattice-binding region. Proc Natl Acad Sci 108:2741–2746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Booth DG, Hood FE, Prior IA, Royle SJ (2011) A TACC3/ch-TOG/clathrin complex stabilises kinetochore fibres by inter-microtubule bridging. EMBO J 30:906–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Fu W, Tao W, Zheng P, Fu J, Bian M, Jiang Q, Clarke PR, Zhang C (2010) Clathrin recruits phosphorylated TACC3 to spindle poles for bipolar spindle assembly and chromosome alignment. J Cell Sci 123:3645–3651

    Article  CAS  PubMed  Google Scholar 

  159. Hood FE, Williams SJ, Burgess SG, Richards MW, Roth D, Straube A, Pfuhl M, Bayliss R, Royle SJ (2013) Coordination of adjacent domains mediates TACC3-ch-TOG-clathrin assembly and mitotic spindle binding. J Cell Biol 202:463–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lin CH, Hu CK, Shih HM (2010) Clathrin heavy chain mediates TACC3 targeting to mitotic spindles to ensure spindle stability. J Cell Biol 189:1097–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Royle SJ (2012) The role of clathrin in mitotic spindle organisation. J Cell Sci 125:19–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Thakur HC, Singh M, Nagel-Steger L, Prumbaum D, Fansa EK, Gremer L, Ezzahoini H, Abts A, Schmitt L, Raunser S et al (2013) Role of centrosomal adaptor proteins of the TACC family in the regulation of microtubule dynamics during mitotic cell division. Biol Chem 394:1411–1423

    Article  CAS  PubMed  Google Scholar 

  163. Smith CM, Haucke V, McCluskey A, Robinson PJ, Chircop M (2013) Inhibition of clathrin by pitstop 2 activates the spindle assembly checkpoint and induces cell death in dividing HeLa cancer cells. Mol Cancer 12:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Hergovich A, Lisztwan J, Barry R, Ballschmieter P, Krek W (2003) Regulation of microtubule stability by the von Hippel-Lindau tumour suppressor protein pVHL. Nat Cell Biol 5:64–70

    Article  CAS  PubMed  Google Scholar 

  165. Stanojevic B, Saenko V, Todorovic L, Petrovic N, Nikolic D, Zivaljevic V, Paunovic I, Nakashima M, Yamashita S, Dzodic R (2014) Low VHL mRNA expression is associated with more aggressive tumor features of papillary thyroid carcinoma. PLoS One 9:e114511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Zia MK, Rmali KA, Watkins G, Mansel RE, Jiang WG (2007) The expression of the von Hippel-Lindau gene product and its impact on invasiveness of human breast cancer cells. Int J Mol Med 20:605–611

    CAS  PubMed  Google Scholar 

  167. Fodde R, Smits R, Clevers H (2001) APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer 1:55–67

    Article  CAS  PubMed  Google Scholar 

  168. Kaplan KB, Burds AA, Swedlow JR, Bekir SS, Sorger PK, Näthke IS (2001) A role for the adenomatous polyposis coli protein in chromosome segregation. Nat Cell Biol 3:429–432

    Article  CAS  PubMed  Google Scholar 

  169. Jaulin F, Kreitzer G (2010) KIF17 stabilizes microtubules and contributes to epithelial morphogenesis by acting at MT plus ends with EB1 and APC. J Cell Biol 190:443–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Wen Y, Eng CH, Schmoranzer J, Cabrera-Poch N, Morris EJS, Chen M, Wallar BJ, Alberts AS, Gundersen GG (2004) EB1 and APC bind to mDia to stabilize microtubules downstream of rho and promote cell migration. Nat Cell Biol 6:820–830

    Article  CAS  PubMed  Google Scholar 

  171. Zumbrunn J, Kinoshita K, Hyman AA, Näthke IS (2001) Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3β phosphorylation. Curr Biol 11:44–49

    Article  CAS  PubMed  Google Scholar 

  172. Belmont LD, Mitchison TJ (1996) Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 84:623–631

    Article  CAS  PubMed  Google Scholar 

  173. Hemdan T, Lindén M, Lind SB, Namuduri AV, Sjöstedt E, de Ståhl DT, Asplund A, Malmström P-U, Segersten U (2014) The prognostic value and therapeutic target role of stathmin-1 in urinary bladder cancer. Br J Cancer 111:1180–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Hsieh S-Y, Huang S-F, Yu M-C, Yeh T-S, Chen T-C, Lin Y-J, Chang C-J, Sung C-M, Lee Y-L, Hsu C-Y (2010) Stathmin1 overexpression associated with polyploidy, tumor-cell invasion, early recurrence, and poor prognosis in human hepatoma. Mol Carcinog 49:476–487

    CAS  PubMed  Google Scholar 

  175. Hsu H-P, Li C-F, Lee S-W, Wu W-R, Chen T-J, Chang K-Y, Liang S-S, Tsai C-J, Shiue Y-L (2014) Overexpression of stathmin 1 confers an independent prognostic indicator in nasopharyngeal carcinoma. Tumour Biol 35:2619–2629

    Article  CAS  PubMed  Google Scholar 

  176. Li X, Yao R, Yue L, Qiu W, Qi W, Liu S, Yao Y, Liang J (2014) FOXM1 mediates resistance to docetaxel in gastric cancer via up-regulating Stathmin. J Cell Mol Med 18:811–823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Wang X, Chen Y, Han Q-b, Chan C-y, Wang H, Liu Z, Cheng CH-k, Yew DT, Lin MCM, He M-l et al (2009) Proteomic identification of molecular targets of gambogic acid: role of stathmin in hepatocellular carcinoma. Proteomics 9:242–253

    Article  CAS  PubMed  Google Scholar 

  178. Zheng P, Liu Y-X, Chen L, Liu X-H, Xiao Z-Q, Zhao L, Li G-Q, Zhou J, Ding Y-Q, Li J-M (2010) Stathmin, a new target of PRL-3 identified by proteomic methods, plays a key role in progression and metastasis of colorectal cancer. J Proteome Res 9:4897–4905

    Article  CAS  PubMed  Google Scholar 

  179. Aoki K, Taketo MM (2007) Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. J Cell Sci 120:3327–3335

    Article  CAS  PubMed  Google Scholar 

  180. Fodde R (2002) The APC gene in colorectal cancer. Eur J Cancer 38:867–871

    Article  CAS  PubMed  Google Scholar 

  181. Gossage L, Eisen T, Maher ER (2015) VHL, the story of a tumour suppressor gene. Nat Rev Cancer 15:55–64

    Article  CAS  PubMed  Google Scholar 

  182. Cheung CHA, Wu S-Y, Lee T-R, Chang C-Y, Wu J-S, Hsieh H-P, Chang J-Y (2010) Cancer cells acquire mitotic drug resistance properties through beta I-tubulin mutations and alterations in the expression of beta-tubulin isotypes. PLoS One 5:e12564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Kavallaris M, Tait AS, Walsh BJ, He L, Horwitz SB, Norris MD, Haber M (2001) Multiple microtubule alterations are associated with Vinca alkaloid resistance in human leukemia cells. Cancer Res 61:5803–5809

    CAS  PubMed  Google Scholar 

  184. Martello LA, Verdier-Pinard P, Shen H-J, He L, Torres K, Orr GA, Horwitz SB (2003) Elevated levels of microtubule destabilizing factors in a Taxol-resistant/dependent A549 cell line with an alpha-tubulin mutation. Cancer Res 63:1207–1213

    CAS  PubMed  Google Scholar 

  185. Mozzetti S, Ferlini C, Concolino P, Filippetti F, Raspaglio G, Prislei S, Gallo D, Martinelli E, Ranelletti FO, Ferrandina G et al (2005) Class III beta-tubulin overexpression is a prominent mechanism of paclitaxel resistance in ovarian cancer patients. Clin Cancer Res 11:298–305

    CAS  PubMed  Google Scholar 

  186. Verdier-Pinard P, Wang F, Martello L, Burd B, Orr GA, Horwitz SB (2003b) Analysis of tubulin isotypes and mutations from taxol-resistant cells by combined isoelectrofocusing and mass spectrometry. Biochemistry 42:5349–5357

    Article  CAS  PubMed  Google Scholar 

  187. Yin S, Bhattacharya R, Cabral F (2010) Human mutations that confer paclitaxel resistance. Mol Cancer Ther 9:327–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Kelley MJ, Li S, Harpole DH (2001) Genetic analysis of the beta-tubulin gene, TUBB, in non-small-cell lung cancer. J Natl Cancer Inst 93:1886–1888

    Article  CAS  PubMed  Google Scholar 

  189. Sale S, Sung R, Shen P, Yu K, Wang Y, Duran GE, Kim J-H, Fojo T, Oefner PJ, Sikic BI (2002) Conservation of the class I beta-tubulin gene in human populations and lack of mutations in lung cancers and paclitaxel-resistant ovarian cancers. Mol Cancer Ther 1:215–225

    CAS  PubMed  Google Scholar 

  190. Lamendola DE, Duan Z, Penson RT, Oliva E, Seiden MV (2003) Beta tubulin mutations are rare in human ovarian carcinoma. Anticancer Res 23:681–686

    CAS  PubMed  Google Scholar 

  191. Mesquita B, Veiga I, Pereira D, Tavares A, Pinto IM, Pinto C, Teixeira MR, Castedo S (2005) No significant role for beta tubulin mutations and mismatch repair defects in ovarian cancer resistance to paclitaxel/cisplatin. BMC Cancer 5:101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Hasegawa S, Miyoshi Y, Egawa C, Ishitobi M, Tamaki Y, Monden M, Noguchi S (2002) Mutational analysis of the class I beta-tubulin gene in human breast cancer. Int J Cancer 101:46–51

    Article  CAS  PubMed  Google Scholar 

  193. Maeno K, Ito K-I, Hama Y, Shingu K, Kimura M, Sano M, Nakagomi H, Tsuchiya S-I, Fujimori M (2003) Mutation of the class I beta-tubulin gene does not predict response to paclitaxel for breast cancer. Cancer Lett 198:89–97

    Article  CAS  PubMed  Google Scholar 

  194. Urano N, Fujiwara Y, Hasegawa S, Miyoshi Y, Noguchi S, Takiguchi S, Yasuda T, Yano M, Monden M (2003) Absence of beta-tubulin gene mutation in gastric carcinoma. Gastric Cancer 6:108–112

    CAS  PubMed  Google Scholar 

  195. Luduena RF, Banerjee A (2008) The isotypes of tubulin: distribution and functional significance. In: Fojo T (ed) Cancer drug discovery and development: the role of microtubules in cell biology. Humana Press, Totowa

    Google Scholar 

  196. Luduena RF (1998) Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol 178:207–275

    Article  CAS  PubMed  Google Scholar 

  197. Roach MC, Boucher VL, Walss C, Ravdin PM, Luduena RF (1998) Preparation of a monoclonal antibody specific for the class I isotype of beta-tubulin: the beta isotypes of tubulin differ in their cellular distributions within human tissues. Cell Motil Cytoskeleton 39:273–285

    Article  CAS  PubMed  Google Scholar 

  198. Dettman RW, Turner FR, Hoyle HD, Raff EC (2001) Embryonic expression of the divergent drosophila beta3-tubulin isoform is required for larval behavior. Genetics 158:253–263

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Burgoyne RD, Cambray-Deakin MA, Lewis SA, Sarkar S, Cowan NJ (1988) Differential distribution of beta-tubulin isotypes in cerebellum. EMBO J 7:2311–2319

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Mialhe A, Lafanechère L, Treilleux I, Peloux N, Dumontet C, Brémond A, Panh MH, Payan R, Wehland J, Margolis RL et al (2001) Tubulin detyrosination is a frequent occurrence in breast cancers of poor prognosis. Cancer Res 61:5024–5027

    CAS  PubMed  Google Scholar 

  201. Lu C, Zhang J, He S, Wan C, Shan A, Wang Y, Yu L, Liu G, Chen K, Shi J et al (2013) Increased α-tubulin1b expression indicates poor prognosis and resistance to chemotherapy in hepatocellular carcinoma. Dig Dis Sci 58:2713–2720

    Article  CAS  PubMed  Google Scholar 

  202. Blenk S, Engelmann JC, Pinkert S, Weniger M, Schultz J, Rosenwald A, Müller-Hermelink HK, Müller T, Dandekar T (2008) Explorative data analysis of MCL reveals gene expression networks implicated in survival and prognosis supported by explorative CGH analysis. BMC Cancer 8:106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Nikas JB, Boylan KLM, Skubitz APN, Low WC (2011) Mathematical prognostic biomarker models for treatment response and survival in epithelial ovarian cancer. Cancer Informat 10:233–247

    Article  CAS  Google Scholar 

  204. Bai RL, Lin CM, Nguyen NY, Liu TY, Hamel E (1989) Identification of the cysteine residue of beta-tubulin alkylated by the antimitotic agent 2,4-dichlorobenzyl thiocyanate, facilitated by separation of the protein subunits of tubulin by hydrophobic column chromatography. Biochemistry 28:5606–5612

    Article  CAS  PubMed  Google Scholar 

  205. Joe PA, Banerjee A, Ludueña RF (2008) The roles of cys124 and ser239 in the functional properties of human betaIII tubulin. Cell Motil Cytoskeleton 65:476–486

    Article  CAS  PubMed  Google Scholar 

  206. Guo J, Walss-Bass C, Ludueña RF (2010) The beta isotypes of tubulin in neuronal differentiation. Cytoskeleton 67:431–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Khan IA, Ludueña RF (1996) Phosphorylation of beta III-tubulin. Biochemistry 35:3704–3711

    Article  CAS  PubMed  Google Scholar 

  208. Khan IA, Ludueña RF (2003) Different effects of vinblastine on the polymerization of isotypically purified tubulins from bovine brain. Investig New Drugs 21:3–13

    Article  CAS  Google Scholar 

  209. Littauer UZ, Giveon D, Thierauf M, Ginzburg I, Ponstingl H (1986) Common and distinct tubulin binding sites for microtubule-associated proteins. Proc Natl Acad Sci U S A 83:7162–7166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Caudron F, Denarier E, Thibout-Quintana J-C, Brocard J, Andrieux A, Fourest-Lieuvin A (2010) Mutation of Ser172 in yeast β tubulin induces defects in microtubule dynamics and cell division. PLoS One 5:e13553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Fourest-Lieuvin A, Peris L, Gache V, Garcia-Saez I, Juillan-Binard C, Lantez V, Job D (2006) Microtubule regulation in mitosis: tubulin phosphorylation by the Cyclin-dependent kinase Cdk1. Mol Biol Cell 17:1041–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Banerjee A, Roach MC, Trcka P, Luduena RF (1992) Preparation of a monoclonal antibody specific for the class IV isotype of beta-tubulin. Purification and assembly of alpha beta II, alpha beta III, and alpha beta IV tubulin dimers from bovine brain. J Biol Chem 267:5625–5630

    CAS  PubMed  Google Scholar 

  213. Hari M, Yang H, Zeng C, Canizales M, Cabral F (2003) Expression of class III beta-tubulin reduces microtubule assembly and confers resistance to paclitaxel. Cell Motil Cytoskeleton 56:45–56

    Article  CAS  PubMed  Google Scholar 

  214. Panda D, Miller HP, Banerjee A, Ludueña RF, Wilson L (1994) Microtubule dynamics in vitro are regulated by the tubulin isotype composition. Proc Natl Acad Sci U S A 91:11358–11362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. McCarroll JA, Sharbeen G, Liu J, Youkhana J, Goldstein D, McCarthy N, Limbri LF, Dischl D, Ceyhan GO, Erkan M et al (2014) βIII-tubulin: a novel mediator of chemoresistance and metastases in pancreatic cancer. Oncotarget 6:2235–2249

    Article  PubMed Central  Google Scholar 

  216. Liou G-Y, Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44:479–496

    Article  CAS  PubMed  Google Scholar 

  217. Banerjee A, Roach MC, Wall KA, Lopata MA, Cleveland DW, Ludueña RF (1988) A monoclonal antibody against the type II isotype of beta-tubulin. Preparation of isotypically altered tubulin. J Biol Chem 263:3029–3034

    CAS  PubMed  Google Scholar 

  218. Kumbhar BV, Borogaon A, Panda D, Kunwar A (2016) Exploring the origin of Differential binding affinities of human tubulin isotypes αβII, αβIII and αβIV for DAMA-colchicine using homology modelling, molecular docking and molecular dynamics simulations. PLoS One 11:e0156048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Santoshi S, Naik PK (2014) Molecular insight of isotypes specific β-tubulin interaction of tubulin heterodimer with noscapinoids. J Comput Aided Mol Des 28:751–763

    Article  CAS  PubMed  Google Scholar 

  220. Xu K, Schwarz PM, Ludueña RF (2002) Interaction of nocodazole with tubulin isotypes. Drug Dev Res 55:91–96

    Article  CAS  Google Scholar 

  221. Bernard-Marty C, Treilleux I, Dumontet C, Cardoso F, Fellous A, Gancberg D, Bissery MC, Paesmans M, Larsimont D, Piccart MJ et al (2002) Microtubule-associated parameters as predictive markers of docetaxel activity in advanced breast cancer patients: results of a pilot study. Clin Breast Cancer 3:341–345

    Article  CAS  PubMed  Google Scholar 

  222. Haber M, Burkhart CA, Regl DL, Madafiglio J, Norris MD, Horwitz SB (1995) Altered expression of M beta 2, the class II beta-tubulin isotype, in a murine J774.2 cell line with a high level of taxol resistance. J Biol Chem 270:31269–31275

    Article  CAS  PubMed  Google Scholar 

  223. Iwamoto Y, Nishio K, Fukumoto H, Yoshimatsu K, Yamakido M, Saijo N (1998) Preferential binding of E7010 to murine β3-tubulin and decreased β3-tubulin in E7010-resistant cell lines. Jpn J Cancer Res 89:954–962

    Article  CAS  PubMed  Google Scholar 

  224. Orr GA, Verdier-Pinard P, McDaid H, Horwitz SB (2003) Mechanisms of Taxol resistance related to microtubules. Oncogene 22:7280–7295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Sirotnak FM, Danenberg KD, Chen J, Fritz F, Danenberg PV (2000) Markedly decreased binding of vincristine to tubulin in vinca alkaloid-resistant Chinese hamster cells is associated with selective overexpression of alpha and beta tubulin isoforms. Biochem Biophys Res Commun 269:21–24

    Article  CAS  PubMed  Google Scholar 

  226. Banerjee A (2002) Increased levels of tyrosinated α-, βIII-, and βIV-tubulin isotypes in paclitaxel-resistant MCF-7 breast cancer cells. Biochem Biophys Res Commun 293:598–601

    Article  CAS  PubMed  Google Scholar 

  227. Kavallaris M, Burkhart CA, Horwitz SB (1999) Antisense oligonucleotides to class III beta-tubulin sensitize drug-resistant cells to Taxol. Br J Cancer 80:1020–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Ranganathan S, Benetatos CA, Colarusso PJ, Dexter DW, Hudes GR (1998) Altered beta-tubulin isotype expression in paclitaxel-resistant human prostate carcinoma cells. Br J Cancer 77:562–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Ranganathan S, Dexter DW, Benetatos CA, Chapman AE, Tew KD, Hudes GR (1996) Increase of beta(III)- and beta(IVa)-tubulin isotopes in human prostate carcinoma cells as a result of estramustine resistance. Cancer Res 56:2584–2589

    CAS  PubMed  Google Scholar 

  230. Ranganathan S, McCauley RA, Dexter DW, Hudes GR (2001) Modulation of endogenous beta-tubulin isotype expression as a result of human beta(III)cDNA transfection into prostate carcinoma cells. Br J Cancer 85:735–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Kavallaris M, Kuo DY, Burkhart CA, Regl DL, Norris MD, Haber M, Horwitz SB (1997) Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J Clin Invest 100:1282–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Aoki D, Oda Y, Hattori S, Taguchi K-I, Ohishi Y, Basaki Y, Oie S, Suzuki N, Kono S, Tsuneyoshi M et al (2009) Overexpression of class III beta-tubulin predicts good response to taxane-based chemotherapy in ovarian clear cell adenocarcinoma. Clin Cancer Res 15:1473–1480

    Article  CAS  PubMed  Google Scholar 

  233. Barisic M, Silva e Sousa R, Tripathy SK, Magiera MM, Zaytsev AV, Pereira AL, Janke C, Grishchuk EL, Maiato H (2015) Mitosis. Microtubule detyrosination guides chromosomes during mitosis. Science 348:799–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Minoura I, Hachikubo Y, Yamakita Y, Takazaki H, Ayukawa R, Uchimura S, Muto E (2013) Overexpression, purification, and functional analysis of recombinant human tubulin dimer. FEBS Lett 587:3450–3455

    Article  CAS  PubMed  Google Scholar 

  235. Widlund PO, Podolski M, Reber S, Alper J, Storch M, Hyman AA, Howard J, Drechsel DN (2012) One-step purification of assembly-competent tubulin from diverse eukaryotic sources. Mol Biol Cell 23:4393–4401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Verdier-Pinard P, Wang F, Burd B, Angeletti RH, Horwitz SB, Orr GA (2003a) Direct analysis of tubulin expression in cancer cell lines by electrospray ionization mass spectrometry. Biochemistry 42:12019–12027

    Article  CAS  PubMed  Google Scholar 

  238. Roll-Mecak A (2015) Intrinsically disordered tubulin tails: complex tuners of microtubule functions? Semin Cell Dev Biol 37:11–19

    Article  CAS  PubMed  Google Scholar 

  239. Janke C (2014) The tubulin code: molecular components, readout mechanisms, and functions. J Cell Biol 206:461–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Hallak ME, Rodriguez JA, Barra HS, Caputto R (1977) Release of tyrosine from tyrosinated tubulin. Some common factors that affect this process and the assembly of tubulin. FEBS Lett 73:147–150

    Article  CAS  PubMed  Google Scholar 

  241. Arce CA, Rodriguez JA, Barra HS, Caputto R (1975) Incorporation of l-tyrosine, l-phenylalanine and l-3,4-Dihydroxyphenylalanine as single units into rat brain tubulin. Eur J Biochem 59:145–149

    Article  CAS  PubMed  Google Scholar 

  242. Argarana CE, Barra HS, Caputto R (1980) Tubulinyl-tyrosine carboxypeptidase from chicken brain: properties and partial purification. J Neurochem 34:114–118

    Article  CAS  PubMed  Google Scholar 

  243. Deanin GG, Gordon MW (1976) The distribution of tyrosyltubulin ligase in brain and other tissues. Biochem Biophys Res Commun 71:676–683

    Article  CAS  PubMed  Google Scholar 

  244. Ersfeld K, Wehland J, Plessmann U, Dodemont H, Gerke V, Weber K (1993) Characterization of the tubulin-tyrosine ligase. J Cell Biol 120:725–732

    Article  CAS  PubMed  Google Scholar 

  245. Raybin D, Flavin M (1975) An enzyme tyrosylating α-tubulin and its role in microtubule assembly. Biochem Biophys Res Commun 65:1088–1095

    Article  CAS  PubMed  Google Scholar 

  246. Schröder HC, Wehland J, Weber K (1985) Purification of brain tubulin-tyrosine ligase by biochemical and immunological methods. J Cell Biol 100:276–281

    Article  PubMed  Google Scholar 

  247. Peris L, Wagenbach M, Lafanechère L, Brocard J, Moore AT, Kozielski F, Job D, Wordeman L, Andrieux A (2009) Motor-dependent microtubule disassembly driven by tubulin tyrosination. J Cell Biol 185:1159–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Sirajuddin M, Rice LM, Vale RD (2014) Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat Cell Biol 16:335–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Brown A, Li Y, Slaughter T, Black MM (1993) Composite microtubules of the axon: quantitative analysis of tyrosinated and acetylated tubulin along individual axonal microtubules. J Cell Sci 104:339–352

    CAS  PubMed  Google Scholar 

  250. Cambray-Deakin MA, Burgoyne RD (1987) Posttranslational modifications of alpha-tubulin: acetylated and detyrosinated forms in axons of rat cerebellum. J Cell Biol 104:1569–1574

    Article  CAS  PubMed  Google Scholar 

  251. Robson SJ, Burgoyne RD (1989) Differential localisation of tyrosinated, detyrosinated, and acetylated α-tubulins in neurites and growth cones of dorsal root ganglion neurons. Cell Motil Cytoskeleton 12:273–282

    Article  CAS  PubMed  Google Scholar 

  252. Lafanechère L, Courtay-Cahen C, Kawakami T, Jacrot M, Rüdiger M, Wehland J, Job D, Margolis RL (1998) Suppression of tubulin tyrosine ligase during tumor growth. J Cell Sci 111(Pt 2):171–181

    PubMed  Google Scholar 

  253. Kato C, Miyazaki K, Nakagawa A, Ohira M, Nakamura Y, Ozaki T, Imai T, Nakagawara A (2004) Low expression of human tubulin tyrosine ligase and suppressed tubulin tyrosination/detyrosination cycle are associated with impaired neuronal differentiation in neuroblastomas with poor prognosis. Int J Cancer 112:365–375

    Article  CAS  PubMed  Google Scholar 

  254. Paturle-Lafanechere L, Manier M, Trigault N, Pirollet F, Mazarguil H, Job D (1994) Accumulation of delta 2-tubulin, a major tubulin variant that cannot be tyrosinated, in neuronal tissues and in stable microtubule assemblies. J Cell Sci 107:1529–1543

    CAS  PubMed  Google Scholar 

  255. Sève P, Isaac S, Trédan O, Souquet P-J, Pachéco Y, Pérol M, Lafanéchère L, Penet A, Peiller E-L, Dumontet C (2005) Expression of class III β-tubulin is predictive of patient outcome in patients with non–small cell lung cancer receiving Vinorelbine-based chemotherapy. Clin Cancer Res 11:5481–5486

    Article  PubMed  Google Scholar 

  256. Bonnet C, Boucher D, Lazereg S, Pedrotti B, Islam K, Denoulet P, Larcher JC (2001) Differential binding regulation of microtubule-associated proteins MAP1A, MAP1B, and MAP2 by tubulin polyglutamylation. J Biol Chem 276:12839–12848

    Article  CAS  PubMed  Google Scholar 

  257. Ikegami K, Sato S, Nakamura K, Ostrowski LE, Setou M (2010) Tubulin polyglutamylation is essential for airway ciliary function through the regulation of beating asymmetry. Proc Natl Acad Sci 107:10490–10495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Janke C, Rogowski K, Wloga D, Regnard C, Kajava AV, Strub J-M, Temurak N, Dijk Jv, Boucher D, Dorsselaer AV et al (2005) Tubulin Polyglutamylase enzymes are members of the TTL domain protein family. Science 308:1758–1762

    Article  CAS  PubMed  Google Scholar 

  259. Pathak N, Obara T, Mangos S, Liu Y, Drummond IA (2007) The zebrafish fleer Gene encodes an essential regulator of cilia tubulin polyglutamylation. Mol Biol Cell 18:4353–4364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Massoner P, Lueking A, Goehler H, Höpfner A, Kowald A, Kugler KG, Amersdorfer P, Horninger W, Bartsch G, Schulz-Knappe P et al (2012) Serum-autoantibodies for discovery of prostate cancer specific biomarkers. Prostate 72:427–436

    Article  CAS  PubMed  Google Scholar 

  261. Wasylyk C, Zambrano A, Zhao C, Brants J, Abecassis J, Schalken JA, Rogatsch H, Schaefer G, Pycha A, Klocker H et al (2010) Tubulin tyrosine ligase like 12 links to prostate cancer through tubulin posttranslational modification and chromosome ploidy. Int J Cancer 127:2542–2553

    Article  CAS  PubMed  Google Scholar 

  262. Brants J, Semenchenko K, Wasylyk C, Robert A, Carles A, Zambrano A, Pradeau-Aubreton K, Birck C, Schalken JA, Poch O et al (2012) Tubulin tyrosine ligase like 12, a TTLL family member with SET- and TTL-like domains and roles in histone and tubulin modifications and mitosis. PLoS One 7:e51258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Sangrajrang S, Denoulet P, Laing NM, Tatoud R, Millot G, Calvo F, Tew KD, Fellous A (1998) Association of estramustine resistance in human prostatic carcinoma cells with modified patterns of tubulin expression. Biochem Pharmacol 55:325–331

    Article  CAS  PubMed  Google Scholar 

  264. Wloga D, Dave D, Meagley J, Rogowski K, Jerka-Dziadosz M, Gaertig J (2010) Hyperglutamylation of tubulin can either stabilize or destabilize microtubules in the same cell. Eukaryot Cell 9:184–193

    Article  CAS  PubMed  Google Scholar 

  265. Sangrajrang S, Fellous A (2000) Taxol resistance. Chemotherapy 46:327–334

    Article  CAS  PubMed  Google Scholar 

  266. Howes SC, Alushin GM, Shida T, Nachury MV, Nogales E (2014) Effects of tubulin acetylation and tubulin acetyltransferase binding on microtubule structure. Mol Biol Cell 25:257–266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  267. Dompierre JP, Godin JD, Charrin BC, Cordelières FP, King SJ, Humbert S, Saudou F (2007) Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J Neurosci 27:3571–3583

    Article  CAS  PubMed  Google Scholar 

  268. Reed NA, Cai D, Blasius TL, Jih GT, Meyhofer E, Gaertig J, Verhey KJ (2006) Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol 16:2166–2172

    Article  CAS  PubMed  Google Scholar 

  269. Giustiniani J, Daire V, Cantaloube I, Durand G, Poüs C, Perdiz D, Baillet A (2009) Tubulin acetylation favors Hsp90 recruitment to microtubules and stimulates the signaling function of the Hsp90 clients Akt/PKB and p53. Cell Signal 21:529–539

    Article  CAS  PubMed  Google Scholar 

  270. Zhang Z, Yamashita H, Toyama T, Sugiura H, Omoto Y, Ando Y, Mita K, Hamaguchi M, Hayashi S-i, Iwase H (2004) HDAC6 expression is correlated with better survival in breast cancer. Clin Cancer Res 10:6962–6968

    Article  CAS  PubMed  Google Scholar 

  271. Boggs AE, Vitolo MI, Whipple RA, Charpentier MS, Goloubeva OG, Ioffe OB, Tuttle KC, Slovic J, Lu Y, Mills GB et al (2015) α-tubulin acetylation elevated in metastatic and basal-like breast cancer cells promotes microtentacle formation, adhesion and invasive migration. Cancer Res 75:203–215

    Article  CAS  PubMed  Google Scholar 

  272. Zhang W, Mao JH, Zhu W, Jain AK, Liu K, Brown JB, Karpen GH (2016) Centromere and kinetochore gene misexpression predicts cancer patient survival and response to radiotherapy and chemotherapy. Nat Commun 7:12619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Helder Maiato (University of Porto), Carsten Janke (Institut Curie) and the members of the Gotta and Meraldi laboratories for helpful discussions. This work was supported by an SNF-project grant (No 31003A 156013) to M.G., an SNF-project grant (No 31003A_160006) to P.M. and the University of Geneva.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Monica Gotta or Patrick Meraldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cirillo, L., Gotta, M., Meraldi, P. (2017). The Elephant in the Room: The Role of Microtubules in Cancer. In: Gotta, M., Meraldi, P. (eds) Cell Division Machinery and Disease. Advances in Experimental Medicine and Biology, vol 1002. Springer, Cham. https://doi.org/10.1007/978-3-319-57127-0_5

Download citation

Publish with us

Policies and ethics