Skip to main content

Flexible Piezoelectric and Pyroelectric Polymers and Nanocomposites for Energy Harvesting Applications

  • Chapter
  • First Online:
Polymer-Engineered Nanostructures for Advanced Energy Applications

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

Ferroelectric polymers are promising functional materials for energy harvesting applications, given their low stiffness, high flexibility, toughness, ease of modification to tailor properties, processability and low density. This chapter provides detailed description of the molecular structure, polymorphs and properties of ferroelectric vinylidene fluoride (VDF)-based fluoropolymers and related nanocomposites. The nature of the ferroelectric crystalline phase plays a key role in the piezo- and pyroelectric properties of the polymer‚ various methods to increase the content of the polar ferroelectric polymorphs in the polymers are discussed, such as copolymerization, addition of nanoparticles, nanoconfinement, electrospinning, and post-treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nalwa HS (1995) Ferroelectric polymers: chemistry physics, and applications. CRC Press, Boca Raton

    Google Scholar 

  2. Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly(vinylidene fluoride) determination, processing and applications. Prog Polym Sci 39(4):683–706

    Article  Google Scholar 

  3. Cui Z, Hassankiadeh NT, Zhuang Y et al (2015) Crystalline polymorphism in poly(vinylidenefluoride) membranes. Prog Polym Sci 51:94–126

    Article  Google Scholar 

  4. Ameduri B (2009) From vinylidene fluoride (VDF) to the applications of VDF-containing polymers and copolymers: recent developments and future trends. Chem Rev 109(12):6632–6686

    Article  Google Scholar 

  5. Lovinger AJ (1981) Conformational defects and associated molecular motions in crystalline poly(vinylidene fluoride). J Appl Phys 52(10):5934–5938

    Article  Google Scholar 

  6. Gomes J, Nunes JS, Sencadas V et al (2010) Influence of the phase content and degree of crystallinity on the piezo- and ferroelectric properties of poly(vinylidene fluoride). Smart Mater Struct 19(6):1065–1110

    Article  Google Scholar 

  7. Yamada E, Nishioka A, Suzuki H et al (2009) Effect of blended montomollironite on crystallization of poly(vinylidene fluoride). Polym J 41(5):383–388

    Article  Google Scholar 

  8. Gregorio JR, Cestari M (1994) Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride). J Polym Sci Pol Phys 32(5):859–870

    Article  Google Scholar 

  9. Li Y, Tang S, Pan M-W et al (2015) Polymorphic extended-chain and folded-chain crystals in poly(vinylidene fluoride) achieved by combination of high pressure and ion-dipole interaction. Macromolecules 48(23):8565–8573

    Article  Google Scholar 

  10. Song D, Yang D, Feng Z (2006) Formation of β-phase microcrystals from the melt of PVF2-PMMA blends induced by quenching. J Mater Sci 25(1):57–64

    Article  Google Scholar 

  11. Tao M, Liu F, Ma B et al (2013) Effect of solvent power on PVDF membrane polymorphism during phase inversion. Desalination 316:137–145

    Google Scholar 

  12. Ramasundaram S, Yoon S, Kim KJ et al (2009) Crystalline structure and ferroelectric response of poly(vinylidene fluoride)/organically modified silicate thin films prepared by heat controlled spin coating. Macromol Chem Phys 210(11):951–960

    Article  Google Scholar 

  13. Kei N, Kenji I, Toshihisa H et al (2003) Pyroelectricity of ferroelectric vinylidene fluoride-oligomer-evaporated thin films. Jpn J Appl Phys 42(11A):13–34

    Google Scholar 

  14. Kim WJ, Han MH, Shin Y-H et al (2016) First-Principles study of the α-β phase transition of ferroelectric poly(vinylidene difluoride): observation of multiple transition pathways. J Phys Chem B 120(12):3240–3249

    Article  Google Scholar 

  15. Yu Y-J, McGaughey AJH (2016) Energy barriers for dipole moment flipping in PVDF-related ferroelectric polymers. J Chem Phys 144(1):014901

    Article  Google Scholar 

  16. Mohammadi B, Yousefi AA, Bellah SM (2007) Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films. Polym Test 26(1):42–50

    Article  Google Scholar 

  17. Hsu T-C, Geil PH (1989) Deformation and transformation mechanisms of poly(vinylidene fluoride) (PVF2). J Mater Sci 24(4):1219–1232

    Article  Google Scholar 

  18. Hess CM, Rudolph AR, Reid PJ (2015) Imaging the effects of annealing on the polymorphic phases of poly(vinylidene fluoride). J Phys Chem 119(10):4127–4132

    Article  Google Scholar 

  19. Shklovsky J, Engel L, Sverdlov Y et al (2012) Nano-imprinting lithography of P(VDF-TrFE-CFE) for flexible freestanding MEMS devices. Microelectron Eng 100:41–46

    Article  Google Scholar 

  20. Maji S, Sarkar PK, Aggarwal L et al (2015) Self-oriented [small beta]-crystalline phase in the polyvinylidene fluoride ferroelectric and piezo-sensitive ultrathin Langmuir–Schaefer film. Phys Chem Chem Phys 17(12):8159–8165

    Article  Google Scholar 

  21. Chen Y, Chen X, Zhou D et al (2016) Low-temperature crystallization of P(VDF-TrFE-CFE) studied by Flash DSC. Polymer 84:319–327

    Article  Google Scholar 

  22. Oliveira F, Leterrier Y, Månson J-A et al (2014) Process influences on the structure, piezoelectric, and gas-barrier properties of PVDF-TrFE copolymer. J Polym Sci Pol Phys 52(7):496–506

    Article  Google Scholar 

  23. Hu Z, Tian M, Nysten B et al (2009) Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. Nat Mater 8(1):62–67

    Article  Google Scholar 

  24. Cao J-H, Zhu B-K, Ji G-L et al (2005) Preparation and characterization of PVDF-HFP microporous flat membranes by supercritical CO2 induced phase separation. J Membr Sci 266(1–2):102–109

    Article  Google Scholar 

  25. Li Z, Wang Y, Cheng Z-Y (2006) Electromechanical properties of poly(vinylidene-fluoride-chlorotrifluoroethylene) copolymer. Appl Phys Lett 88(6):862–904

    Google Scholar 

  26. Furukawa T (1989) Ferroelectric properties of vinylidene fluoride copolymers. Phase Transit A Multi J 18(3–4):143–211

    Article  Google Scholar 

  27. Chung TC, Petchsuk A (2002) Synthesis and properties of ferroelectric fluoroterpolymers with curie transition at ambient temperature. Macromollecule 35(20):7678–7684

    Article  Google Scholar 

  28. Hattori T, Hikosaka M, Ohigashi H (1996) The crystallization behaviour and phase diagram of extended-chain crystals of poly(vinylidene fluoride) under high pressure. Polymer 37(1):85–91

    Article  Google Scholar 

  29. Teyssedre G, Bernes A, Lacabanne C (1995) Cooperative movements associated with the Curie transition in P(VDF-TrFE) copolymers. J Polym Sci Pol Phys 33(6):879–890

    Article  Google Scholar 

  30. Aliane A, Benwadih M, Bouthinon B et al (2015) Impact of crystallization on ferro-, piezo- and pyro-electric characteristics in thin film P(VDF-TrFE). Org Electron 25:92–98

    Article  Google Scholar 

  31. Lee JS, Prabu AA, Kim KJ (2010) Annealing effect upon chain orientation, crystalline morphology, and polarizability of ultra-thin P(VDF-TrFE) film for nonvolatile polymer memory device. Polymer 51(26):6319–6333

    Article  Google Scholar 

  32. Bourgaux-Leonard C, Legrand JF, Renault A et al (1991) Annealing effects in ferroelectric poly(vinylidene fluoride-trifluoroethylene) copolymers: real-time studies using synchrotron radiation. Polymer 32(4):597–604

    Article  Google Scholar 

  33. Green JS, Farmer BL, Rabolt JF (1986) Effect of thermal and solution history on the Curie point of VF2-TrFE random copolymers. J Appl Phys 60(8):2690–2693

    Article  Google Scholar 

  34. Su R, Tseng J-K, Lu M-S et al (2012) Ferroelectric behavior in the high temperature paraelectric phase in a poly(vinylidene fluoride-co-trifluoroethylene) random copolymer. Polymer 53(3):728–739

    Article  Google Scholar 

  35. Salimi A, Yousefi AA (2003) Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polym Test 22(6):699–704

    Article  Google Scholar 

  36. Salimi A, Yousefi AA (2004) Conformational changes and phase transformation mechanisms in PVDF solution-cast films. J Polym Sci Pol Phys 42(18):3487–3495

    Article  Google Scholar 

  37. Benz M, Euler WB (2003) Determination of the crystalline phases of poly(vinylidene fluoride) under different preparation conditions using differential scanning calorimetry and infrared spectroscopy. J Appl Polym Sci 89(4):1093–1100

    Article  Google Scholar 

  38. Park JH, Kurra N, AlMadhoun MN et al (2015) A two-step annealing process for enhancing the ferroelectric properties of poly(vinylidene fluoride) (PVDF) devices. J Mater Chem C 3(10):2366–2370

    Article  Google Scholar 

  39. Cauda V, Stassi S, Bejtka K et al (2013) Nanoconfinement: an effective way to enhance PVDF piezoelectric properties. ACS Appl Mater Interfaces 5(13):6430–6437

    Article  Google Scholar 

  40. Soin N, Boyer D, Prashanthi K et al (2015) Exclusive self-aligned [small beta]-phase PVDF films with abnormal piezoelectric coefficient prepared via phase inversion. Chem Commun 51(39):8257–8260

    Article  Google Scholar 

  41. Patro TU, Mhalgi MV, Khakhar DV et al (2008) Studies on poly(vinylidene fluoride)-clay nanocomposites: effect of different clay modifiers. Polymer 49(16):3486–3499

    Article  Google Scholar 

  42. Martins P, Costa CM, Ferreira JCC et al (2012) Correlation between crystallization kinetics and electroactive polymer phase nucleation in ferrite/poly(vinylidene fluoride) magnetoelectric nanocomposites. J Phys Chem B 116(2):794–801

    Article  Google Scholar 

  43. Zhang Q, Xia W, Zhu Z et al (2013) Crystal phase of poly(vinylidene fluoride-co-trifluoroethylene) synthesized via hydrogenation of poly(vinylidene fluoride-co-chlorotrifluoroethylene). J Appl Polym Sci 127(4):3002–3008

    Article  Google Scholar 

  44. Wu Y, Hsu SL, Honeker C et al (2012) The role of surface charge of nucleation agents on the crystallization behavior of poly(vinylidene fluoride). J Phys Chem B 116(24):7379–7388

    Article  Google Scholar 

  45. Martins P, Caparros C, Gonçalves R et al (2012) Role of nanoparticle surface charge on the nucleation of the electroactive β-poly(vinylidene fluoride) nanocomposites for sensor and actuator applications. J Phys Chem C 116(29):15790–15794

    Article  Google Scholar 

  46. Mofokeng TG, Luyt AS, Pavlović VP et al (2014) Ferroelectric nanocomposites of polyvinylidene fluoride/polymethyl methacrylate blend and BaTiO3 particles: Fabrication of β-crystal polymorph rich matrix through mechanical activation of the filler. J Appl Phys 115(8):1084–1109

    Article  Google Scholar 

  47. Tiwari V, Srivastava G (2015) Structural, dielectric and piezoelectric properties of 0–3 PZT/PVDF composites. Ceram Int 41(6):8008–8013

    Article  Google Scholar 

  48. Kar E, Bose N, Das S et al (2015) Enhancement of electroactive [small beta] phase crystallization and dielectric constant of PVDF by incorporating GeO2 and SiO2 nanoparticles. Phys Chem Chem Phys 17(35):22784–22798

    Article  Google Scholar 

  49. Mandal D, Kim KJ, Lee JS (2012) Simple synthesis of palladium nanoparticles, β-phase formation, and the control of chain and dipole orientations in palladium-doped poly(vinylidene fluoride) thin films. Langmuir 28(28):10310–10317

    Article  Google Scholar 

  50. Lopes AC, Carabineiro SAC, Pereira MFR et al (2013) Nanoparticle size and concentration dependence of the electroactive phase content and electrical and optical properties of Ag/poly(vinylidene fluoride) composites. Chem Phys Chem 14(9):1926–1933

    Article  Google Scholar 

  51. Ghosh SK, Sinha TK, Mahanty B et al (2015) Self-poled efficient flexible “ferroelectretic” nanogenerator: a new class of piezoelectric energy harvester. Energy Technol 3(12):1190–1197

    Article  Google Scholar 

  52. Dutta B, Kar E, Bose N et al (2015) Significant enhancement of the electroactive [small beta]-phase of PVDF by incorporating hydrothermally synthesized copper oxide nanoparticles. RSC Adv 5(127):105422–105434

    Article  Google Scholar 

  53. Li J, Khanchaitit P, Han K et al (2010) New route toward high-energy-density nanocomposites based on chain-end functionalized ferroelectric polymers. Chem Mater 22(18):5350–5357

    Article  Google Scholar 

  54. Jayakumar OD, Mandal BP, Majeed J et al (2013) Inorganic-organic multiferroic hybrid films of Fe3O4 and PVDF with significant magneto-dielectric coupling. J Mater Chem C 1(23):3710–3715

    Article  Google Scholar 

  55. Thakur P, Kool A, Bagchi B et al (2015) Effect of in situ synthesized Fe2O3 and Co3O4 nanoparticles on electroactive [small beta] phase crystallization and dielectric properties of poly(vinylidene fluoride) thin films. Phys Chem Chem Phys 17(2):1368–1378

    Article  Google Scholar 

  56. Anithakumari P, Mandal BP, Abdelhamid E et al (2016) Enhancement of dielectric, ferroelectric and magneto-dielectric properties in PVDF-BaFe12O19 composites: a step towards miniaturizated electronic devices. RSC Adv 6(19):16073–16080

    Article  Google Scholar 

  57. Garain S, Sinha TK, Adhikary P et al (2015) Self-Poled transparent and flexible UV light-emitting cerium complex-PVDF composite: a high-performance nanogenerator. ACS Appl Mater Interface 7(2):1298–1307

    Article  Google Scholar 

  58. Cho S, Lee JS, Jang J (2015) Enhanced crystallinity, dielectric, and energy harvesting performances of surface-treated barium titanate hollow nanospheres/PVDF nanocomposites. Adv Mater Interfaces 2(10)

    Google Scholar 

  59. Thakur P, Kool A, Bagchi B et al (2015) The role of cerium (iii)/yttrium (iii) nitrate hexahydrate salts on electroactive [small beta] phase nucleation and dielectric properties of poly(vinylidene fluoride) thin films. RSC Adv 5(36):28487–28496

    Article  Google Scholar 

  60. Yuan D, Li Z, Thitsartarn W et al (2015) [small beta] Phase PVDF-hfp induced by mesoporous SiO2 nanorods: synthesis and formation mechanism. J Mater Chem C 3(15):3708–3713

    Article  Google Scholar 

  61. Dillon DR, Tenneti KK, Li CY et al (2006) On the structure and morphology of polyvinylidene fluoride-nanoclay nanocomposites. Polymer 47(5):1678–1688

    Article  Google Scholar 

  62. Wang Y, Li J, Deng Y (2015) Enhanced ferroelectricity and energy storage in poly(vinylidene fluoride)-clay nanocomposite films via nanofiller surface charge modulation. RSC Adv 5(104):85884–85888

    Article  Google Scholar 

  63. Ramasundaram S, Yoon S, Kim KJ et al (2008) Preferential formation of electroactive crystalline phases in poly(vinylidene fluoride)/organically modified silicate nanocomposites. J Polym Sci Pol Phys 46(20):2173–2187

    Article  Google Scholar 

  64. Tiwari VK, Kulriya PK, Avasthi DK et al (2009) Radiation-resistant behavior of poly(vinylidene fluoride)/layered silicate nanocomposites. ACS Appl Mater Interfaces 1(2):311–318

    Article  Google Scholar 

  65. Yu S, Zheng W, Yu W et al (2009) Formation mechanism of β-phase in PVDF/CNT composite prepared by the sonication method. Macromolecules 42(22):8870–8874

    Article  Google Scholar 

  66. Levi N, Czerw R, Xing S et al (2004) Properties of polyvinylidene difluoride–carbon nanotube blends. Nano Lett 4(7):1267–1271

    Article  Google Scholar 

  67. Ke K, Pötschke P, Jehnichen D et al (2014) Achieving β-phase poly(vinylidene fluoride) from melt cooling: effect of surface functionalized carbon nanotubes. Polymer 55(2):611–619

    Article  Google Scholar 

  68. Sharma M, Sharma K, Bose S (2013) Segmental relaxations and crystallization-induced phase separation in pvdf/pmma blends in the presence of surface-functionalized multiwall carbon nanotubes. J Phys Chem B 117(28):8589–8602

    Article  Google Scholar 

  69. Sadasivuni KK, Kafy A, Zhai L et al (2015) Multi functional and smart graphene filled polymers as piezoelectrics and actuators. Graphene-based polymer nanocomposites in electronics. Springer International Publishing, New York, pp 67–90

    Google Scholar 

  70. El Achaby M, Arrakhiz FZ, Vaudreuil S et al (2012) Piezoelectric β-polymorph formation and properties enhancement in graphene oxide-PVDF nanocomposite films. Appl Surf Sci 258(19):7668–7677

    Article  Google Scholar 

  71. Abdelhamid E, Jayakumar OD, Katari V et al (2016) Multiferroic PVDF-Fe3O4 hybrid films with reduced graphene oxide and ZnO nanofillers. RSC Adv 6(24):20089–20094

    Article  Google Scholar 

  72. Karan SK, Mandal D, Khatua BB (2015) Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester. Nanoscale 7(24):10655–10666

    Article  Google Scholar 

  73. Wang S, Liu L, Zeng Y et al (2015) Improving dielectric properties of poly(vinylidene fluoride) composites: effects of surface functionalization of exfoliated graphene. J Adhes Sci Technol 29(7):678–690

    Article  Google Scholar 

  74. Bhavanasi V, Kumar V, Parida K et al (2016) Enhanced piezoelectric energy harvesting performance of flexible PVDF-trfe bilayer films with graphene oxide. ACS Appl Mater Interfaces 8(1):521–529

    Article  Google Scholar 

  75. Andrew JS, Clarke DR (2008) Effect of electrospinning on the ferroelectric phase content of polyvinylidene difluoride fibers. Langmuir 24(3):670–672

    Article  Google Scholar 

  76. Lei T, Yu L, Zheng G et al (2015) Electrospinning-induced preferred dipole orientation in PVDF fibers. J Mater Sci 50(12):4342–4347

    Article  Google Scholar 

  77. Yee WA, Kotaki M, Liu Y et al (2007) Morphology, polymorphism behavior and molecular orientation of electrospun poly(vinylidene fluoride) fibers. Polymer 48(2):512–521

    Article  Google Scholar 

  78. Chang C, Tran VH, Wang J et al (2010) Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett 10(2):726–731

    Article  Google Scholar 

  79. Liu ZH, Pan CT, Lin LW et al (2014) Direct-write PVDF nonwoven fiber fabric energy harvesters via the hollow cylindrical near-field electrospinning process. Smart Mater Struct 23(2)

    Google Scholar 

  80. Hansen BJ, Liu Y, Yang R et al (2010) Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 4(7):3647–3652

    Article  Google Scholar 

  81. Fang J, Wang X, Lin T (2011) Electrical power generator from randomly oriented electrospun poly(vinylidene fluoride) nanofibre membranes. J Mater Chem 21(30):11088–11091

    Article  Google Scholar 

  82. Abolhasani MM, Azimi S, Fashandi H (2015) Enhanced ferroelectric properties of electrospun poly(vinylidene fluoride) nanofibers by adjusting processing parameters. RSC Adv 5(75):61277–61283

    Article  Google Scholar 

Download references

Acknowledgements

C.R. Bowen would like to acknowledge funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement no. 320963 on Novel Energy Materials, Engineering Science and Integrated Systems (NEMESIS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaoying Wan or Christopher Rhys Bowen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wan, C., Bowen, C.R. (2017). Flexible Piezoelectric and Pyroelectric Polymers and Nanocomposites for Energy Harvesting Applications. In: Lin, Z., Yang, Y., Zhang, A. (eds) Polymer-Engineered Nanostructures for Advanced Energy Applications. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-57003-7_13

Download citation

Publish with us

Policies and ethics