Skip to main content

Manipulating Selenium Metabolism in Plants: A Simple Twist of Metabolic Fate Can Alter Selenium Tolerance and Accumulation

  • Chapter
  • First Online:

Part of the book series: Plant Ecophysiology ((KLEC,volume 11))

Abstract

Selenium (Se) is a micronutrient for many organisms including humans. But like many trace elements, Se can be toxic at high concentrations and become a public health concern if it accumulates in soils or groundwater. Although higher plants don’t require Se, plants can still accumulate and metabolize Se via the sulfur assimilatory pathway. Genetic manipulation of plant selenium metabolism primarily stems from two areas of interest: it has the potential to improve the phytoremediation of Se in contaminated areas, and it may aid the development of Se-containing phytochemical compounds that possess health benefits. This review highlights studies that have successfully altered Se metabolism in plants, and concludes by focusing on novel genes and pathways that might be targeted to manipulate Se metabolic processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agalou A, Roussis A, Spaink HP (2005) The Arabidopsis selenium-binding protein confers tolerance to toxic levels of selenium. Funct Plant Biol 32:881–890

    Article  CAS  Google Scholar 

  • Bañuelos G, Terry N, LeDuc DL, Pilon-Smits EA, Mackey B (2005) Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environ Sci Technol 39:1771–1777

    Article  PubMed  Google Scholar 

  • Bañuelos G, LeDuc DL, Pilon-Smits EAH, Tagmount A, Terry N (2007) Transgenic Indian mustard overexpressing selenocysteine lyase or seleno- cysteine methyltransferase exhibit enhanced potential for selenium phytore- mediation under field conditions. Environ Sci Technol 41:599–605

    Article  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bergamini C, Moruzzi N, Sblendido A, Lenaz G, Fato R (2012) A water soluble CoQ10 formulation improves intracellular distribution and promotes mitochondrial respiration in cultured cells. PLoS One 7:e33712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown TA, Shrift A (1981) Exclusion of selenium from proteins of selenium-tolerant Astragalus species. Plant Physiol 67:1051–1053

    Google Scholar 

  • Çakir O, Ari S (2013) Cloning and molecular characterization of selenocysteine methyltransferase (AchSMT) cDNA from Astragalus chrysochlorus. Plant Omics 6:100–106

    Google Scholar 

  • Çakır O, Turgut-Kara N, Arı Ş (2012) Selenium metabolism in plants: molecular approaches. In: Montanaro G (ed) Advances in selected plant physiology aspects. InTech, Rijeka, pp 209–232

    Google Scholar 

  • Çakır Ö, Turgut-Kara N, Arı Ş, Zhang B (2015) De novo transcriptome assembly and comparative analysis elucidate complicated mechanism regulating Astragalus chrysochlorus response to selenium stimuli. PloSOne 10:e0135677

    Article  Google Scholar 

  • Çakir O, Candar-Cakir B, Zhang BH (2016) Small RNA and degradome sequencing reveals important microRNA function in Astragalus chrysochlorus response to selenium stimuli. Plant Biotechnol J 14:543–556

    Article  PubMed  Google Scholar 

  • Davis CD (2012) Selenium supplementation and cancer prevention. Curr Nutr Rep 1:16–23

    Google Scholar 

  • de Souza MP, Pilon-Smits EAH, Lytle CM, Hwang S, Tai JC, Honma TSU, Yeh L, Terry N (1998) Rate-limiting steps in selenium volatilization by Brassica juncea. Plant Physiol 117:1487–1494

    Article  PubMed  PubMed Central  Google Scholar 

  • Dimkovikj A, Van Hoewyk D (2014) Selenite activates the alternative oxidase pathway and alters primary metabolism in Brassica napus roots: evidence of a mitochondrial stress response. BMC Plant Biol 14:259

    Article  PubMed  PubMed Central  Google Scholar 

  • Dimkovikj A, Fisher B, Hutchison K, Van Hoewyk D (2015) Stuck between a ROS and a hard place: analysis of the ubiquitin proteasome pathway in selenocysteine treated Brassica napus reveals different toxicities during selenium assimilation. J Plant Physiol 181:50–54

    Google Scholar 

  • El Kassis E, Cathala N, Rouached H et al (2007) Characterization of a selenate-resistant Arabidopsis mutant: root growth as a potential target for selenate toxicity. Plant Physiol 143:1231–1241

    Article  PubMed  PubMed Central  Google Scholar 

  • El Mehdawi AF, Pilon-Smits EAH (2012) Ecological aspects of plant selenium hyperaccumulation. Plant Biol 14:1–10

    Article  PubMed  Google Scholar 

  • Ellis DR, Sors TG, Brunk DG, Albrecht C, Orser C, Lahner B et al (2004) Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol 4:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng R, Chaoyang W, Tu S (2013) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87:58–68

    Article  CAS  Google Scholar 

  • Fisher B, Yarmolinsky D, Abdel-Ghany S, Pilon M, Pilon-Smits EA, Sagi M, Van Hoewyk D (2016) Superoxide generated from the glutathione-mediated reduction of selenite damages the iron-sulfur cluster of chloroplastic ferredoxin. Plant Physiol Biochem 106:228–235

    Article  CAS  PubMed  Google Scholar 

  • Grant K, Carey NM, Mendoza M, Schulze J, Pilon M, Pilon-Smits EA, Van Hoewyk D (2011) Adenosine 5′-phosphosulfate reductase (APR2) mutation in Arabidopsis implicates glutathione deficiency in selenate toxicity. Biochem J 438:325–335

    Article  CAS  PubMed  Google Scholar 

  • Hallenbeck PC, George GN, Prince RC, Thorneley RN (2009) Characterization of a modified nitrogenase Fe protein from Klebsiella pneumoniae in which the 4Fe4S cluster has been replaced by a 4Fe4Se cluster. J Biol Inorg Chem 14:673–682

    Article  CAS  PubMed  Google Scholar 

  • Hawkesford MJ, De Kok LJ (2006) Managing sulphur metabolism in plants. Plant Cell Environ 29:382–395

    Article  CAS  PubMed  Google Scholar 

  • Huang SQ, Xiang AL, Che LL, Chen S, Li H, Song JB, Yang ZM (2010) A set of miRNAs from Brassica napus in response to sulphate deficiency and cadmium stress. Plant Biotechnol J 8(8):887–899

    Article  CAS  PubMed  Google Scholar 

  • Hugouvieux V, Dutilleul C, Jourdain A, Reynaud F, Lopez V, Bourguignon J (2009) Arabidopsis putative selenium-binding protein1 expression is tightly linked to cellular sulfur demand and can reduce sensitivity to stresses requiring glutathione for tolerance. Plant Physiol 151:768–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Institute of Medicine (2000) Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. National Academies Press, Washington, DC

    Google Scholar 

  • Jiang L, Gao QC, Chen ZP, Zhang JJ, Bai XY, He XL, Xu QX (2015) Selenium tolerance of an Arabidopsis drought-resistant mutant csm1-1. Rus J Plant Physiol 62:625–631

    Article  CAS  Google Scholar 

  • Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya YN, Saito K, Takahashi H, Dalmay T (2009) Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant J 57:313–321

    Article  CAS  PubMed  Google Scholar 

  • Kessi J, Hanselmann KW (2004) Similarities between the abiotic reduction of selenite with glutathione and the dissimilatory reaction mediated by Rhodospirillum rubrum and Escherichia coli. J Biol Chem 279:50662–50669

    Article  CAS  PubMed  Google Scholar 

  • LeDuc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF, Wu CP, Abdel Samie M, Chiang CY, Tagmount A, Neuhierl B, Böck A (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol 135:377–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeDuc DL, Abdel Samie M, Montes-Bayon M, Wu CP, Reisinger SJ, Terry N (2006) Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard. Environ Pollut 144:70–76

    Article  CAS  PubMed  Google Scholar 

  • Lyi SM, Heller LI, Rutzke M, Welch RM, Kochian LV, Li L (2005) Molecular and biochemical characterization of the selenocysteine Se-methyltransferase gene and Se-methylselenocysteine synthesis in broccoli. Plant Physiol 138:409–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuhierl B, Bock A (1996) On the mechanism of selenium tolerance in selenium-accumulating plants. Purification and characterization of a specific selenocysteine methyltransferase from cultured cells of Astragalus bisulcatus. Eur J Biochem 239:235–238

    Google Scholar 

  • Ng BH, Anderson JW (1979) Light-dependent incorporation of selenite and sulphite into selenocysteine and cysteine by isolated pea chloroplasts. Phytochemistry 18:573–580

    Article  CAS  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S et al (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    Article  CAS  PubMed  Google Scholar 

  • Ohara K, Kokado Y, Yamamoto H, Sato F, Yazaki K (2004) Engineering of ubiquinone biosynthesis using the yeast coq2 gene confers oxidative stress tolerance in transgenic tobacco. Plant J 40:734–743

    Article  CAS  PubMed  Google Scholar 

  • Pandey C, Raghuram B, Sinha AK, Gupta M (2015) miRNA plays a role in the antagonistic effect of selenium on arsenic stress in rice seedlings. Metallomics 7:857–866

    Article  CAS  PubMed  Google Scholar 

  • Papp LV, Lu J, Holmgren A, Khanna KK (2007) From selenium to selenoproteins: synthesis, identity, and their role in human health. Antiox Red Signal 9:775–806

    Article  CAS  Google Scholar 

  • Paulose B, Chhikara S, Coomey J, H-i J, Vatamaniuk O, Dhankher OP (2013) A g-glutamyl cyclotransferase protects arabidopsis plants from heavy metal toxicity by recycling glutamate to maintain glutathione homeostasis. Plant Cell 25:4580–4595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilbeam DJ, Greathead HMR, Drihem K (2015) Selenium. In: Barker AV, Pilbeam DJ (eds) A handbook of plant nutrition, 2nd edn. CRC Press, Boca Raton, pp 165–198

    Google Scholar 

  • Pilon M, Owen JD, Garifullina GF, Kurihara T, Mihara H, Esaki N, Pilon-Smits EAH (2003) Enhanced selenium tolerance and accumulation in transgenic Arabidopsis expressing a mouse selenocysteine lyase. Plant Physiol 131:1250–1257

    Google Scholar 

  • Pilon-Smits EA (2015) Selenium in plants. Luttge U, Beyschlag W, ed. Progress in botany. Springer International Publishing. Vancouver, In, pp 93–107

    Google Scholar 

  • Pilon-Smits EA, LeDuc DL (2009) Phytoremediation of selenium using transgenic plants. Curr Opin Biotechnol 20:207–212

    Google Scholar 

  • Pilon-Smits EAH (2005) Phytoremediation. Annu Rev Plant Biol 56: 15–39

    Google Scholar 

  • Pilon-Smits EAH, Hwang SB et al (1999) Overexpression of ATP sulfurylase in Brassica juncea leads to increased selenate uptake, reduction and tolerance. Plant Physiol 119:123–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabbagh M, Van Hoewyk D (2012) Malformed selenoproteins are removed by the ubiquitin-proteasome pathway in Stanleya pinnata. Plant Cell Physiol 53:555–564

    Google Scholar 

  • Schild F, Kieffer-Jaquinod S, Palencia A, Cobessi D, Sarret G, Zubieta C, Jourdain A, Dumas R, Forge V, Testemale D, Bourguignon J (2014) Biochemical and biophysical characterization of the selenium-binding and reducing site in Arabidopsis thaliana homologue to mammals selenium-binding protein 1. J Biol Chem 289:31765–31776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seko Y, Saito T, Kitahara J, Imura N (1989) Active oxygen generation by the reaction of selenite with reduced glutathione in vitro. In: Wendel A (ed) Proceedings of the fourth international symposium on selenium in biology and medicine. Springer, Heidelburg, pp 70–73

    Chapter  Google Scholar 

  • Sors TG, Ellis DR, Na GN (2005) Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. Plant J 42:785–797

    Article  CAS  PubMed  Google Scholar 

  • Sors TG, Martin CP, Salt DE (2009) Characterization of selenocysteine methyltransferases from Astragalus species with contrasting selenium accumulation capacity. Plant J 59:110–122

    Article  CAS  PubMed  Google Scholar 

  • Spallholz JE (1994) On the nature of selenium toxicity and carcinostatic activity. Free Radic Biol Med 17:45–64

    Google Scholar 

  • Stadtman TC (1990) Selenium biochemistry. Annu Rev Biochem 59:111–127

    Google Scholar 

  • Stadtman TC (1996) Selenocysteine. Annu Rev Biochem 65:83–100

    Article  CAS  PubMed  Google Scholar 

  • Tamaoki M, Freeman JL, Pilon-Smits EA (2008) Cooperative ethylene and jasmonic acid signaling regulates selenite resistance in Arabidopsis. Plant Physiol 146:1219–1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terry N, Zayed A, de Souza P, Tarun A (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432

    Google Scholar 

  • Vallentine P, Hung CY, Xie J, Van Hoewyk D (2014) The ubiquitin-proteasome pathway protects Chlamydomonas reinhardtii against selenite toxicity, but is impaired as reactive oxygen species accumulate. AoB Plants 6:plu062

    Google Scholar 

  • Van Hoewyk D (2013) A tale of two toxicities: malformed selenoproteins and oxidative stress both contribute to selenium stress in plants. Ann Bot 112:965–972

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Hoewyk D (2016) Defects in endoplasmic reticulum-associated degradation (ERAD) increase selenate sensitivity in Arabidopsis. Plant Signal Behav. doi:10.1080/15592324.2016.1171451

    PubMed  Google Scholar 

  • Van Hoewyk D, Garifullina GF, Ackley AR, Abdel-Ghany SE, Marcus MA, Fakra S, Ishiyama K, Inoue E, Pilon M, Takahashi H, Pilon-Smits EA (2005) Overexpression of AtCpNifS enhances selenium tolerance and accumulation in Arabidopsis. Plant Physiol 139:1518–1528

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Hoewyk D, Takahashi H, Inoue E, Hess A, Tamaoki M, Pilon-Smits EAH (2008) Transcriptome analyses give insight into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis. Physiol Plant 132:236–253

    PubMed  Google Scholar 

  • van Huysen T, Abdel-Ghany S, Hale KL, LeDuc D, Terry N, Pilon-Smits EAH (2003) Overexpression of cystathionine-g-synthase in Indian mustard enhances selenium volatilization. Planta 218:71–78

    Article  PubMed  Google Scholar 

  • Whanger PD (2002) Selenocompounds in plants and animals and their biological significance. J Am Coll Nutr 21:223–232

    Article  CAS  PubMed  Google Scholar 

  • White PJ (2015) Selenium accumulation by plants. Ann Bot 117:217–235

    PubMed  PubMed Central  Google Scholar 

  • Ying Q, Ansong E, Diamond AM, Yang W (2015) A critical role for cysteine 57 in the biological functions of selenium binding protein-1. Internat J Mol Sci 16:27599–27608

    Article  CAS  Google Scholar 

  • Zayed A, Lytle CM, Terry N (1998) Accumulation and volatilization of different chemical species of selenium by plants. Planta 206:284–292

    Article  CAS  Google Scholar 

  • Zhang BH (2015) MicroRNA: a new target for improving plant tolerance to abiotic stress. J Exp Bot 66:1749–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Wang Q (2015) MicroRNA-based biotechnology for plant improvement. J Cell Physiol 230:1–5

    Google Scholar 

  • Zhang LH, Byrne PF, Pilon-Smits EAH (2006) Mapping quantitative trait loci associated with selenate tolerance in Arabidopsis thaliana. New Phytol 170:33–42

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Hu B, Li W et al (2014) OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice. New Phytol 20:1183–1191

    Article  Google Scholar 

  • Zhao XQ, Mitani N, Yamaji N, Shen RF, Ma JF (2010) Involvement of silicon influx transporter OsNIP2; 1 in selenite uptake in rice. Plant Physiol 153:1871–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Li L (2010) Think outside the box: Selenium volatilization altered by a broccoli gene in the ubiquinone biosynthetic pathway. Plant Signal Behav 5:76–77

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Yuan Y, Yang Y, Rutzke M, Thannhauser TW, Kochian LV, Li L (2009) Involvement of a broccoli COQ5 methyltransferase in the production of volatile selenium compounds. Plant Physiol 151:528–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu L, Jiang CJ, Deng WW, Gao X, Wang RJ, Wan XC (2008) Cloning and expression of selenocysteine methyltransferase cDNA from Camellia sinensis. Acta Physiol Plant 30:167–174

    Article  CAS  Google Scholar 

  • Zhu YG, Pilon-Smits EA, Zhao FJ, Williams PN, Meharg AA (2009) Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci 14:436–442

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doug Van Hoewyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Van Hoewyk, D., Çakir, O. (2017). Manipulating Selenium Metabolism in Plants: A Simple Twist of Metabolic Fate Can Alter Selenium Tolerance and Accumulation. In: Pilon-Smits, E., Winkel, L., Lin, ZQ. (eds) Selenium in plants. Plant Ecophysiology, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-56249-0_10

Download citation

Publish with us

Policies and ethics