Skip to main content

Conducting Polymers/Inorganic Nanohybrids for Energy Applications

  • Chapter
  • First Online:
Polymer-Engineered Nanostructures for Advanced Energy Applications

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

Conducting polymers/inorganic nanohybrids embrace the key to basic advances in electrical energy system, which are very important in order to meet the challenge of global warming and the finite nature of fossil fuels. This architecture has opened the possibility to combine in a single material both the attractive properties of a mechanically and thermally stable inorganic backbone and the specific chemical reactivity, dielectric, ductility, flexibility, and processability of the conducting polymer. Nanohybrids in particular offer combinations of properties as electrodes in a range of electrical energy devices. This chapter explains some recent developments in the discovery of electrodes for rechargeable batteries, fuel cells, and supercapacitors. The advantages and disadvantages of the conducting polymers/inorganic hybrid electrode design for such devices are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Choi HJ, Jung SM, Seo JM et al (2012) Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 1(4):534–551

    Article  Google Scholar 

  2. Padbury R, Zhang X (2011) Lithium-oxygen batteries-limiting factors that affect performance. J Power Sources 196(10):4436–4444

    Article  Google Scholar 

  3. Gao X, Luo W, Zhong C et al (2014) Novel germanium/polypyrrole composite for high power lithium-ion batteries. Sci Rep 4:6095

    Article  Google Scholar 

  4. Sengodu P, Deshmukh AD (2015) Conducting polymers and their inorganic composites for advanced Li-ion batteries: a review. RSC Adv 5(52):42109–42130

    Article  Google Scholar 

  5. Prakash S, Chakrabarty T, Singh AK et al (2013) Polymer thin films embedded with metal nanoparticles for electrochemical biosensors applications. Biosens Bioelectron 41:43–53

    Article  Google Scholar 

  6. Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47(16):2930–2946

    Article  Google Scholar 

  7. Arico AS, Bruce P, Scrosati B et al (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4(5):366–377

    Article  Google Scholar 

  8. Liu N, Li W, Pasta M et al (2013) Nanomaterials for electrochemical energy storage. Front Phys 9(3):323–350

    Article  Google Scholar 

  9. Liu B, Soares P, Checkles C et al (2013) Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes. Nano Lett 13(7):3414–3419

    Article  Google Scholar 

  10. Prakash S, Rao CRK, Vijayan M (2008) New polyaniline (PAni)-polyelectrolyte (PDDMAC) composites: synthesis and applications. Electrochim Acta 53(18):5704–5710

    Article  Google Scholar 

  11. Prakash S, Rao CRK, Vijayan M (2009) Polyaniline-polyelectrolyte-gold (0) ternary nanocomposites: synthesis and electrochemical properties. Electrochim Acta 54(24):5919–5927

    Article  Google Scholar 

  12. Wei D, Cotton D, Ryhänen T (2012) All-solid-state textile batteries made from nano-emulsion conducting polymer inks for wearable electronics. Nanomaterials 2(3):268–274

    Article  Google Scholar 

  13. Wallace GG, Campbell TE, Innis PC (2007) Putting function into fashion: organic conducting polymer fibres and textiles. Fibers Polym 8(2):135–142

    Article  Google Scholar 

  14. Trohalaki S (2012) Energy focus: Li-ion batteries fabricated by spray painting. MRS Bull 37(10):883–884

    Article  Google Scholar 

  15. Wu H, Zheng G, Liu N et al (2012) Engineering empty space between Si nanoparticles for lithium-ion battery anodes. Nano Lett 12(2):904–909

    Article  Google Scholar 

  16. Bock K (2005) Polymer electronics systems-polytronics. Proc IEEE 93(8):1400–1406

    Article  Google Scholar 

  17. Katz HE, Searson PC, Poehler TO (2010) Batteries and charge storage devices based on electronically conducting polymers. J Mater Res 25(08):1561–1574

    Article  Google Scholar 

  18. Abdelhamid ME, O’Mullane AP, Snook GA (2015) Storing energy in plastics: a review on conducting polymers & their role in electrochemical energy storage. RSC Adv 5(15):11611–11626

    Article  Google Scholar 

  19. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12

    Article  Google Scholar 

  20. Forrest SR (2004) The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428(6986):911–918

    Article  Google Scholar 

  21. Tsutsui T, Fujita K (2002) The shift from “hard” to “soft” electronics. Adv Mater 14(13–14):949–952

    Article  Google Scholar 

  22. Ueda A, Nagao M, Inoue A et al (2013) Electrochemical performance of all-solid-state lithium batteries with Sn4P3 negative electrode. J Power Sources 244:597–600

    Article  Google Scholar 

  23. Sun Q, Zhang XQ, Han F et al (2012) Controlled hydrothermal synthesis of 1D nanocarbons by surfactant-templated assembly for use as anodes for rechargeable lithium-ion batteries. J Mater Chem 22(33):17049–17054

    Article  Google Scholar 

  24. Yin J, Cao H, Zhou Z et al (2012) SnS2@ reduced graphene oxide nanocomposites as anode materials with high capacity for rechargeable lithium ion batteries. J Mater Chem 22(45):23963–23970

    Article  Google Scholar 

  25. Otero TF, Cantero I (1999) Conducting polymers as positive electrodes in rechargeable lithium-ion batteries. J Power Sources 81:838–841

    Article  Google Scholar 

  26. Kim JM, Park HS, Park JH et al (2014) Conducting polymer-skinned electroactive materials of lithium-ion batteries: ready for monocomponent electrodes without additional binders and conductive agents. ACS Appl Mater Interfaces 6(15):12789–12797

    Article  Google Scholar 

  27. Shao L, Jeon JW, Lutkenhaus JL (2011) Polyaniline/vanadium pentoxide layer-by-layer electrodes for energy storage. Chem Mater 24(1):181–189

    Article  Google Scholar 

  28. Huang YH, Goodenough JB (2008) High-rate LiFePO4 lithium rechargeable battery promoted by electrochemically active polymers. Chem Mater 20(23):7237–7241

    Article  Google Scholar 

  29. Liu G, Xun S, Vukmirovic N et al (2011) Polymers with tailored electronic structure for high capacity lithium battery electrodes. Adv Mater 23(40):4679–4683

    Article  Google Scholar 

  30. Chou SL, Pan Y, Wang JZ et al (2014) Small things make a big difference: binder effects on the performance of Li and Na batteries. Phys Chem Chem Phys 16(38):20347–20359

    Article  Google Scholar 

  31. Besenhard JO, Yang J, Winter M (1997) Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J Power Sources 68(1):87–90

    Article  Google Scholar 

  32. Novák P, Müller K, Santhanam KSV et al (1997) Electrochemically active polymers for rechargeable batteries. Chem Rev 97(1):207–282

    Article  Google Scholar 

  33. Chan CK, Peng H, Liu G et al (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3(1):31–35

    Article  Google Scholar 

  34. McDowell MT, Lee SW, Wang C et al (2012) The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation. Nano Energy 1(3):401–410

    Article  Google Scholar 

  35. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195(9):2419–2430

    Article  Google Scholar 

  36. Pasquier DA, Plitz I, Menocal S et al (2003) A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications. J Power Sources 115(1):171–178

    Article  Google Scholar 

  37. Dubarry M, Liaw BY (2009) Identify capacity fading mechanism in a commercial LiFePO4 cell. J Power Sources 194(1):541–549

    Article  Google Scholar 

  38. Bittihn R, Ely G, Woeffler F et al (1987) Polypyrrole as an electrode material for secondary lithium cells. Makromol Chem Macromol Symp 8(1):51–59

    Article  Google Scholar 

  39. Chen J, Wang J, Wang C et al (2006) Lithium-polymer battery based on polybithiophene as cathode material. J Power Sources 159(1):708–711

    Article  Google Scholar 

  40. Kaneto K, Yoshino K, Inuishi Y (1983) Characteristics of polythiophene battery. Jpn J Appl Phys 22(9A):L567

    Article  Google Scholar 

  41. Arbizzani C, Mastragostino M, Rossi M (2002) Preparation and electrochemical characterization of a polymer Li1.03Mn1.97O4/PEDOT composite electrode. Electrochem Commun 4(7):545–549

    Article  Google Scholar 

  42. Carlberg JC, Inganäs O (1997) Poly(3,4-ethylenedioxythiophene) as electrode material in electrochemical capacitors. J Electrochem Soc 144(4):L61–L64

    Article  Google Scholar 

  43. Shown I, Ganguly A, Chen LC et al (2015) Conducting polymer-based flexible supercapacitor. Energy Sci Eng 3(1):2–26

    Article  Google Scholar 

  44. Bredas JL, Street GB (1985) Polarons, bipolarons, and solitons in conducting polymers. Acc Chem Res 18(10):309–315

    Article  Google Scholar 

  45. Vilela SO, Soto-Oviedo MA, Albers APF et al (2007) Polyaniline and mineral clay-based conductive composites. Mater Res 10(3):297–300

    Article  Google Scholar 

  46. Naarmann H (2000) Polymers‚ electrically conducting. Ullmann’s Encyclopedia of Industrial Chemistry apos, vol 29. p 295

    Google Scholar 

  47. Nalwa HS (2000) Hand book of nanostructured materials nanotechnology, vol 5. Academic Press, New York, p 501

    Book  Google Scholar 

  48. Shirakawa H, Louis EJ, MacDiarmid AG et al (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc Chem Commun 16:578–580

    Article  Google Scholar 

  49. Bowley HJ, Gerrard DL, Maddams WF (1985) Resonance Raman spectroscopic studies on dehydrochlorinated stretched poly(vinyl chloride). Makromol Chem 188(4):899–906

    Article  Google Scholar 

  50. Shirakawa H (2001) The discovery of polyacetylene film: the dawning of an era of conducting polymers (Nobel lecture). Angew Chem Int Ed 40(14):2574–2580

    Article  Google Scholar 

  51. Ito T, Shirakawa H, Ikeda S (1974) Simultaneous polymerization and formation of polyacetylene film on the surface of concentrated soluble Ziegler-type catalyst solution. J Polym Sci Polm Chem 12(1):11–20

    Article  Google Scholar 

  52. Dai LM (1999) Conjugated and fullerene-containing polymers for electronic and photonic applications: advanced syntheses and microlithographic fabrications. J Macromol Sci Rev Macromol Chem Phys 39:273–387

    Article  Google Scholar 

  53. Baker GL (1988) In: Bowden MJ‚ Turner SR (eds) Electronic and photonic applications of polymers‚ vol 218. America Chemical Society‚ Washington‚ DC, pp 271–296

    Google Scholar 

  54. Armes SP (1996) Conducting polymer colloids. Curr Opin Colloid Interface Sci 1(2):214–220

    Article  Google Scholar 

  55. de Meijere A (ed) (1999) Carbon rich compounds II, Macrocyclic Oligoacetylenes and other linearly conjugated systems. Springer, Berlin

    Google Scholar 

  56. Yoshino K, Hirohata M, Hidayat R et al (1997) Optical properties and electroluminescence characteristics of polyacetylene derivatives dependent on substituent and layer structure. Synth Met 91(1):283–287

    Article  Google Scholar 

  57. Tamao K, Kodama S, Nakajima I et al (1982) Nickel-phosphine complex-catalyzed Grignard coupling-II: grignard coupling of heterocyclic compounds. Tetrahedron 38(22):3347–3354

    Article  Google Scholar 

  58. Tour JM (1994) Soluble oligo-and polyphenylenes. Adv Mater 6(3):190–198

    Article  Google Scholar 

  59. Bredas JL, Silbey R (1991) Conjugated polymers. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  60. Meier H, Lehmann M, Kolb U (2000) Stilbenoid dendrimers. Chem Eur J 6(13):2462–2469

    Article  Google Scholar 

  61. Skotheim TA, Elsenbaumer RL, Reynolds JR (1998) Handbook of conducting polymers. Marcel Dekker, New York

    Google Scholar 

  62. Heinze J, Frontana-Uribe BA, Ludwigs S (2010) Electrochemistry of conducting polymers persistent models and new concepts. Chem Rev 110(8):4724–4771

    Article  Google Scholar 

  63. Long YZ, Li MM, Gu C et al (2011) Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog Polym Sci 36(10):1415–1442

    Article  Google Scholar 

  64. Huang J, Virji S, Weiller BH et al (2003) Polyaniline nanofibers: facile synthesis and chemical sensors. J Am Chem Soc 125(2):314–315

    Article  Google Scholar 

  65. Huang J, Kaner RB (2004) A general chemical route to polyaniline nanofibers. J Am Chem Soc 126(3):851–855

    Article  Google Scholar 

  66. Chiou NR, Epstein AJ (2005) Polyaniline nanofibers prepared by dilute polymerization. Adv Mater 17(13):1679–1683

    Article  Google Scholar 

  67. Wan M (2008) A template-free method towards conducting polymer nanostructures. Adv Mater 20(15):2926–2932

    Article  Google Scholar 

  68. Wan M, Huang J, Shen Y (1999) Microtubes of conducting polymers. Synth Met 101(1):708–711

    Article  Google Scholar 

  69. Huang J, Kaner RB (2004) Nanofiber formation in the chemical polymerization of aniline: a mechanistic study. Angew Chem Int Ed 43(43):5817–5821

    Article  Google Scholar 

  70. Jang J, Yoon H (2003) Facile fabrication of polypyrrole nanotubes using reverse microemulsion polymerization. Chem Commun 6:720–721

    Article  Google Scholar 

  71. Liu H, Hu XB, Wang JY et al (2002) Structure, conductivity, and thermopower of crystalline polyaniline synthesized by the ultrasonic irradiation polymerization method. Macromolecules 35(25):9414–9419

    Article  Google Scholar 

  72. Pillalamarri SK, Blum FD, Tokuhiro AT et al (2005) Radiolytic synthesis of polyaniline nanofibers: a new templateless pathway. Chem Mater 17(2):227–229

    Article  Google Scholar 

  73. Huang ZM, Zhang YZ, Kotaki M et al (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253

    Article  Google Scholar 

  74. Norris ID, Shaker MM, Ko FK et al (2000) Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends. Synth Met 114(2):109–114

    Article  Google Scholar 

  75. Huang C, Dong B, Lu N et al (2009) A strategy for patterning conducting polymers using nanoimprint lithography and isotropic plasma etching. Small 5(5):583–586

    Article  Google Scholar 

  76. Thapa PS, Yu DJ, Wicksted JP et al (2009) Directional growth of polypyrrole and polythiophene wires. Appl Phys Lett 94(3):33104

    Article  Google Scholar 

  77. Samitsu S, Shimomura T, Ito K et al (2005) Conductivity measurements of individual poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) nanowires on nanoelectrodes using manipulation with an atomic force microscope. Appl Phys Lett 86(23):233103

    Article  Google Scholar 

  78. Samitsu S, Takanishi Y, Yamamoto J (2009) Self-assembly and one-dimensional alignment of a conducting polymer nanofiber in a nematic liquid crystal. Macromolecules 42(13):4366–4368

    Article  Google Scholar 

  79. Rissler J (2004) Effective conjugation length of π-conjugated systems. Chem Phys Lett 395(1):92–96

    Article  Google Scholar 

  80. Heeger AJ (2001) Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel lecture). Angew Chem Int Ed 40(14):2591–2611

    Article  Google Scholar 

  81. Michinobu T (2011) Adapting semiconducting polymer doping techniques to create new types of click postfunctionalization. Chem Soc Rev 40(5):2306–2316

    Article  Google Scholar 

  82. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828

    Article  Google Scholar 

  83. Basescu N, Liu ZX, Moses D et al (1987) High electrical conductivity in doped polyacetylene. Nature 327(6121):403–405

    Article  Google Scholar 

  84. Brédas JL, Beljonne D, Coropceanu V et al (2004) Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture. Chem Rev 104(11):4971–5004

    Article  Google Scholar 

  85. Mueller M, Fabretto M, Evans D et al (2012) Vacuum vapour phase polymerization of high conductivity PEDOT: role of PEG-PPG-PEG, the origin of water, and choice of oxidant. Polymer 53(11):2146–2151

    Article  Google Scholar 

  86. Bruckenstein S, Brzezinska K, Hillman AR (2000) EQCM studies of polypyrrole films. 1. Exposure to aqueous sodium tosylate solutions under thermodynamically permselective conditions. Electrochim Acta 45(22):3801–3811

    Article  Google Scholar 

  87. Cho SI, Lee SB (2008) Fast electrochemistry of conductive polymer nanotubes: synthesis, mechanism, and application. Acc Chem Res 41(6):699–707

    Article  Google Scholar 

  88. Levi MD, Aurbach D (2008) A short review on the strategy towards development of π-conjugated polymers with highly reversible p- and n-doping. J Power Sources 180(2):902–908

    Article  Google Scholar 

  89. Jeon JW, O’Neal J, Shao L et al (2013) Charge storage in polymer acid-doped polyaniline-based layer-by-layer electrodes. ACS Appl Mater Interfaces 5(20):10127–10136

    Article  Google Scholar 

  90. Lee SW, Gallant BM, Byon HR et al (2011) Nanostructured carbon-based electrodes: bridging the gap between thin-film lithium-ion batteries and electrochemical capacitors. Energy Environ Sci 4(6):1972–1985

    Article  Google Scholar 

  91. Kovacic P, Jones MB (1987) Dehydro coupling of aromatic nuclei by catalyst-oxidant systems: poly(p-phenylene). Chem Rev 87(2):357–379

    Article  Google Scholar 

  92. Shi G, Xue G, Li C et al (1994) Uniaxial oriented poly(p-phenylene) fibrils and films. Macromolecules 27(13):3678–3679

    Article  Google Scholar 

  93. Roth S, Bleier H (1987) Solitons in polyacetylene. Adv Phys 36(4):385–462

    Article  Google Scholar 

  94. Lam JWY, Tang BZ (2005) Functional polyacetylenes. Acc Chem Res 38(9):745–754

    Article  Google Scholar 

  95. Asato AE, Liu RSH, Rao VP et al (1996) Azulene-containing donor-acceptor compounds as second-order nonlinear chromophores. Tetrahedron Lett 37(4):419–422

    Article  Google Scholar 

  96. Taoudi H, Bernede JC, Del Valle MA et al (2001) Influence of the electrochemical conditions on the properties of polymerized carbazole. J Mater Sci 36(3):631–634

    Article  Google Scholar 

  97. Du Pasquier A, Laforgue A, Simon P et al (2002) A nonaqueous asymmetric hybrid Li4Ti5O12/Poly(fluorophenylthiophene) energy storage device. J Electrochem Soc 149(3):A302–A306

    Article  Google Scholar 

  98. Bhadra S, Khastgir D, Singha NK et al (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34(8):783–810

    Article  Google Scholar 

  99. Cheung JH, Stockton WB, Rubner MF (1997) Molecular-level processing of conjugated polymers. 3. Layer-by-layer manipulation of polyaniline via electrostatic interactions. Macromolecules 30(9):2712–2716

    Article  Google Scholar 

  100. Li D, Huang J, Kaner RB (2008) Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc Chem Res 42(1):135–145

    Article  Google Scholar 

  101. Dumitrescu I, Unwin PR, Macpherson JV (2009) Electrochemistry at carbon nanotubes: perspective and issues. Chem Commun 45:6886–6901

    Article  Google Scholar 

  102. Wei L, Yushin G (2012) Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy 1(4):552–565

    Article  Google Scholar 

  103. Tran HD, Li D, Kaner RB (2009) One-dimensional conducting polymer nanostructures: bulk synthesis and applications. Adv Mater 21(14–15):1487–1499

    Article  Google Scholar 

  104. Park KS, Schougaard SB, Goodenough JB (2007) Conducting-polymer/iron-redox-couple composite cathodes for lithium secondary batteries. Adv Mater 19(6):848–851

    Article  Google Scholar 

  105. Su C, Ye Y, Xu L et al (2012) Synthesis and charge-discharge properties of a ferrocene-containing polytriphenylamine derivative as the cathode of a lithium ion battery. J Mater Chem 22(42):22658–22662

    Article  Google Scholar 

  106. Aydın M, Esat B, Kılıç Ç et al (2011) A polythiophene derivative bearing TEMPO as a cathode material for rechargeable batteries. Eur Polym J 47(12):2283–2294

    Article  Google Scholar 

  107. Zhou M, Qian J, Ai X et al (2011) Redox-active Fe (CN) 4−6 -doped conducting polymers with greatly enhanced capacity as cathode materials for Li-ion batteries. Adv Mater 23(42):4913–4917

    Article  Google Scholar 

  108. McCullough RD, Williams SP (1993) Toward tuning electrical and optical properties in conjugated polymers using side-chains: highly conductive head-to-tail, heteroatom functionalized polythiophenes. J Am Chem Soc 115(24):11608–11609

    Article  Google Scholar 

  109. Wang CY, Ballantyne AM, Hall SB et al (2006) Functionalized polythiophene-coated textile: a new anode material for a flexible battery. J Power Sources 156(2):610–614

    Article  Google Scholar 

  110. Liao Y, Strong V, Chian W et al (2012) Sulfonated polyaniline nanostructures synthesized via rapid initiated copolymerization with controllable morphology, size, and electrical properties. Macromolecules 45(3):1570–1579

    Article  Google Scholar 

  111. Ghenaatian HR, Mousavi MF, Kazemi SH et al (2009) Electrochemical investigations of self-doped polyaniline nanofibers as a new electroactive material for high performance redox supercapacitor. Synth Met 159(17):1717–1722

    Article  Google Scholar 

  112. Ghenaatian HR, Mousavi MF, Rahmanifar MS (2012) High performance hybrid supercapacitor based on two nanostructured conducting polymers: self-doped polyaniline and polypyrrole nanofibers. Electrochim Acta 78:212–222

    Article  Google Scholar 

  113. Bian LJ, Luan F, Liu SS et al (2012) Self-doped polyaniline on functionalized carbon cloth as electroactive materials for supercapacitor. Electrochim Acta 64:17–22

    Article  Google Scholar 

  114. Patel SN, Javier AE, Beers KM et al (2012) Morphology and thermodynamic properties of a copolymer with an electronically conducting block: poly(3-ethylhexylthiophene)-block-poly(ethylene oxide). Nano Lett 12(9):4901–4906

    Article  Google Scholar 

  115. Patel SN, Javier AE, Stone GM et al (2012) Simultaneous conduction of electronic charge and lithium ions in block copolymers. ACS Nano 6(2):1589–1600

    Article  Google Scholar 

  116. He D, Zeng C, Xu C et al (2011) Polyaniline-functionalized carbon nanotube supported platinum catalysts. Langmuir 27(9):5582–5588

    Article  Google Scholar 

  117. Cindrella L, Kannan AM (2009) Membrane electrode assembly with doped polyaniline interlayer for proton exchange membrane fuel cells under low relative humidity conditions. J Power Sources 193(2):447–453

    Article  Google Scholar 

  118. Michel M, Ettingshausen F, Scheiba F et al (2008) Using layer-by-layer assembly of polyaniline fibers in the fast preparation of high performance fuel cell nanostructured membrane electrodes. Phys Chem Chem Phys 10(25):3796–3801

    Article  Google Scholar 

  119. Zhiani M, Rezaei B, Jalili J (2010) Methanol electro-oxidation on Pt/C modified by polyaniline nanofibers for DMFC applications. Int J Hydrog Energy 35(17):9298–9305

    Article  Google Scholar 

  120. Wolz A, Zils S, Michel M et al (2010) Structured multilayered electrodes of proton/electron conducting polymer for polymer electrolyte membrane fuel cells assembled by spray coating. J Power Sources 195(24):8162–8167

    Article  Google Scholar 

  121. Mentus S, Ćirić-Marjanović G, Trchová M et al (2009) Conducting carbonized polyaniline nanotubes. Nanotechnology 20(24):245601

    Article  Google Scholar 

  122. Gavrilov N, Dašić-Tomić M, Pašti I et al (2011) Carbonized polyaniline nanotubes/nanosheets-supported Pt nanoparticles: synthesis, characterization and electrocatalysis. Mater Lett 65(6):962–965

    Article  Google Scholar 

  123. Li ZF, Zhang H, Liu Q et al (2014) Novel pyrolyzed polyaniline-grafted silicon nanoparticles encapsulated in graphene sheets as Li-ion battery anodes. ACS Appl Mater Interfaces 6(8):5996–6002

    Article  Google Scholar 

  124. Liu Z, Poyraz S, Liu Y et al (2012) Seeding approach to noble metal decorated conducting polymer nanofiber network. Nanoscale 4(1):106–109

    Article  Google Scholar 

  125. Pringle JM, Lynam C, Wallace GG et al (2008) One-step synthesis of conducting polymer-noble metal nanoparticle composites using an ionic liquid. Adv Funct Mater 18(14):2031–2040

    Article  Google Scholar 

  126. Feng X, Huang H, Ye Q et al (2007) Ag/polypyrrole core–shell nanostructures: interface polymerization, characterization, and modification by gold nanoparticles. J Phys Chem C 111(24):8463–8468

    Article  Google Scholar 

  127. Muñoz-Rojas D, Oró-Solé J, Ayyad O et al (2011) Shaping hybrid nanostructures with polymer matrices: the formation mechanism of silver–polypyrrole core/shell nanostructures. J Mater Chem 21(7):2078–2086

    Article  Google Scholar 

  128. Liu Z, Liu Y, Zhang L et al (2012) Controlled synthesis of transition metal/conducting polymer nanocomposites. Nanotechnology 23(33):335603

    Article  Google Scholar 

  129. Qi Z (1998) Novel supported catalysts: platinum and platinum oxide nanoparticles dispersed on polypyrrole/polystyrenesulfonate particles. Chem Commun 1:15–16

    Article  Google Scholar 

  130. Qi Z, Pickup PG (1998) High performance conducting polymer supported oxygen reduction catalysts. Chem Commun 21:2299–2300

    Article  Google Scholar 

  131. Qi Z, Lefebvre MC, Pickup PG (1998) Electron and proton transport in gas diffusion electrodes containing electronically conductive proton-exchange polymers. J Electroanal Chem 459(1):9–14

    Article  Google Scholar 

  132. Naveen MH, Gurudatt NG, Noh HB et al (2016) Dealloyed auni dendrite anchored on a functionalized conducting polymer for improved catalytic oxygen reduction and hydrogen peroxide sensing in living cells. Adv Funct Mater 26(10):1590–1601

    Article  Google Scholar 

  133. Ban CM‚ Li Z‚ Wu ZC‚ Kirkham MJ‚ Chen L‚ Jung YS‚ Payzant EA‚ Yan YF‚ Whittingham MS‚ Dillon AC (2011) Adv Energy Mater 1:58–62

    Google Scholar 

  134. Lee JS, Tai Kim S, Cao R et al (2011) Metal-air batteries with high energy density: Li-air versus Zn-air. Adv Energy Mater 1(1):34–50

    Article  Google Scholar 

  135. Mike JF, Lutkenhaus JL (2013) Recent advances in conjugated polymer energy storage. J Polym Sci Pol Phys 51(7):468–480

    Article  Google Scholar 

  136. Song MK, Park S, Alamgir FM et al (2011) Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Mater Sci Eng 72(11):203–252

    Article  Google Scholar 

  137. Leroux F, Goward G, Power WP et al (1997) Electrochemical Li insertion into conductive polymer/V2O5 nanocomposites. J Electrochem Soc 144(11):3886–3895

    Article  Google Scholar 

  138. Huguenin F, Torresi RM, Buttry DA (2002) Lithium electroinsertion into an inorganic-organic hybrid material composed from V2O5 and polyaniline. J Electrochem Soc 149(5):A546–A553

    Article  Google Scholar 

  139. Wu H, Yu G, Pan L et al (2013) Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun 4:1943

    Google Scholar 

  140. Chou SL, Gao XW, Wang JZ et al (2011) Tin/polypyrrole composite anode using sodium carboxymethyl cellulose binder for lithium-ion batteries. Dalton Trans 40(48):12801–12807

    Article  Google Scholar 

  141. Sivakkumar SR, MacFarlane DR, Forsyth M et al (2007) Ionic liquid-based rechargeable lithium metal-polymer cells assembled with polyaniline/carbon nanotube composite cathode. J Electrochem Soc 154(9):A834–A838

    Article  Google Scholar 

  142. Zhang D, Yin Y, Liu C et al (2015) Modified secondary lithium metal batteries with the polyaniline-carbon nanotube composite buffer layer. Chem Commun 51(2):322–325

    Article  Google Scholar 

  143. Gómez-Romero P, Chojak M, Cuentas-Gallegos K et al (2003) Hybrid organic-inorganic nanocomposite materials for application in solid state electrochemical supercapacitors. Electrochem Commun 5(2):149–153

    Article  Google Scholar 

  144. Sen P, De A, Chowdhury AD et al (2013) Conducting polymer based manganese dioxide nanocomposite as supercapacitor. Electrochim Acta 108:265–273

    Article  Google Scholar 

  145. Liu R, Lee SB (2008) MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. J Am Chem Soc 130(10):2942–2943

    Article  Google Scholar 

  146. Zhou C, Zhang Y, Li Y et al (2013) Construction of high-capacitance 3D CoO@ polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett 13(5):2078–2085

    Article  Google Scholar 

  147. Meng F, Ding Y (2011) Sub-micrometer-thick all-solid-state supercapacitors with high power and energy densities. Adv Mater 23(35):4098–4102

    Article  Google Scholar 

  148. Meng C, Liu C, Chen L et al (2010) Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett 10(10):4025–4031

    Article  Google Scholar 

  149. Tsakova V, Winkels S, Schultze JW (2001) Crystallization kinetics of Pd in composite films of PEDT. J Electroanal Chem 500(1):574–583

    Article  Google Scholar 

  150. Hepel M (1998) The electrocatalytic oxidation of methanol at finely dispersed platinum nanoparticles in polypyrrole films. J Electrochem Soc 145(1):124–134

    Article  Google Scholar 

  151. Grzeszczuk M, Poks P (2000) The HER performance of colloidal Pt nanoparticles incorporated in polyaniline. Electrochim Acta 45(25):4171–4177

    Article  Google Scholar 

  152. Choi JH, Park KW, Lee HK et al (2003) Nano-composite of PtRu alloy electrocatalyst and electronically conducting polymer for use as the anode in a direct methanol fuel cell. Electrochim Acta 48(19):2781–2789

    Article  Google Scholar 

  153. Liu YC (2002) New pathway for the autopolymerization of pyrrole on the chlorine-and gold-containing complexes with nanostructures. Langmuir 18(24):9513–9518

    Article  Google Scholar 

  154. Gautier JL, Restovic A, Poillerat G et al (1997) Physicochemical versus electrochemical properties of thin CuxMn3xO4 spinel films. Eur J Solid State Inorg Chem 34(4):367–379

    Google Scholar 

  155. Cong HN, Guadarrama VG, Gautier JL et al (2002) NixCo3xO4 mixed valence oxide nanoparticles/polypyrrole composite electrodes for oxygen reduction. J New Mat Electrochem Systems 5(1):35–40

    Google Scholar 

  156. Gao H, He JB, Wang Y et al (2012) Advantageous combination of solid carbon paste and a conducting polymer film as a support of platinum electrocatalyst for methanol fuel cell. J Power Sources 205:164–172

    Article  Google Scholar 

  157. Xiao W, Chen JS, Lu Q et al (2010) Porous spheres assembled from polythiophene (PTh)-coated ultrathin MnO2 nanosheets with enhanced lithium storage capabilities. J Phys Chem C 114(27):12048–12051

    Article  Google Scholar 

  158. Yang L, Wang S, Mao J et al (2013) Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv Mater 25(8):1180–1184

    Article  Google Scholar 

  159. Wang Y, Wang Y, Hosono E et al (2008) The design of a LiFePO4/carbon nanocomposite with a core–shell structure and its synthesis by an in situ polymerization restriction method. Angew Chem Int Ed 47(39):7461–7465

    Article  Google Scholar 

  160. Ding Z, Yao B, Feng J et al (2013) Enhanced rate performance and cycling stability of a CoCO3-polypyrrole composite for lithium ion battery anodes. J Mater Chem A 1(37):11200–11209

    Article  Google Scholar 

  161. Yue L, Wang S, Zhao X et al (2012) Nano-silicon composites using poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) as elastic polymer matrix and carbon source for lithium-ion battery anode. J Mater Chem 22(3):1094–1099

    Article  Google Scholar 

  162. Wang H, Zeng Y, Huang K et al (2007) Improvement of cycle performance of lithium ion cell LiMn2O4/LixV2O5 with aqueous solution electrolyte by polypyrrole coating on anode. Electrochim Acta 52(15):5102–5107

    Article  Google Scholar 

  163. Wang YG, Wu W, Cheng L et al (2008) A polyaniline-intercalated layered manganese oxide nanocomposite prepared by an inorganic/organic interface reaction and its high electrochemical performance for Li storage. Adv Mater 20(11):2166–2170

    Article  Google Scholar 

  164. Mai L, Xu X, Han C et al (2011) Rational synthesis of silver vanadium oxides/polyaniline triaxial nanowires with enhanced electrochemical property. Nano Lett 11(11):4992–4996

    Article  Google Scholar 

  165. Boyano I, Bengoechea M, de Meatza I et al (2007) Improvement in the Ppy/V2O5 hybrid as a cathode material for Li ion batteries using PSA as an organic additive. J Power Sources 166(2):471–477

    Article  Google Scholar 

  166. Xia X, Hao Q, Lei W et al (2012) Nanostructured ternary composites of graphene/Fe2O3/polyaniline for high-performance supercapacitors. J Mater Chem 22(33):16844–16850

    Article  Google Scholar 

  167. Sharma RK, Karakoti A, Seal S et al (2010) Multiwall carbon nanotube-poly(4-styrenesulfonic acid) supported polypyrrole/manganese oxide nano-composites for high performance electrochemical electrodes. J Power Sources 195(4):1256–1262

    Article  Google Scholar 

  168. Sharma RK, Zhai L (2009) Multiwall carbon nanotube supported poly(3,4-ethylenedioxythiophene)/manganese oxide nano-composite electrode for super-capacitors. Electrochim Acta 54(27):7148–7155

    Article  Google Scholar 

  169. Li Q, Liu J, Zou J et al (2011) Synthesis and electrochemical performance of multi-walled carbon nanotube/polyaniline/MnO2 ternary coaxial nanostructures for supercapacitors. J Power Sources 196(1):565–572

    Article  Google Scholar 

  170. Zang J, Li X (2011) In situ synthesis of ultrafine β-MnO2/polypyrrole nanorod composites for high-performance supercapacitors. J Mater Chem 21(29):10965–10969

    Article  Google Scholar 

  171. Fan H, Wang H, Zhao N et al (2012) Hierarchical nanocomposite of polyaniline nanorods grown on the surface of carbon nanotubes for high-performance supercapacitor electrode. J Mater Chem 22(6):2774–2780

    Article  Google Scholar 

  172. Wang JG, Yang Y, Huang ZH et al (2012) Interfacial synthesis of mesoporous MnO2/polyaniline hollow spheres and their application in electrochemical capacitors. J Power Sources 204:236–243

    Article  Google Scholar 

  173. Saranya S, Selvan RK, Priyadharsini N (2012) Synthesis and characterization of polyaniline/MnWO4 nanocomposites as electrodes for pseudocapacitors. Appl Surf Sci 258(11):4881–4887

    Article  Google Scholar 

  174. Denis MC, Lalande G, Guay D et al (1999) High energy ball-milled Pt and Pt–Ru catalysts for polymer electrolyte fuel cells and their tolerance to CO. J Appl Electrochem 29(8):951–960

    Article  Google Scholar 

  175. Wang S, Sun LX, Xu F et al (2012) Hydrolysis reaction of ball-milled Mg-metal chlorides composite for hydrogen generation for fuel cells. Int J Hydrog Energy 37(8):6771–6775

    Article  Google Scholar 

  176. Guo ZP, Wang JZ, Liu HK et al (2005) Study of silicon/polypyrrole composite as anode materials for Li-ion batteries. J Power Sources 146(1):448–451

    Article  Google Scholar 

  177. Zhou X, Tang J, Yang J et al (2012) Effect of polypyrrole on improving electrochemical performance of silicon based anode materials. Electrochim Acta 70:296–303

    Article  Google Scholar 

  178. Guo CX, Wang M, Chen T et al (2011) A hierarchically nanostructured composite of MnO2/conjugated polymer/graphene for high-performance lithium ion batteries. Adv Energy Mater 1(5):736–741

    Article  Google Scholar 

  179. Chen Y, Zeng S, Qian JF et al (2014) Li þ-conductive polymer-embedded nano-Si particles as anode. Material for advanced Li-ion batteries. Appl Mater Interfaces 6:3508–3512

    Article  Google Scholar 

  180. Reddy MV, Wei Wen BL, Loh KP et al (2013) Energy storage studies on InVO4 as high performance anode material for Li-ion batteries. ACS Appl Mater Interfaces 5(16):7777–7785

    Article  Google Scholar 

  181. Sonia TS, Mini PA, Nandhini R et al (2013) Composite supercapacitor electrodes made of activated carbon/PEDOT: PSS and activated carbon/doped PEDOT. Bull Mater Sci 36(4):547–551

    Article  Google Scholar 

  182. Prabhu M (2012) M.Sc. dissertation to University of Cincinnati, p 106

    Google Scholar 

  183. Yu M, Zeng Y, Zhang C et al (2013) Titanium dioxide@ polypyrrole core–shell nanowires for all solid-state flexible supercapacitors. Nanoscale 5(22):10806–10810

    Article  Google Scholar 

  184. Chen Z, Xu L, Li W et al (2006) Polyaniline nanofibre supported platinum nanoelectrocatalysts for direct methanol fuel cells. Nanotechnology 17(20):5254

    Article  Google Scholar 

  185. Wu G, Li L, Li JH et al (2005) Polyaniline-carbon composite films as supports of Pt and PtRu particles for methanol electrooxidation. Carbon 43(12):2579–2587

    Article  Google Scholar 

  186. Chen S, Wei Z, Qi XQ et al (2012) Nanostructured polyaniline-decorated Pt/C@ PANI core–shell catalyst with enhanced durability and activity. J Am Chem Soc 134(32):13252–13255

    Article  Google Scholar 

  187. Kuwabata S, Masui S, Yoneyama H (1999) Charge-discharge properties of composites of LiMn2O4 and polypyrrole as positive electrode materials for 4 V class of rechargeable Li batteries. Electrochim Acta 44(25):4593–4600

    Article  Google Scholar 

  188. Kim JK, Manuel J, Lee MH et al (2012) Towards flexible secondary lithium batteries: polypyrrole-LiFePO4 thin electrodes with polymer electrolytes. J Mater Chem 22(30):15045–15049

    Article  Google Scholar 

  189. Wang Y, Heng LIU, Ding ZHU et al (2011) Preparation and electrochemical performance of hollow-spherical polypyrrole/V2O5 composite. Trans Nonferrous Met Soc China 21(6):1303–1308

    Article  Google Scholar 

  190. Zhao H, Yuan A, Liu B et al (2012) High cyclic performance of V2O5@PPy composite as cathode of recharged lithium batteries. J Appl Electrochem 42(3):139–144

    Article  Google Scholar 

  191. Posudievsky OY, Kozarenko OA, Dyadyun VS et al (2011) Effect of host-guest versus core–shell structure on electrochemical characteristics of vanadium oxide/polypyrrole nanocomposites. Electrochim Acta 58:442–448

    Article  Google Scholar 

  192. Dinh HC, Mho S, Yeo IH (2011) Electrochemical analysis of conductive polymer-coated LiFePO4 nanocrystalline cathodes with controlled morphology. Electroanalysis 23(9):2079–2086

    Article  Google Scholar 

  193. Bairi VG, Warford BA, Bourdo SE et al (2012) Synthesis and characterization of tanninsulfonic acid doped polyaniline-metal oxide nanocomposites. J Appl Polym Sci 124(4):3320–3328

    Article  Google Scholar 

  194. Sen P, De A (2010) Electrochemical performances of poly(3,4-ethylenedioxythiophene)-NiFe2O4 nanocomposite as electrode for supercapacitor. Electrochim Acta 55(16):4677–4684

    Article  Google Scholar 

  195. Murugan AV, Viswanath AK, Gopinath CS et al (2006) Highly efficient organic-inorganic poly(3,4-ethylenedioxythiophene)-molybdenum trioxide nanocomposite electrodes for electrochemical supercapacitor. J Appl Phys 100(7):4319

    Article  Google Scholar 

  196. Dong ZH, Wei YL, Shi W et al (2011) Characterisation of doped polypyrrole/manganese oxide nanocomposite for supercapacitor electrodes. Mater Chem Phys 131(1):529–534

    Article  Google Scholar 

  197. Yang X, Wang G, Wang R et al (2010) A novel layered manganese oxide/poly(aniline-co-o-anisidine) nanocomposite and its application for electrochemical supercapacitor. Electrochim Acta 55(19):5414–5419

    Article  Google Scholar 

  198. Gemeay AH, Nishiyama H, Kuwabata S et al (1995) Chemical preparation of manganese dioxide/polypyrrole composites and their use as cathode active materials for rechargeable lithium batteries. J Electrochem Soc 142(12):4190–4195

    Article  Google Scholar 

  199. Boyano I, Bengoechea M, de Meatza I et al (2007) Influence of acids in the Ppy/V2O5 hybrid synthesis and performance as a cathode material. J Power Sources 174(2):1206–1211

    Article  Google Scholar 

  200. Xia X, Wang Z, Chen L (2008) Regeneration and characterization of air-oxidized LiFePO4. Electrochem Commun 10(10):1442–1444

    Article  Google Scholar 

  201. Lepage D, Michot C, Liang G et al (2011) A soft chemistry approach to coating of LiFePO4 with a conducting polymer. Angew Chem Int Ed 50(30):6884–6887

    Article  Google Scholar 

  202. Chen L, Sun LJ, Luan F et al (2010) Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles. J Power Sources 195(11):3742–3747

    Article  Google Scholar 

  203. Hu ZA, Xie YL, Wang YX et al (2009) Polyaniline/SnO2 nanocomposite for supercapacitor applications. Mater Chem Phy 114(2):990–995

    Article  Google Scholar 

  204. Wu RH, Tsai MJ, Ho KS et al (2014) Sulfonated polyaniline nanofiber as Pt-catalyst conducting support for proton exchange membrane fuel cell. Polymer 55(8):2035–2043

    Article  Google Scholar 

  205. Fu LJ, Liu H, Li C et al (2005) Electrode materials for lithium secondary batteries prepared by sol-gel methods. Prog Mater Sci 50(7):881–928

    Article  Google Scholar 

  206. Ren X, Shi C, Zhang P et al (2012) An investigation of V2O5/polypyrrole composite cathode materials for lithium-ion batteries synthesized by sol-gel. Mater Sci Eng B 177(12):929–934

    Article  Google Scholar 

  207. Huguenin F, Girotto EM, Torresi RM et al (2002) Transport properties of V2O5/polypyrrole nanocomposite prepared by a sol-gel alkoxide route. J Electroanal Chem 536(1):37–45

    Article  Google Scholar 

  208. Huguenin F, Ticianelli EA, Torresi RM (2002) XANES study of polyaniline-V2O5 and sulfonated polyaniline-V2O5 nanocomposites. Electrochim Acta 47(19):3179–3186

    Article  Google Scholar 

  209. Lira-Cantú M, Gómez-Romero P (1999) Synthesis and characterization of intercalate phases in the organic-inorganic polyaniline/V2O5 system. J Solid State Chem 147(2):601–608

    Article  Google Scholar 

  210. Lira-Cantú M, Gómez-Romero P (1999) The organic-inorganic polyaniline/V2O5 system. Application as a high-capacity hybrid cathode for rechargeable lithium batteries. J Electrochem Soc 146(6):2029–2033

    Article  Google Scholar 

  211. Kanatzidis MG, Wu CG, Marcy HO et al (1989) Conductive-polymer bronzes. Intercalated polyaniline in vanadium oxide xerogels. J Am Chem Soc 111(11):4139–4141

    Article  Google Scholar 

  212. Park KI, Song HM, Kim Y et al (2010) Electrochemical preparation and characterization of V2O5/polyaniline composite film cathodes for Li battery. Electrochim Acta 55(27):8023–8029

    Article  Google Scholar 

  213. He ZQ, Xiong LZ, Shang C et al (2010) In situ polymerization preparation and characterization of Li4Ti5O12-polyaniline anode material. Trans Nonferrous Met Soc China 20:s262–s266

    Article  Google Scholar 

  214. Huang YH, Park KS, Goodenough JB (2006) Improving lithium batteries by tethering carbon-coated LiFePO4 to polypyrrole. J Electrochem Soc 153(12):A2282–A2286

    Article  Google Scholar 

  215. Murugan AV (2005) Electrochemical properties of microwave irradiated synthesis of poly(3,4-ethylenedioxythiophene)/V2O5 nanocomposites as cathode materials for rechargeable lithium batteries. Electrochim Acta 50(24):4627–4636

    Article  Google Scholar 

  216. Gong Q, He YS, Yang Y et al (2012) Synthesis and electrochemical characterization of LiFePO4/C-polypyrrole composite prepared by a simple chemical vapor deposition method. J Solid State Electrochem 16(4):1383–1388

    Article  Google Scholar 

  217. Du Z, Zhang S, Liu Y et al (2012) Facile fabrication of reticular polypyrrole-silicon core–shell nanofibers for high performance lithium storage. J Mater Chem 22(23):11636–11641

    Article  Google Scholar 

  218. Bates JB, Dudney NJ, Lubben DC et al (1995) Thin-film rechargeable lithium batteries. J Power Sources 54(1):58–62

    Article  Google Scholar 

  219. Dudney NJ (2008) Thin film micro-batteries. J Electrochem Soc Interface 17(3):44

    Google Scholar 

  220. Song SW, Choi H, Park HY et al (2010) High rate-induced structural changes in thin-film lithium batteries on flexible substrate. J Power Sources 195(24):8275–8279

    Article  Google Scholar 

  221. Huang XH, Tu JP, Xia XH et al (2008) Nickel foam-supported porous NiO/polyaniline film as anode for lithium ion batteries. Electrochem Commun 10(9):1288–1290

    Article  Google Scholar 

  222. Huang XH, Tu JP, Xia XH et al (2010) Porous NiO/poly(3,4-ethylenedioxythiophene) films as anode materials for lithium ion batteries. J Power Sources 195(4):1207–1210

    Article  Google Scholar 

  223. Wang JZ, Chou SL, Chen J et al (2008) Paper-like free-standing polypyrrole and polypyrrole–LiFePO4 composite films for flexible and bendable rechargeable battery. Electrochem Commun 10(11):1781–1784

    Article  Google Scholar 

  224. Wang GX, Yang L, Chen Y et al (2005) An investigation of polypyrrole-LiFePO4 composite cathode materials for lithium-ion batteries. Electrochim Acta 50(24):4649–4654

    Article  Google Scholar 

  225. Yao Y, Liu N, McDowell MT et al (2012) Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings. Energy Environ Sci 5(7):7927–7930

    Article  Google Scholar 

  226. Sharma RK, Rastogi AC, Desu SB (2008) Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor. Electrochim Acta 53(26):7690–7695

    Article  Google Scholar 

  227. Kost KM, Bartak DE, Kazee B et al (1988) Electrodeposition of platinum microparticles into polyaniline films with electrocatalytic applications. Anal Chem 60(21):2379–2384

    Article  Google Scholar 

  228. Zhou HH, Jiao SQ, Chen JH et al (2004) Effects of conductive polyaniline (PANI) preparation and platinum electrodeposition on electroactivity of methanol oxidation. J Appl Electrochem 34(4):455–459

    Article  Google Scholar 

  229. Kim S, Park SJ (2008) Electroactivity of Pt-Ru/polyaniline composite catalyst-electrodes prepared by electrochemical deposition methods. Solid State Ionics 178(37):1915–1921

    Google Scholar 

  230. Gawron EL, Křížek T, Kowalik MA et al (2015) Preparation of a carbon-platinum-polyaniline support for atomic metal deposition. J Electrochem Soc 162(7):H423–H427

    Article  Google Scholar 

  231. Wang L, Chen C, Fu Y et al (2011) Electrodeposition of three-dimensional porous platinum film on removable polyaniline template for high-performance electroanalysis. Electroanalysis 23(7):1681–1690

    Article  Google Scholar 

  232. Holdcroft S, Funt BL (1988) Preparation and electrocatalytic properties of conducting films of polypyrrole containing platinum microparticulates. J Electroanal Chem Interfacial Electrochem 240(1):89–103

    Article  Google Scholar 

  233. Del Valle MA, Diaz FR, Bodini ME et al (1998) Polythiophene, polyaniline and polypyrrole electrodes modified by electrodeposition of Pt and Pt+ Pb for formic acid electrooxidation. J Appl Electrochem 28(9):943–946

    Article  Google Scholar 

  234. Tao J, Liu N, Ma W et al (2013) Solid-state high performance flexible supercapacitors based on polypyrrole–MnO2–carbon fiber hybrid structure. Sci Rep 3:2286

    Article  Google Scholar 

  235. Wang Y, Yang Y, Zhang X et al (2015) One-step electrodeposition of polyaniline/nickel hexacyanoferrate/sulfonated carbon nanotubes interconnected composite films for supercapacitor. J Solid State Electrochem 19(10):3157–3168

    Article  Google Scholar 

  236. Knowles KR, Hanson CC, Fogel AL et al (2012) Layer-by-layer assembled multilayers of polyethylenimine-stabilized platinum nanoparticles and PEDOT: PSS as anodes for the methanol oxidation reaction. ACS Appl Mater Interfaces 4(7):3575–3583

    Article  Google Scholar 

  237. Jiwei L, Jingxia Q, Miao Y et al (2008) Preparation and characterization of Pt–polypyrrole nanocomposite for electrochemical reduction of oxygen. J Mater Sci 43(18):6285–6288

    Article  Google Scholar 

  238. Peng Y, Liu C, Pan C et al (2013) PPyNT–Im–PtAu alloy nanoparticle hybrids with tunable electroactivity and enhanced durability for methanol electrooxidation and oxygen reduction reaction. ACS Appl Matter Interfaces 5(7):2752–2760

    Article  Google Scholar 

  239. Ruan D, Gao F, Gu Z (2014) Enhanced electrochemical properties of surface roughed Pt nanowire electrocatalyst for methanol oxidation. Electrochim Acta 147:225–231

    Article  Google Scholar 

  240. Zhao H, Yang J, Li L et al (2009) Effect of over-oxidation treatment of Pt–Co/polypyrrole–carbon nanotube catalysts on methanol oxidation. Int J Hydrog Energy 34(9):3908–3914

    Article  Google Scholar 

  241. Zhou W, Du Y, Ren F et al (2010) High efficient electrocatalytic oxidation of methanol on Pt/polyindoles composite catalysts. Int J Hydrog Energy 35(8):3270–3279

    Article  Google Scholar 

  242. Qian J, Wei W, Huang X et al (2012) A study of different polyphosphazene-coated carbon nanotubes as a Pt-Co catalyst support for methanol oxidation fuel cell. J Power Sources 210:345–349

    Article  Google Scholar 

  243. Gharibi H, Amani M, Pahlavanzadeh H et al (2013) Investigation of carbon monoxide tolerance of platinum nanoparticles in the presence of optimum ratio of doped polyaniline with para toluene sulfonic acid and their utilization in a real passive direct methanol fuel cell. Electrochim Acta 97:216–225

    Article  Google Scholar 

  244. Xie F, Meng H, Shen PK (2008) Diffusion study in a novel three-dimensional electrode for direct methanol fuel cells. Electrochim Acta 53(15):5039–5044

    Article  Google Scholar 

  245. Wang Z, Gao G, Zhu H et al (2009) Electrodeposition of platinum microparticle interface on conducting polymer film modified nichrome for electrocatalytic oxidation of methanol. Int J Hydrogen Energy 34(23):9334–9340

    Article  Google Scholar 

  246. Habibi B, Pournaghi-Azar MH (2010) Methanol oxidation on the polymer coated and polymer-stabilized Pt nano-particles: a comparative study of permeability and catalyst particle distribution ability of the PANI and its derivatives. Int J Hydrog Energy 35(17):9318–9328

    Article  Google Scholar 

  247. Ghosh S, Teillout AL, Floresyona D et al (2015) Conducting polymer-supported palladium nanoplates for applications in direct alcohol oxidation. Int J Hydrog Energy 40(14):4951–4959

    Article  Google Scholar 

  248. Jiang F, Ren F, Zhou W et al (2012) Free-standing poly[poly(N-vinyl carbazole)]-supported Pt-based catalysts with enhanced performance for methanol electro-oxidation in alkaline medium. Fuel 102:560–566

    Article  Google Scholar 

  249. Wang Y, Wang Y, Tang J et al (2014) Aqueous Li-ion cells with superior cycling performance using multi-channeled polyaniline/Fe2O3 nanotube anodes. J Mater Chem A 2(47):20177–20181

    Article  Google Scholar 

  250. Kundu D, Krumeich F, Nesper R (2013) Investigation of nano-fibrous selenium and its polypyrrole and graphene composite as cathode material for rechargeable Li-batteries. J Power Sources 236:112–117

    Article  Google Scholar 

  251. Shao L, Jeon JW, Lutkenhaus JL (2012) Polyaniline/vanadium pentoxide layer-by-layer electrodes for energy storage. Chem Mater 24(1):181–189

    Article  Google Scholar 

  252. Chen WM, Huang YH, Yuan LX (2011) Self-assembly LiFePO4/polyaniline composite cathode materials with inorganic acids as dopants for lithium-ion batteries. J Electroanal Chem 660(1):108–113

    Article  Google Scholar 

  253. Idris NH, Wang J, Chou S et al (2011) Effects of polypyrrole on the performance of nickel oxide anode materials for rechargeable lithium-ion batteries. J Mater Res 26(07):860–866

    Article  Google Scholar 

  254. Wang GJ, Yang LC, Qu QT et al (2010) An aqueous rechargeable lithium battery based on doping and intercalation mechanisms. J Solid State Electrochem 14(5):865–869

    Article  Google Scholar 

  255. Tang W, Liu L, Zhu Y et al (2012) An aqueous rechargeable lithium battery of excellent rate capability based on a nanocomposite of MoO3 coated with PPy and LiMn2O4. Energy Environ Sci 5(5):6909–6913

    Article  Google Scholar 

  256. Tang W, Gao X, Zhu Y et al (2012) A hybrid of V2O5 nanowires and MWCNTs coated with polypyrrole as an anode material for aqueous rechargeable lithium batteries with excellent cycling performance. J Mater Chem 22(38):20143–20145

    Article  Google Scholar 

  257. Liu LL, Wang XJ, Zhu YS et al (2013) Polypyrrole–coated LiV3O8-nanocomposites with good electrochemical performance as anode material for aqueous rechargeable lithium batteries. J Power Sources 224:290–294

    Article  Google Scholar 

  258. Tian F, Liu L, Yang Z et al (2011) Electrochemical characterization of a LiV3O8-polypyrrole composite as a cathode material for lithium ion batteries. Mater Chem Phys 127(1):151–155

    Article  Google Scholar 

  259. Javier AE, Patel SN, Hallinan DT et al (2011) Simultaneous electronic and ionic conduction in a block copolymer: application in lithium battery electrodes. Angew Chem Int Ed 50(42):9848–9851

    Article  Google Scholar 

  260. Zhang Z, Wang JZ, Chou SL et al (2013) Polypyrrole–coated α-LiFeO2 nanocomposite with enhanced electrochemical properties for lithium-ion batteries. Electrochim Acta 108:820–826

    Article  Google Scholar 

  261. Chen Y, Zeng S, Qian JF et al (2014) Li þ-conductive polymer-embedded nano-Si particles as anode. Material for advanced Li-ion batteries. ACS Appl Mater Interfaces 6:3508–3512

    Article  Google Scholar 

  262. Han F, Li D, Li WC et al (2013) Nanoengineered polypyrrole–coated Fe2O3@C multifunctional composites with an improved cycle stability as lithium-ion anodes. Adv Funct Mater 23(13):1692–1700

    Article  Google Scholar 

  263. Cui L, Shen J, Cheng F et al (2011) SnO2 nanoparticles@polypyrrole nanowires composite as anode materials for rechargeable lithium-ion batteries. J Power Sources 196(4):2195–2201

    Article  Google Scholar 

  264. Yuan L, Wang J, Chew SY et al (2007) Synthesis and characterization of SnO2-polypyrrole composite for lithium-ion battery. J Power Sources 174(2):1183–1187

    Article  Google Scholar 

  265. Chew SY, Guo ZP, Wang JZ et al (2007) Novel nano-silicon/polypyrrole composites for lithium storage. Electrochem Commun 9(5):941–946

    Article  Google Scholar 

  266. He Z, Xiong L, Liu W et al (2008) Synthesis and electrochemical properties of SnO2-polyaniline composite. J Cent South Univ Technol 15:214–217

    Article  Google Scholar 

  267. Shao QG, Chen WM, Wang ZH et al (2011) SnO2-based composite coaxial nanocables with multi-walled carbon nanotube and polypyrrole as anode materials for lithium-ion batteries. Electrochem Commun 13(12):1431–1434

    Article  Google Scholar 

  268. Liang R, Cao H, Qian D et al (2011) Designed synthesis of SnO2-polyaniline-reduced graphene oxide nanocomposites as an anode material for lithium-ion batteries. J Mater Chem 21(44):17654–17657

    Article  Google Scholar 

  269. Zhao Y, Li J, Wang N et al (2012) Fully reversible conversion between SnO2 and Sn in SWNTs@SnO2@ PPy coaxial nanocable as high performance anode material for lithium ion batteries. J Phys Chem C 116(35):18612–18617

    Article  Google Scholar 

  270. Lai C, Zhang HZ, Li GR et al (2011) Mesoporous polyaniline/TiO2 microspheres with core–shell structure as anode materials for lithium ion battery. J Power Sources 196(10):4735–4740

    Article  Google Scholar 

  271. Lai C, Li GR, Dou YY et al (2010) Mesoporous polyaniline or polypyrrole/anatase TiO2 nanocomposite as anode materials for lithium-ion batteries. Electrochim Acta 55(15):4567–4572

    Article  Google Scholar 

  272. Zhang F, Cao H, Yue D et al (2012) Enhanced anode performances of polyaniline-Tio2-reduced graphene oxide nanocomposites for lithium ion batteries. Inorg Chem 51(17):9544–9551

    Article  Google Scholar 

  273. Yin Z, Ding Y, Zheng Q et al (2012) CuO/polypyrrole core–shell nanocomposites as anode materials for lithium-ion batteries. Electrochem Commun 20:40–43

    Article  Google Scholar 

  274. Vidu R, Stroeve P (2004) Improvement of the thermal stability of Li-ion batteries by polymer coating of LiMn2O4. Ind Eng Chem Res 43(13):3314–3324

    Article  Google Scholar 

  275. Cui CJ, Wu GM, Yang HY et al (2010) A new high-performance cathode material for rechargeable lithium-ion batteries: polypyrrole/vanadium oxide nanotubes. Electrochim Acta 55(28):8870–8875

    Article  Google Scholar 

  276. Wang H, Huang K, Zeng Y et al (2007) Stabilizing cyclability of an aqueous lithium-ion battery LiNi1/3Mn1/3Co1/3O2/LixV2O5 by polyaniline coating on the anode. Electrochem Solid-State Lett 10(9):A199–A203

    Article  Google Scholar 

  277. Fedorková A, Nacher-Alejos A, Gómez-Romero P et al (2010) Structural and electrochemical studies of PPy/PEG–LiFePO4 cathode material for Li-ion batteries. Electrochim Acta 55(3):943–947

    Article  Google Scholar 

  278. Fu Y, Manthiram A (2012) Enhanced cyclability of lithium–sulfur batteries by a polymer acid-doped polypyrrole mixed ionic-electronic conductor. Chem Mate 24(15):3081–3087

    Article  Google Scholar 

  279. Cai JJ, Zuo PJ, Cheng XQ et al (2010) Nano-silicon/polyaniline composite for lithium storage. Electrochem Commun 12(11):1572–1575

    Article  Google Scholar 

  280. Ponzio EA, Benedetti TM, Torresi RM (2007) Electrochemical and morphological stabilization of V2O5 nanofibers by the addition of polyaniline. Electrochim Acta 52(13):4419–4427

    Article  Google Scholar 

  281. Hwang KS, Lee CW, Yoon TH et al (1999) Fabrication and characteristics of a composite cathode of sulfonated polyaniline and Ramsdellite-MnO2 for a new rechargeable lithium polymer battery. J Power Sources 79(2):225–230

    Article  Google Scholar 

  282. Kerr TA, Wu H, Nazar LF (1996) Concurrent polymerization and insertion of aniline in molybdenum trioxide: formation and properties of a [poly(aniline)]0.24MoO3 nanocomposite. Chem Mater 8(8):2005–2015

    Article  Google Scholar 

  283. Torres-Gómez G, Tejada-Rosales EM, Gómez-Romero P (2001) Integration of hexacyanoferrate as an active species in a molecular hybrid material. Transport properties and application of polyaniline/hexacyanoferrate as a cathode in rechargeable lithium batteries. Chem Mater 13(10):3693–3697

    Article  Google Scholar 

  284. Zhang XW, Wang C, Appleby AJ et al (2002) Improvement in electrochemical properties of nano-tin-polyaniline lithium-ion composite anodes by control of electrode microstructure. J Power Sources 109(1):136–141

    Article  Google Scholar 

  285. Zang J, Bao SJ, Li CM et al (2008) Well-aligned cone-shaped nanostructure of polypyrrole/RuO2 and its electrochemical supercapacitor. J Phys Chem C 112(38):14843–14847

    Article  Google Scholar 

  286. Sivakkumar SR, Ko JM, Kim DY et al (2007) Performance evaluation of CNT/polypyrrole/MnO2 composite electrodes for electrochemical capacitors. Electrochim Acta 52(25):7377–7385

    Article  Google Scholar 

  287. Zhang H, Cao G, Yang Y (2009) Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries. Energy Environ Sci 2(9):932–943

    Article  Google Scholar 

  288. Sun LJ, Liu XX (2008) Electrodepositions and capacitive properties of hybrid films of polyaniline and manganese dioxide with fibrous morphologies. Eur Polymer J 44(1):219–224

    Article  Google Scholar 

  289. Hou Y, Cheng Y, Hobson T et al (2010) Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett 10(7):2727–2733

    Article  Google Scholar 

  290. Shahbazyan TV (2013) Theory of plasmon-enhanced metal photoluminescence. Nano Lett 13(1):194–198

    Article  Google Scholar 

  291. Li P, Yang Y, Shi E et al (2014) Core–double–shell, carbon nanotube@ polypyrrole@ MnO2 sponge as freestanding, compressible supercapacitor electrode. ACS Appl Mater Interfaces 6(7):5228–5234

    Article  Google Scholar 

  292. Wang C, Zhan Y, Wu L et al (2014) High-voltage and high-rate symmetric supercapacitor based on MnO2-polypyrrole hybrid nanofilm. Nanotechnology 25(30):305401

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Sengodu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sengodu, P. (2017). Conducting Polymers/Inorganic Nanohybrids for Energy Applications. In: Lin, Z., Yang, Y., Zhang, A. (eds) Polymer-Engineered Nanostructures for Advanced Energy Applications. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-57003-7_9

Download citation

Publish with us

Policies and ethics