Skip to main content

Complex Patterns and Elementary Structures of Solutal Marangoni Convection: Experimental and Numerical Studies

  • Chapter
  • First Online:
Transport Processes at Fluidic Interfaces

Part of the book series: Advances in Mathematical Fluid Mechanics ((AMFM))

  • 1620 Accesses

Abstract

The transfer of a solute between two liquid layers is susceptible to convective instabilities of the time-dependent diffusive concentration profile that may be caused by the Marangoni effect or buoyancy. Marangoni instabilities depend on the change of interfacial tension and Rayleigh instabilities on the change of liquid densities with solute concentration. Such flows develop increasingly complex cellular or wavy patterns with very fine structures in the concentration field due to the low solute diffusivity. They are important in several applications such as extraction or coating processes. A detailed understanding of the patterns is lacking although a general phenomenological classification has been developed based on previous experiments. We use both highly resolved numerical simulations and controlled experiments to examine two exemplary systems. In the first case, a stationary Marangoni instability is counteracted by a stable density stratification producing a hierarchical cellular pattern. In the second case, Rayleigh instability is opposed by the Marangoni effect causing solutal plumes and eruptive events with short-lived Marangoni cells on the interface. A good qualitative and acceptable quantitative agreement between the experimental visualizations and measurements and the corresponding numerical results is achieved in simulations with a planar interface, and a simple linear model for the interface properties, i.e. no highly specific properties of the interface are required for the complex patterns. Simulation results are also used to characterize the mechanisms involved in the pattern formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this work, liquid/liquid layers will be considered exclusively. They usually have high Schmidt numbers Sc (i) = ν (i)D (i) > 1000. This is not the case for gas/liquid systems or for the thermal problem, which can give rise to oscillatory instabilities due to the additional time scales.

References

  1. Agble, D.K.: Interfacial mass transfer in binary-liquid systems. Ph.D. thesis, Imperial College, University of London, London (1998)

    Google Scholar 

  2. Agble, D., Mendes-Tatsis, M.: The effect of surfactants on interfacial mass transfer in binary liquid-liquid systems. Int. J. Heat Mass Transf. 43(6), 1025–1034 (2000)

    Article  MATH  Google Scholar 

  3. Agble, D., Mendes-Tatsis, M.: The prediction of Marangoni convection in binary liquid-liquid systems with added surfactants. Int. J. Heat Mass Transf. 44(7), 1439–1449 (2001)

    Article  MATH  Google Scholar 

  4. Bakker, C.A.P., van Buytenen, P.M., Beek, W.J.: Interfacial phenomena and mass transfer. Chem. Eng. Sci. 21, 1039–1046 (1966)

    Article  Google Scholar 

  5. Bakker, C., van Vlissingen, F.F., Beek, W.: The influence of the driving force in liquid-liquid extraction - a study of mass transfer with and without interfacial turbulence under well-defined conditions. Chem. Eng. Sci. 22(10), 1349–1355 (1967)

    Article  Google Scholar 

  6. Bassou, N., Rharbi, Y.: Role of Bénard- Marangoni instabilities during solvent evaporation in polymer surface corrugations. Langmuir 25(1), 624–632 (2008)

    Article  Google Scholar 

  7. Bénard, H.: Les tourbillons cellulaires dans une nappe liquide.-Méthodes optiques d’observation et d’enregistrement. J. Phys. Theor. Appl. 10(1), 254–266 (1901)

    Google Scholar 

  8. Berg, J., Acrivos, A.: The effect of surface active agents on convection cells induced by surface tension. Chem. Eng. Sci. 20(8), 737–745 (1965)

    Article  Google Scholar 

  9. Berg, J., Morig, C.: Density effects in interfacial convection. Chem. Eng. Sci. 24, 937–946 (1969)

    Article  Google Scholar 

  10. Bi, W., Wu, X., Yeow, E.: Unconventional multiple ring structure formation from evaporation-induced self-assembly of polymers. Langmuir 28(30), 11056–11063 (2012)

    Article  Google Scholar 

  11. Boeck, T.: Bénard-Marangoni convection at low Prandtl number: results of direct numerical simulations. Ph.D. thesis, TU-Ilmenau (2000)

    Google Scholar 

  12. Boeck, T., Nepomnyashchy, A., Simanovskii, I., Golovin, A., Braverman, L., Thess, A.: Three-dimensional convection in a two-layer system with anomalous thermocapillary effect. Phys. Fluids 14, 3899 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Boeck, T., Krasnov, D., Zienicke, E.: Numerical study of turbulent magnetohydrodynamic channel flow. J. Fluid Mech. 572, 179–188 (2007)

    Article  MATH  Google Scholar 

  14. Boos, W., Thess, A.: Thermocapillary flow in a Hele-Shaw cell. J. Fluid Mech. 352, 305–330 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Borcia, R., Bestehorn, M.: Phase-field model for Marangoni convection in liquid-gas systems with a deformable interface. Phys. Rev. E 67(6), 066307 (2003)

    Article  Google Scholar 

  16. Bragard, J., Velarde, M.: Bénard–Marangoni convection: planforms and related theoretical predictions. J. Fluid Mech. 368(1), 165–194 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bratsun, D., De Wit, A.: On Marangoni convective patterns driven by an exothermic chemical reaction in two-layer systems. Phys. Fluids 16, 1082–1096 (2004)

    Article  MATH  Google Scholar 

  18. Brian, P.L.T., Vivian, J.E., Mayr, S.T.: Cellular convection in desorbing surface tension-lowering solutes from water. Ind. Eng. Chem. Fundam. 10(1), 75–83 (1971)

    Article  Google Scholar 

  19. Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods in Fluid Dynamics. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  20. Cazabat, A., Heslot, F., Troian, S., Carles, P.: Fingering instability of thin spreading films driven by temperature gradients. Nature 346(6287), 824–826 (1990)

    Article  Google Scholar 

  21. Changxu, L., Aiwu, Z., Xigang, Y., et al.: Experimental study on mass transfer near gas–liquid interface through quantitative schlieren method. Chem. Eng. Res. Des. 86(2), 201–207 (2008)

    Article  Google Scholar 

  22. Chauvet, F., Dehaeck, S., Colinet, P.: Threshold of Bénard-Marangoni instability in drying liquid films. Europhys. Lett. 99, 34001 (2012)

    Article  Google Scholar 

  23. Chen, S., Fu, B., Yuan, X., Zhang, H., Chen, W., Yu, K.: Lattice Boltzmann method for simulation of solutal interfacial convection in gas-liquid system. Ind. Eng. Chem. Res. 51, 10955–10967 (2012)

    Article  Google Scholar 

  24. Chen, J., Yang, C., Mao, Z.S.: The interphase mass transfer in liquid–liquid systems with Marangoni effect. Eur. Phys. J. Spec. Top. 224(2), 389–399 (2015)

    Article  Google Scholar 

  25. Colinet, P., Legros, J., Velarde, M., Prigogine, I.: Nonlinear Dynamics of Surface-Tension-Driven Instabilities. Wiley Online Library (2001)

    Google Scholar 

  26. Davenport, I., King, C.: Marangoni stabilization of density-driven convection. Chem. Eng. Sci. 28(2), 645–647 (1973)

    Article  Google Scholar 

  27. De Ortiz, E.P., Sawistowski, H.: Interfacial stability of binary liquid-liquid systems - I. Stability analysis. Chem. Eng. Sci. 28(11), 2051–2061 (1973)

    Article  Google Scholar 

  28. De Ortiz, E.P., Sawistowski, H.: Interfacial stability of binary liquid-liquid systems - II. Stability behaviour of selected systems. Chem. Eng. Sci. 28(11), 2063–2069 (1973)

    Google Scholar 

  29. De Ortiz, E., Sawistowski, H.: Stability analysis of liquid-liquid systems under conditions of simultaneous heat and mass transfer. Chem. Eng. Sci. 30(12), 1527–1528 (1975)

    Article  Google Scholar 

  30. De Wit, A., Eckert, K., Kalliadasis, S.: Introduction to the focus issue: chemo-hydrodynamic patterns and instabilities. Chaos-Woodbury 22(3), 037101 (2012)

    Article  Google Scholar 

  31. Deegan, R., Bakajin, O., Dupont, T., Huber, G., Nagel, S., Witten, T.: Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653), 827–829 (1997)

    Article  Google Scholar 

  32. Dieter-Kissling, K., Karbaschi, M., Marschall, H., Javadi, A., Miller, R., Bothe, D.: On the applicability of drop profile analysis tensiometry at high flow rates using an interface tracking method. Colloids Surf. A Physicochem. Eng. Asp. 441, 837–845 (2012)

    Article  Google Scholar 

  33. Eckert, K., Bestehorn, M., Thess, A.: Square cells in surface-tension-driven Bénard convection: experiment and theory. J. Fluid Mech. 356, 155–197 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Eckert, K., Acker, M., Shi, Y.: Chemical pattern formation driven by a neutralization reaction. I. Mechanism and basic features. Phys. Fluids 16(2), 385–399 (2004)

    MATH  Google Scholar 

  35. Eckert, K., Acker, M., Tadmouri, R., Pimienta, V.: Chemo-Marangoni convection driven by an interfacial reaction: pattern formation and kinetics. Chaos 22(3), 037112–037112 (2012)

    Article  Google Scholar 

  36. Edwards, D., Brenner, H., Wasan, D.: Interfacial Transport Processes and Rheology. Butterworth-Heinemann, Oxford (1991)

    Google Scholar 

  37. Golovin, A.: Mass transfer under interfacial turbulence: kinetic regulaties. Chem. Eng. Sci. 47(8), 2069–2080 (1992)

    Article  Google Scholar 

  38. Grahn, A.: Two-dimensional numerical simulations of Marangoni-Bénard instabilities during liquid-liquid mass transfer in a vertical gap. Chem. Eng. Sci. 61, 3586–3592 (2006)

    Article  Google Scholar 

  39. Gross, B., Hixson, A.: Marangoni instability with unsteady diffusion in the undisturbed state. Ind. Eng. Chem. Fundam. 8(2), 288–296 (1969)

    Article  Google Scholar 

  40. Hanson, C.: Recent Advances in Liquid-Liquid Extraction. Elsevier, Amsterdam (2013)

    Google Scholar 

  41. Heines, H., Westwater, J.: The effect of heats of solution on Marangoni convection. Int. J. Heat Mass Transf. 15(11), 2109–2117 (1972)

    Article  Google Scholar 

  42. Ho, K.L., Chang, H.C.: On nonlinear doubly-diffusive Marangoni instability. AIChE J. 34(5), 705–722 (1988)

    Article  MathSciNet  Google Scholar 

  43. Imaishi, N., Fujikawa, K.: Theoretical study of the stability of two-fluid layers. J. Chem. Eng. Jpn. 7(2), 81–87 (1974)

    Article  Google Scholar 

  44. Jackson, E., She, Z.S., Orszag, S.A.: A case study in parallel computing: I. Homogeneous turbulence on a hypercube. Journal of Scientific Computing 6(1), 27–45 (1991)

    MATH  Google Scholar 

  45. Javadi, A., Krägel, J., Pandolfini, P., Loglio, G., Kovalchuk, V., Aksenenko, E., Ravera, F., Liggieri, L., Miller, R.: Short time dynamic interfacial tension as studied by the growing drop capillary pressure technique. Colloids Surf. A Physicochem. Eng. Asp. 365(1), 62–69 (2010)

    Article  Google Scholar 

  46. Javadi, A., Karbaschi, M., Bastani, D., Ferri, J., Kovalchuk, V., Kovalchuk, N., Javadi, K., Miller, R.: Marangoni instabilities for convective mobile interfaces during drop exchange: experimental study and CFD simulation. Colloids Surf. A Physicochem. Eng. Asp. 441, 846–854 (2014)

    Article  Google Scholar 

  47. Jun, S., Lee, H.: The effect of Bénard-Marangoni convection on percolation threshold in amorphous polymer-multiwall carbon nanotube composites. Curr. Appl. Phys. 12(2), 467–472 (2012)

    Article  Google Scholar 

  48. Karpitschka, S., Riegler, H.: Noncoalescence of sessile drops from different but miscible liquids: hydrodynamic analysis of the twin drop contour as a self-stabilizing traveling wave. Phys. Rev. Lett. 109(6), 066103 (2012)

    Article  Google Scholar 

  49. Köllner, T.: Simulations of solutal Marangoni convection in two liquid layers: complex and transient patterns. Ph.D. thesis, Technische Universität Ilmenau (2016)

    Google Scholar 

  50. Köllner, T., Schwarzenberger, K., Eckert, K., Boeck, T.: Multiscale structures in solutal Marangoni convection: three-dimensional simulations and supporting experiments. Phys. Fluids 25, 092109 (2013)

    Article  Google Scholar 

  51. Köllner, T., Rossi, M., Broer, F., Boeck, T.: Chemical convection in the methylene-blue–glucose system: optimal perturbations and three-dimensional simulations. Phys. Rev. E 90(5), 053004 (2014)

    Article  Google Scholar 

  52. Köllner, T., Schwarzenberger, K., Eckert, K., Boeck, T.: Solutal Marangoni convection in a Hele-Shaw geometry: impact of orientation and gap width. Eur. Phys. J. Spec. Top. 224(2), 261–276 (2015)

    Article  Google Scholar 

  53. Köllner, T., Schwarzenberger, K., Eckert, K., Boeck, T.: The eruptive regime of mass-transfer-driven Rayleigh-Marangoni convection. J. Fluid Mech. 719, R4, 1–12 (2016)

    MathSciNet  Google Scholar 

  54. Koschmieder, E., Biggerstaff, M.: Onset of surface-tension-driven Bénard convection. J. Fluid Mech. 167, 49–64 (1986)

    Article  Google Scholar 

  55. Kostarev, K., Shmyrov, A., Zuev, A., Viviani, A.: Convective and diffusive surfactant transfer in multiphase liquid systems. Exp. Fluids 51(2), 457–470 (2011)

    Article  Google Scholar 

  56. Kovalchuk, N.: Spontaneous oscillations due to solutal Marangoni instability: air/water interface. Cent. Eur. J. Chem. 10(5), 1423–1441 (2012)

    Google Scholar 

  57. Kroepelin, H., Neumann, H.: Über die Entstehung von Grenzflächeneruptionen bei dem Stoffaustausch an Tropfen. Naturwissenschaften 43(15), 347–348 (1956)

    Article  Google Scholar 

  58. Kroepelin, H., Neumann, H.: Eruptiver Stoffaustausch an ebenen Grenzflächen. Naturwissenschaften 44(10), 304–304 (1957)

    Article  Google Scholar 

  59. Lappa, M., Piccolo, C.: Higher modes of the mixed buoyant-Marangoni unstable convection originated from a droplet dissolving in a liquid/liquid system with miscibility gap. Phys. Fluids 16(12), 4262–4272 (2004)

    Article  MATH  Google Scholar 

  60. Lappa, M., Piccolo, C., Carotenuto, L.: Mixed buoyant-Marangoni convection due to dissolution of a droplet in a liquid–liquid system with miscibility gap. Eur. J. Mech. B. Fluids 23(5), 781–794 (2004)

    Article  MATH  Google Scholar 

  61. Leo, A., Hansch, C.: Linear free energy relations between partitioning solvent systems. J. Org. Chem. 36(11), 1539–1544 (1971)

    Article  Google Scholar 

  62. Levich, V.G.: Physicochemical Hydrodynamics. Prentice Hall, Upper Saddle River, NJ (1962)

    Google Scholar 

  63. Linde, H.: Untersuchungen über den Stoffübergang an ebenen und waagerechten flüssig-flüssig-Phasengrenzen unter der Bedingung starker erzwungener Konvektion bei verschiedenartigem Einsatz grenzflächenaktiver Stoffe. Fette, Seifen, Anstrichmittel 60(9), 826–829 (1958)

    Article  Google Scholar 

  64. Linde, H., Schwarz, E.: Untersuchungen zur Charakteristik der freien Grenzflächenkonvektion beim Stoffübergang an fluiden Grenzen. Zeitschrift für physikalische Chemie 224, 331–352 (1963)

    Article  Google Scholar 

  65. Linde, H., Schwarz, E.: Über grossräumige Rollzellen der freien Grenzflächenkonvektion. Monatsberichte Deutsche Akademie der Wissenschaften zu Berlin 7, 330–338 (1964)

    Google Scholar 

  66. Linde, H., Pfaff, S., Zirkel, C.: Strömungsuntersuchungen zur hydrodynamischen Instabilität flüssig-gasförmiger Phasengrenzen mit Hilfe der Kapillarspaltmethode. Zeitschrift für physikalische Chemie 225, 72–100 (1964)

    Google Scholar 

  67. Linde, H., Schwarz, E., Gröger, K.: Zum Auftreten des Oszillatorischen Regimes der Marangoniinstabilität beim Stoffübergang. Chem. Eng. Sci. 22(6), 823–836 (1967)

    Article  Google Scholar 

  68. Linde, H., Schwarzenberger, K., Eckert, K.: Pattern formation emerging from stationary solutal Marangoni instability: a roadmap through the underlying hierarchic structures. In: Rubio, R., Ryazantsev, Y., Starov, V., Huang, G.X., Chetverikov, A., Arena, P., Nepomnyashchy, A., Ferrus, A., Morozov, E. (eds.) Without Bounds: A Scientific Canvas of Nonlinearity and Complex Dynamics. Understanding Complex Systems, vol. 5. Springer, Berlin (2013)

    Google Scholar 

  69. Ma, C., Bothe, D.: Direct numerical simulation of thermocapillary flow based on the volume of fluid method. Int. J. Multiphase Flow 37(9), 1045–1058 (2011)

    Article  Google Scholar 

  70. MacDonald, B., Ward, C.: Onset of Marangoni convection for evaporating liquids with spherical interfaces and finite boundaries. Phys. Rev. E 84(4), 046319 (2011)

    Article  Google Scholar 

  71. Mao, Z., Lu, P., Zhang, G., Yang, C.: Numerical simulation of the Marangoni effect with interphase mass transfer between two planar liquid layers. Chin. J. Chem. Eng. 16(2), 161–170 (2008)

    Article  Google Scholar 

  72. Marangoni, C.: Über die Ausbreitung der Tropfen einer Flüssigkeit auf der Oberfläche einer anderen. Ann. Phys. 219, 337–354 (1871)

    Article  Google Scholar 

  73. Marek, R., Straub, J.: The origin of thermocapillary convection in subcooled nucleate pool boiling. Int. J. Heat Mass Transf. 44(3), 619–632 (2001)

    Article  MATH  Google Scholar 

  74. Marra, J., Huethorst, J.: Physical principles of Marangoni drying. Langmuir 7(11), 2748–2755 (1991)

    Article  Google Scholar 

  75. Mendes-Tatsis, M., De Ortiz, E.P.: Spontaneous interfacial convection in liquid-liquid binary systems under microgravity. Proc. R. Soc. Lond. A Math. Phys. Sci. 438(1903), 389–396 (1992)

    Article  Google Scholar 

  76. Merzkirch, W.: Flow Visualization. Academic, New York (1987)

    MATH  Google Scholar 

  77. Nepomnyashchy, A., Legros, J., Simanovskii, I.: Interfacial Convection in Multilayer Systems. Springer, Berlin (2006)

    MATH  Google Scholar 

  78. Orell, A., Westwater, J.W.: Spontaneous interfacial cellular convection accompanying mass transfer: ethylene glycol-acetic acid-ethyl acetate. AIChE J. 8, 350–356 (1962)

    Article  Google Scholar 

  79. Palmer, H., Berg, J.: Hydrodynamic stability of surfactant solutions heated from below. J. Fluid Mech. 51(2), 385–402 (1972)

    Article  MATH  Google Scholar 

  80. Pearson, J.: On convection cells induced by surface tension. J. Fluid Mech. 4(05), 489–500 (1958)

    Article  MATH  Google Scholar 

  81. Pekurovsky, D.: P3DFFT: a framework for parallel computations of Fourier transforms in three dimensions. SIAM J. Sci. Comput. 34(4), C192–C209 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  82. Peyret, R.: Spectral Methods for Incompressible Viscous Flow. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  83. Pimienta, V., Brost, M., Kovalchuk, N., Bresch, S., Steinbock, O.: Complex shapes and dynamics of dissolving drops of dichloromethane. Angewandte Chemie International Edition 50, 10728–10731 (2011)

    Article  Google Scholar 

  84. Popinet, S.: Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys. 190(2), 572–600 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  85. Proctor, S., Biddulph, M., Krishnamurthy, K.: Effects of Marangoni surface tension forces on modern distillation packings. AIChE J. 44(4), 831–835 (1998)

    Article  Google Scholar 

  86. Reichenbach, J., Linde, H.: Linear perturbation analysis of surface-tension-driven convection at a plane interface (Marangoni instability). J. Colloid Interface Sci. 84(2), 433–443 (1981)

    Article  Google Scholar 

  87. Rongy, L., Assemat P., De Wit, A.: Marangoni-driven convection around exothermic autocatalytic chemical fronts in free-surface solution layers. Chaos 22(3), 037106–037106 (2012)

    Article  Google Scholar 

  88. Schatz, M.F., Neitzel, G.P.: Experiments on thermocapillary instabilities. Annu. Rev. Fluid Mech. 33(1), 93–127 (2001)

    Article  MATH  Google Scholar 

  89. Schatz, M.F., VanHook, S.J., McCormick, W., Swift, J., Swinney, H.L.: Time-independent square patterns in surface-tension-driven Bénard convection. Phys. Fluids 11, 2577 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  90. Schwabe, D., Scharmann, A.: Some evidence for the existence and magnitude of a critical Marangoni number for the onset of oscillatory flow in crystal growth melts. J. Cryst. Growth 46(1), 125–131 (1979)

    Article  Google Scholar 

  91. Schwarz, E.: Hydrodynamische Regime der Marangoni-Instabilität beim Stoffübergang über eine fluide Phasengrenze. Ph.D. thesis, HU Berlin (1968)

    Google Scholar 

  92. Schwarz, E.: Zum Auftreten von Marangoni-Instabilität. Wärme- und Stoffübertragung 3, 131–133 (1970)

    Article  Google Scholar 

  93. Schwartztrauber, P.N.: Multiprocessor FFTs. Parallel Comput. 5, 197–210 (1987)

    Article  Google Scholar 

  94. Schwarzenberger, K., Eckert, K., Odenbach, S.: Relaxation oscillations between Marangoni cells and double diffusive fingers in a reactive liquid-liquid system. Chem. Eng. Sci. 68, 530–540 (2012)

    Article  Google Scholar 

  95. Schwarzenberger, K., Köllner, T., Linde, H., Odenbach, S., Boeck, T., Eckert, K.: On the transition from cellular to wave-like patterns during solutal Marangoni convection. Eur. Phys. J. Spec. Top. 219, 121–130 (2013)

    Article  Google Scholar 

  96. Schwarzenberger, K., Köllner, T., Linde, H., Boeck, T., Odenbach, S., Eckert, K.: Pattern formation and mass transfer under stationary solutal Marangoni instability. Adv. Colloid Interf. Sci. 206, 344–371 (2014)

    Article  Google Scholar 

  97. Schwarzenberger, K., Aland, S., Domnick, H., Odenbach, S., Eckert, K.: Relaxation oscillations of solutal Marangoni convection at curved interfaces. Colloids Surf. A Physicochem. Eng. Asp. 481, 633–643 (2015)

    Article  Google Scholar 

  98. Schwarzenberger, K., Köllner, T., Boeck, T., Odenbach, S., Eckert, K.: Hierarchical Marangoni roll cells: experiments and direct numerical simulations in three and two dimensions. In: Rahni, M.T., Karbaschi, M., Miller, R. (eds.) Computational Methods for Complex Liquid-Fluid Interfaces. Progress in Colloid and Interface Science, vol. 5. CRC, Boca Raton (2015)

    Google Scholar 

  99. Semenov, S., Starov, V., Rubio, R., Velarde, M.: Computer simulations of evaporation of pinned sessile droplets: influence of kinetic effects. Langmuir 28(43), 15203–15211 (2012)

    Article  Google Scholar 

  100. Sha, Y., Chen, H., Yin, Y., Tu, S., Ye, L., Zheng, Y.: Characteristics of the Marangoni convection induced in initial quiescent water. Ind. Eng. Chem. Res. 49, 8770–8777 (2010)

    Article  Google Scholar 

  101. Sherwood, T., Wei, J.: Interfacial phenomena in liquid extraction. Ind. Eng. Chem. 49, 1030–1034 (1957)

    Article  Google Scholar 

  102. Shi, Y., Eckert, K.: Acceleration of reaction fronts by hydrodynamic instabilities in immiscible systems. Chem. Eng. Sci. 61, 5523–5533 (2006)

    Article  Google Scholar 

  103. Shi, Y., Eckert, K.: A novel Hele-Shaw cell design for the analysis of hydrodynamic instabilities in liquid-liquid systems. Chem. Eng. Sci. 63, 3560–3563 (2008)

    Article  Google Scholar 

  104. Sigwart, K., Nassenstein, H.: Vorgänge an der Grenzfläche zweier flüssiger Phasen. Naturwissenschaften 42, 458–459 (1955)

    Article  Google Scholar 

  105. Slavtchev, S., Mendes, M.: Marangoni instability in binary liquid-liquid systems. Int. J. Heat Mass Transf. 47(14–16), 3269–3278 (2004)

    Article  MATH  Google Scholar 

  106. Slavtchev, S., Hennenberg, M., Legros, J.C., Lebon, G.: Stationary solutal Marangoni instability in a two-layer system. J. Colloid Interface Sci. 203(2), 354–368 (1998)

    Article  Google Scholar 

  107. Slavtchev, S., Kalitzova-Kurteva, P., Mendes, M.: Marangoni instability of liquid-liquid systems with a surface-active solute. Colloids Surf. A Physicochem. Eng. Asp. 282–283, 37–49 (2006)

    Article  Google Scholar 

  108. Smith, K.: On convective instability induced by surface-tension gradients. J. Fluid Mech. 24(02), 401–414 (1966)

    Article  Google Scholar 

  109. Sternling, C., Scriven, L.: Interfacial turbulence: hydrodynamic instability and the Marangoni effect. AIChE J. 5(4), 514–523 (1959)

    Article  Google Scholar 

  110. Sun, Z.: Onset of Rayleigh–Bénard–Marangoni convection with time-dependent nonlinear concentration profiles. Chem. Eng. Sci. 68(1), 579–594 (2012)

    Article  Google Scholar 

  111. Tadmor, R.: Marangoni flow revisited. J. Colloid Interface Sci. 332(2), 451–454 (2009)

    Article  Google Scholar 

  112. Thomson, J.: On certain curious motions observable at the surfaces of wine and other alcoholic liquors. Lond. Edinb. Dublin Philos. Mag. J. Sci. 10(67), 330–333 (1855)

    Google Scholar 

  113. Wang, Z., Lu, P., Wang, Y., Yang, C., Mao, Z.S.: Experimental investigation and numerical simulation of Marangoni effect induced by mass transfer during drop formation. AIChE J. pp. n/a–n/a (2013)

    Google Scholar 

  114. Wegener, M., Paschedag, A., Kraume, M.: Mass transfer enhancement through Marangoni instabilities during single drop formation. Int. J. Heat Mass Transf. 52(11–12), 2673–2677 (2009)

    Article  Google Scholar 

  115. Yiantsios, S., Serpetsi, S., Doumenc, F., Guerrier, B.: Surface deformation and film corrugation during drying of polymer solutions induced by Marangoni phenomena. Int. J. Heat Mass Transf. 89, 1083–1094 (2015)

    Article  Google Scholar 

  116. Ying, W., Sawistowski, H.: Interfacial and mass transfer characteristics of binary liquid-liquid systems. In: Proceedings of the International Solvent Extraction Conference, vol. 2, pp. 840–851 (1971)

    Google Scholar 

  117. Zeren, R., Reynolds, W.: Thermal instabilities in two-fluid horizontal layers. J. Fluid Mech. 53(02), 305–327 (1972)

    Article  MATH  Google Scholar 

  118. Zhang, J., Oron, A., Behringer, R.: Novel pattern forming states for Marangoni convection in volatile binary liquids. Phys. Fluids 23, 072102 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft in the framework of the Priority Program 1506 (grants Ec201/2 and Bo1668/6) is gratefully acknowledged. Furthermore, we thank the computing center (UniRZ) of TU Ilmenau and FZ Jülich (NIC) for access to its parallel computing resources. We are also grateful to Prof. H. Linde for numerous fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Eckert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Eckert, K., Köllner, T., Schwarzenberger, K., Boeck, T. (2017). Complex Patterns and Elementary Structures of Solutal Marangoni Convection: Experimental and Numerical Studies. In: Bothe, D., Reusken, A. (eds) Transport Processes at Fluidic Interfaces. Advances in Mathematical Fluid Mechanics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-56602-3_16

Download citation

Publish with us

Policies and ethics