Skip to main content

Diversity and Function of Endophytic Microbial Community of Plants with Economical Potential

  • Chapter
  • First Online:
Diversity and Benefits of Microorganisms from the Tropics

Abstract

Plants do not live alone as single entities but closely associate with an incredible diversity of bacteria, archaea, fungi, and other organisms. The concept of endophyte has been addressed by several studies and may easily be related to habitat and not so easily to function, and it is still under construction. Generically, endophytes are microorganisms that spend most of their lifetime inside the plant without causing an apparent disease symptom to the host. Here, we revised the acknowledged endophytes from different plants (grass to trees) and the methodological approaches used to assess them, from cultivation methods to next-generation sequencing. We address some of the endophytes’ major characteristics that make them beneficial to plants. Two case studies, sugarcane and pine trees, are presented to illustrate and discuss the benefits of plant endophytes. The endophytes diversity and their roles is not a close subject. The sugarcane endophytic microbial diversity is described and the benefits provided by this association were discussed, in the perspective of its application in the future as important sugarcane agrobiotechnological input. The diversity of the endophytic microbiome of pine trees is outlined and was examined the endophytic community’s possible roles in the pine tree disease, pine wilt disease. The chapter closes with a comparative analysis among endophyte-sequenced genomes. An appropriate combination of culture-dependent and culture-independent methods, such as the analysis of genomes, proteomes, transcriptomes, metabolome and lipidomes, will allow a better understanding and characterization of endophytes focused on biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomolecules 4:117–139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167

    Article  CAS  PubMed  Google Scholar 

  • Alves GC, Videira SS, Urquiaga S, Reis VM (2015) Differential plant growth promotion and nitrogen fixation in two genotypes of maize by several Herbaspirillum inoculants. Plant Soil 387:307–321

    Article  CAS  Google Scholar 

  • Ando S, Goto M, Meunchang S et al (2005) Detection of nifH sequences in sugarcane (Saccharum officinarum L.) and pineapple (Ananas comosus [L.] Merr.) Soil Sci Plant Nutr 51:303–308

    Article  CAS  Google Scholar 

  • Anzuay MS, Ludueña LM, Angelini JG et al (2015) Beneficial effects of native phosphate solubilizing bacteria on peanut (Arachis hypogaea L.) growth and phosphorus acquisition. Symbiosis 66:89–97

    Article  CAS  Google Scholar 

  • Araújo WL, Maccheroni W Jr, Aguilar-Vildoso CI et al (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 47:229–236

    Article  PubMed  Google Scholar 

  • Arenz BE, Schlatter DC, Bradeen JM, Kinkel LL (2015) Blocking primers reduce co-amplification of plant DNA when studying bacterial endophyte communities. J Microbiol Methods 117:1–3

    Article  CAS  PubMed  Google Scholar 

  • Armanhi JSL, de Souza RSC, de Araújo LM et al (2016) Multiplex amplicon sequencing for microbe identification in community-based culture collections. Sci Rep 6:29543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold AE, Mejı LC, Kyllo D et al (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci U S A 100(26):15649–15654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azevedo JL, Maccheroni W, Pereira JO, De Araújo WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3:40–65

    Article  Google Scholar 

  • Aziz RK, Bartels D, Best AA et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bal A, Anand R, Berge O, Chanway CP (2012) Isolation and identification of diazotrophic bacteria from internal tissues of Pinus contorta and Thuja plicata. Can J For Res 42:807–813

    Article  CAS  Google Scholar 

  • Baldani JI, Baldani VLD (2005) History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. An Acad Bras Cienc 77:549–579

    Article  CAS  PubMed  Google Scholar 

  • Baldani VLD, Alvarez MAB, Baldani JI, Döbereiner J (1986) Establishment of inoculated Azospirillum spp. in the rhizosphere and in roots of field grown wheat and sorghum. Plant Soil 90:35–46

    Article  Google Scholar 

  • Baldani VLD, Baldani JI, Olivares FL, Döbereiner J (1992) Identification and ecology of Herbaspirillum seropedicae and the closely related Pseudomonas rubrisubalbicans. Symbiosis 19:65–73

    Google Scholar 

  • Baldani JI, Caruso L, Baldani VLD et al (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29:911–922

    Article  CAS  Google Scholar 

  • Baldani JI, Reis VM, Videira SS et al (2014) The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant Soil 384:413–431

    Article  CAS  Google Scholar 

  • Barraquio WL, Revilla L, Ladha JK (1997) Isolation of endophytic diazotrophic bacteria from wetland rice. Plant Soil 194:15–24

    Article  CAS  Google Scholar 

  • de Bary A (1866) Morphologie und physiologie der pilze, flechten und myxomyceten. Verlag Wilhelm von Engelmann

    Google Scholar 

  • Basak BB, Biswas DR (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by Sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil 317:235–255

    Article  CAS  Google Scholar 

  • Bastián F, Cohen A, Piccoli P et al (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul 24:7–11

    Article  Google Scholar 

  • Benedict MN, Henriksen JR, Metcalf WW et al (2014) ITEP: an integrated toolkit for exploration of microbial pan-genomes. BMC Genomics 15:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Beneduzi A, Moreira F, Costa PB et al (2013) Diversity and plant growth promoting evaluation abilities of bacteria isolated from sugarcane cultivated in the south of Brazil. Appl Soil Ecol 63:94–104

    Article  Google Scholar 

  • Bennett S (2004) Solexa Ltd. Pharmacogenomics 5:433–438. doi:10.1517/14622416.5.4.433

    Article  PubMed  Google Scholar 

  • Bent E, Chanway CP (1998) The growth-promoting effects of a bacterial endophyte on lodgepole pine are partially inhibited by the presence of other rhizobacteria. Can J Microbiol 44:980–988. doi:10.1139/w98-097

    Article  CAS  Google Scholar 

  • Berg G, Krechel A, Ditz M et al (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229

    Article  CAS  PubMed  Google Scholar 

  • Bertalan M, Albano R, de Pádua V et al (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genomics 10:450. doi:10.1186/1471-2164-10-450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bianco C, Defez R (2009) Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. J Exp Bot 60:3097–3107

    Article  CAS  PubMed  Google Scholar 

  • Blanco Y, Blanch M, Piñón D et al (2005) Antagonism of Gluconacetobacter diazotrophicus(a sugarcane endosymbiont) against Xanthomonas albilineans (pathogen) studied in alginate-immobilized sugarcane stalk tissues. J Biosci Bioeng 99:366–371

    Article  CAS  PubMed  Google Scholar 

  • Bomar L, Maltz M, Colston S, Graf J (2011) Directed culturing of microorganisms using metatranscriptomics. MBio 2:e00012–e00011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brader G, Compant S, Mitter B et al (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Breda FAF, Alves GC, Reis VM (2016) Productivity of maize in the presence of nitrogen levels and inoculation with Herbaspirillum seropedicae. Pesqui Agropecuária Bras 51:45–52

    Article  Google Scholar 

  • Bulgari D, Casati P, Brusetti L et al (2009) Endophytic bacterial diversity in grapevine (Vitis vinifera L.) leaves described by 16S rRNA gene sequence analysis and length heterogeneity-PCR. J Microbiol 47:393–401

    Article  CAS  PubMed  Google Scholar 

  • Büll LT (1993) Nutrição mineral do milho. In: Büll LT, Cantarella H (eds) Cultura do milho: fatores que afetam a produtividade. POTAFOS, Piracicaba, pp 64–145

    Google Scholar 

  • Caballero-Mellado J, Fuentes-Ramirez LE, Reis VM, Martinez-Romero E (1995) Genetic structure of Acetobacter diazotrophicus populations and identification of a new genetically distant group. Appl Environ Microbiol 61:3008–3013

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cardinale M (2014) Scanning a microhabitat: plant-microbe interactions revealed by confocal laser microscopy. Front Microbiol 5:1–10. doi:10.3389/fmicb.2014.00094

    Article  Google Scholar 

  • Carrell A, Frank A (2012) Diversity of endophytic bacterial communities in Pinus flexilis foliage. In: ESA 97th Annual Meeting. Portland

    Google Scholar 

  • Cavalcante VA, Döbereiner J (1988) A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil 108:23–31

    Article  Google Scholar 

  • Chanway CP (1997) Inoculation of tree roots with plant growth promoting soil bacteria: an emerging technology for reforestation. For Sci 43:99–112

    Google Scholar 

  • Chelius MK, Triplett EW (2001) The diversity of Archaea and Bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263

    Article  CAS  PubMed  Google Scholar 

  • Chen YP, Rekha PD, Arun AB et al (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41. doi:10.1016/j.apsoil.2005.12.002

    Article  Google Scholar 

  • Chun J, Rainey FA (2014) Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 64:316–324. doi:10.1099/ijs.0.054171-0

    Article  PubMed  Google Scholar 

  • Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99–S127. doi:10.1086/342161

    Article  PubMed  Google Scholar 

  • Cochran WG (1950) Estimation of bacterial densities by means of the “most probable number”. Biometrics 6:105–116

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Mitter B, Colli-Mull JG et al (2011) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62:188–197

    Article  PubMed  Google Scholar 

  • Compant S, Sessitsch A, Mathieu F (2012) The 125th anniversary of the first postulation of the soil origin of endophytic bacteria – a tribute to M.L.V. Galippe. Plant Soil 356:299–301

    Article  CAS  Google Scholar 

  • Conn VM, Franco CMM (2004) Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Appl Environ Microbiol 70:1787–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras-Moreira B, Vinuesa P (2013) GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 79:7696–7701. doi:10.1128/AEM.02411-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordero P, Príncipe A, Jofré E et al (2014) Inhibition of the phytopathogenic fungus Fusarium proliferatum by volatile compounds produced by Pseudomonas. Arch Microbiol 196:803–809

    Article  CAS  PubMed  Google Scholar 

  • Deakin WJ, Broughton WJ (2009) Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat Rev Microbiol 7:312–320. doi:10.1038/nrmicro2091

    CAS  PubMed  Google Scholar 

  • Dechen AR, Haag HP, de Carmello QAC (1991) Funções dos micronutrientes nas plantas. In: Ferreira ME, da Cruz M (eds) Micronutrientes na agricultura. POTAFOS/CNPq, Piracicaba, pp 65–78

    Google Scholar 

  • Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2:621–631

    Article  CAS  PubMed  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A et al (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:153–162

    Article  Google Scholar 

  • Döbereiner J (1992) Recent changes in concepts of plant bacteria interactions: endophytic N2 fixing bacteria. Cienc Cult 44:310–313

    Google Scholar 

  • Döbereiner J, Baldani VLD, Olivares F, Reis VM (1993) Endophytic diazotrophs: the key to BNF in gramineous plants. In: Hegazi NA, Fayez M, Monib M (eds) Nitrogen Fixation with Non-Legumes. The American University in Cairo Press, Cairo, pp 395–408

    Google Scholar 

  • Döbereiner J, Andrade VO, Baldani VLD (1999) Protocolos para preparo de meios de cultura da Embrapa Agrobiologia. Série Doc Embrapa Agrobiol 110:1–38

    Google Scholar 

  • Dong Z, Canny MJ, McCully ME et al (1994) A nitrogen-fixing endophyte of sugarcane stems (a new role for the apoplast). Plant Physiol 105:1139–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eevers N, Gielen M, Sánchez-López A et al (2015) Optimization of isolation and cultivation of bacterial endophytes through addition of plant extract to nutrient media. Microb Biotechnol 8:707–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehlers MR (2008) Pacific biomarkers, inc. Biomark Med 2:221–227. doi:10.2217/17520363.2.3.221

    Article  PubMed  Google Scholar 

  • Estrada GA, Baldani VLD, de Oliveira DM et al (2013) Selection of phosphate-solubilizing diazotrophic Herbaspirillum and Burkholderia strains and their effect on rice crop yield and nutrient uptake. Plant Soil 369:115–129

    Article  CAS  Google Scholar 

  • Gaiero JR, McCall CA, Thompson KA et al (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750

    Article  PubMed  Google Scholar 

  • Galardini M, Mengoni A, Biondi EG et al (2014) DuctApe: a suite for the analysis and correlation of genomic and OmniLogTM phenotype microarray data. Genomics 103:1–10. doi:10.1016/j.ygeno.2013.11.005

    Article  CAS  PubMed  Google Scholar 

  • Gamalero E, Marzachì C, Galetto L et al (2016) An 1-aminocyclopropane-1-carboxylate (ACC) deaminase-expressing endophyte increases plant resistance to Flavescence Dorée phytoplasma infection. Plant Biosyst:1–10

    Google Scholar 

  • Gardner JM, Feldman AW, Zablotowicz RM (1982) Identity and behavior of xylem-residing bacteria in rough lemon roots of Florida Citrus trees. Appl Environ Microbiol 43:1335–1342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Germaine K, Keogh E, Garcia-Cabellos G et al (2004) Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol Ecol 48:109–118. doi:10.1016/j.femsec.2003.12.009

    Article  CAS  PubMed  Google Scholar 

  • Germaine KJ, Liu X, Cabellos GG et al (2006) Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2, 4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57:302–310

    Article  CAS  PubMed  Google Scholar 

  • Gillis M, Kersters K, Hoste B et al (1989) Acetobacter diazotrophicus sp. nov., a nitrogen-fixing acetic acid bacterium associated with sugarcane. Int J Syst Bacteriol 39:361–364

    Article  Google Scholar 

  • Glassner H, Zchori-Fein E, Compant S et al (2015) Characterization of endophytic bacteria from cucurbit fruits with potential benefits to agriculture in melons (Cucumis melo L.) FEMS Microbiol Ecol 91:fiv074

    Article  PubMed  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39. doi:10.1016/j.micres.2013.09.009

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Goteti PK, Emmanuel LDA, Desai S, Shaik MHA (2013) Prospective zinc solubilising bacteria for enhanced nutrient uptake and growth promotion in maize (Zea mays L.) Int J Microbiol 2013:869697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gutierrez-Zamora ML, Martınez-Romero E (2001) Natural endophytic association between Rhizobium etli and maize (Zea mays L.) J Biotechnol 91:117–126

    Article  CAS  PubMed  Google Scholar 

  • Gyaneshwar P, Hirsch AM, Moulin L et al (2011) Legume-nodulating betaproteobacteria: diversity, host range, and future prospects. Mol Plant-Microbe Interact 24:1276–1288

    Article  CAS  PubMed  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914. doi:10.1139/m97-131

    Article  CAS  Google Scholar 

  • Han H-S, Lee KD, Supanjani (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52:130

    CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, Van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471. doi:10.1016/j.tim.2008.07.008

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320. doi:10.1128/MMBR.00050-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartmann A, Schmid M, Tuinen DV, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257. doi:10.1007/s11104-008-9814-y

    Article  CAS  Google Scholar 

  • Ho Y-N, Chiang H-M, Chao C-P et al (2015) In planta biocontrol of soilborne Fusarium wilt of banana through a plant endophytic bacterium, Burkholderia cenocepacia 869T2. Plant Soil 387:295–306

    Article  CAS  Google Scholar 

  • Hoffman MT, Gunatilaka MK, Wijeratne K et al (2013) Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte. PLoS One 8:e73132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 42:1825–1831

    CAS  Google Scholar 

  • Hungria M, Mendes IC (2015) Nitrogen fixation with soybean: the perfect symbiosis? In: de Bruijn FJ (ed) Biological nitrogen fixation. Wiley, Hoboken, pp 1009–1024

    Chapter  Google Scholar 

  • Ikeda S, Kaneko T, Okubo T et al (2009) Development of a bacterial cell enrichment method and its application to the community analysis in soybean stems. Microb Ecol 58:703–714

    Article  CAS  PubMed  Google Scholar 

  • Islam M, Deora A, Hashidoko Y et al (2007) Isolation and identification of potential phosphate solubilizing bacteria from the rhizoplane of Oryza sativa L. cv. BR29 of Bangladesh. Zeitschrift für Naturforsch C 62:103–110

    Article  CAS  Google Scholar 

  • Izumi H, Anderson IC, Killham K, Moore ERB (2008) Diversity of predominant endophytic bacteria in European deciduous and coniferous trees. Can J Microbiol 54:173–179. doi:10.1139/w07-134

    Article  CAS  PubMed  Google Scholar 

  • James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. F Crop Res 65:197–209

    Article  Google Scholar 

  • James EK, Olivares FL, de Oliveira ALM et al (2001) Further observations on the interaction between sugar cane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions. J Exp Bot 52:747–760

    Article  CAS  PubMed  Google Scholar 

  • James TY, Marino JA, Perfecto I, Vandermeer J (2016) Identification of putative coffee rust mycoparasites via single-molecule DNA sequencing of infected pustules. Appl Environ Microbiol 82:631–639

    Article  CAS  PubMed Central  Google Scholar 

  • Jha PN, Gupta G, Jha P, Mehrotra R (2013) Association of rhizospheric/endophytic bacteria with plants: a potential gateway to sustainable agriculture. Greener J Agric Sci 3:73–84

    Google Scholar 

  • Jiao J-Y, Wang H-X, Zeng Y, Shen Y-M (2006) Enrichment for microbes living in association with plant tissues. J Appl Microbiol 100:830–837

    Article  PubMed  Google Scholar 

  • Kämpfer P, Glaeser SP (2012) Prokaryotic taxonomy in the sequencing era – the polyphasic approach revisited. Environ Microbiol 14:291–317. doi:10.1111/j.1462-2920.2011.02615.x

    Article  PubMed  CAS  Google Scholar 

  • Kefi A, Ben Slimene I, Karkouch I et al (2015) Characterization of endophytic Bacillus strains from tomato plants (Lycopersicon esculentum) displaying antifungal activity against Botrytis cinerea Pers. World J Microbiol Biotechnol 31:1967–1976

    Article  CAS  PubMed  Google Scholar 

  • Khan AL, Waqas M, Kang S-M et al (2014a) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 52:689–695

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Zaidi A, Ahmad E (2014b) Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. In: Khan MS, Zaidi A, Musarrat J (eds) Phosphate solubilizing microorganisms. Springer International Publishing, Cham, pp 31–62

    Google Scholar 

  • Khare E, Arora NK (2010) Effect of indole-3-acetic acid (IAA) produced by Pseudomonas aeruginosa in suppression of charcoal rot disease of chickpea. Curr Microbiol 61:64–68

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Schippers B, Bakker PAHM (1992) Proposed elimination of the term endorhizosphere. Phytopathology 82:726–727

    Google Scholar 

  • Kloepper JW, McInroy JA, Liu K, Hu C-H (2013) Symptoms of fern distortion syndrome resulting from inoculation with opportunistic endophytic fluorescent Pseudomonas spp. PLoS One 8:e58531. doi:10.1371/journal.pone.0058531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latour X, Corberand T, Laguerre G et al (1996) The composition of fluorescent pseudomonad populations associated with roots is influenced by plant and soil type. Appl Environ Microbiol 62:2449–2456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, MacRae IC (1992) Specific identification and enumeration of Acetobacter diazotrophicus in sugarcane. Soil Biol Biochem 24:413–419

    Article  Google Scholar 

  • de Lima Favaro LC, de Souza Sebastianes FL, Araújo WL (2012) Epicoccum nigrum P16, a sugarcane endophyte, produces antifungal compounds and induces root growth. PLoS One 7:e36826

    Article  CAS  Google Scholar 

  • Logeshwaran P, Thangaraju M, Rajasundari K (2009) Hydroxamate siderophores of endophytic bacteria Gluconacetobacter diazotrophicus isolated from sugarcane roots. Aust J Basic Appl Sci 3:3564–3567

    CAS  Google Scholar 

  • Loiret FG, Ortega E, Kleiner D et al (2004) A putative new endophytic nitrogen-fixing bacterium Pantoea sp. from sugarcane. J Appl Microbiol 97:504–511

    Article  CAS  PubMed  Google Scholar 

  • Lucero ME, Unc A, Cooke P et al (2011) Endophyte microbiome diversity in micropropagated Atriplex canescens and Atriplex torreyi var griffithsii. PLoS One 6:e17693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig-Müller J (2015) Plants and endophytes: equal partners in secondary metabolite production? Biotechnol Lett 37:1325–1334

    Article  PubMed  CAS  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH et al (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luvizotto DM, Marcon J, Andreote FD et al (2010) Genetic diversity and plant-growth related features of Burkholderia spp. from sugarcane roots. World J Microbiol Biotechnol 26:1829–1836

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manag 174:14–25

    Article  CAS  Google Scholar 

  • Madmony A, Chernin L, Pleban S et al (2005) Enterobacter cloacae, an obligatory endophyte of pollen grains of Mediterranean pines. Folia Microbiol (Praha) 50:209–216

    Article  CAS  Google Scholar 

  • Magalhães F, Baldani J, Souto S et al (1983) A new acid-tolerant Azospirillum species. An Acad Bras Cienc 55:417–430

    Google Scholar 

  • Magnani G, Didonet C, Cruz L et al (2010) Diversity of endophytic bacteria in Brazilian sugarcane. Genet Mol Res 9:250–258

    Article  CAS  PubMed  Google Scholar 

  • Magnani GS, Cruz LM, Weber H et al (2013) Culture-independent analysis of endophytic bacterial communities associated with Brazilian sugarcane. Genet Mol Res 12:4549–4558. doi:10.4238/2013.October.15.3

    Article  CAS  PubMed  Google Scholar 

  • Maheshkumar KS, Krishnaraj PU, Alagawadi AR (1999) Mineral phosphate solubilizing activity of Acetobacter diazotrophicus: a bacterium associated with sugarcane. Curr Sci 76:874–875

    Google Scholar 

  • Manter DK, Delgado JA, Holm DG, Stong RA (2010) Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. Microb Ecol 60:157–166

    Article  PubMed  Google Scholar 

  • Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402

    Article  CAS  PubMed  Google Scholar 

  • Markowitz VM, Chen IMA, Chu K et al (2014) IMG/M 4 version of the integrated metagenome comparative analysis system. Nucleic Acids Res 42:568–573. doi:10.1093/nar/gkt919

    Article  CAS  Google Scholar 

  • Marra LM, Soares CRFS, de Oliveira SM et al (2012) Biological nitrogen fixation and phosphate solubilization by bacteria isolated from tropical soils. Plant Soil 357:289–307

    Article  CAS  Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Meena RS (eds) (2016) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India

    Google Scholar 

  • Mendes R, Pizzirani-Kleiner AA, Araujo WL, Raaijmakers JM (2007) Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl Environ Microbiol 73:7259–7267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirza MS, Ahmad W, Latif F et al (2001) Isolation, partial characterization, and the effect of plant growth-promoting bacteria (PGPB) on micro-propagated sugarcane in vitro. Plant Soil 237:47–54

    Article  CAS  Google Scholar 

  • Mota M, Braasch H, Bravo MA et al (1999) First report of Bursaphelenchus xylophilus in Portugal and in Europe. Nematology 1:727–734. doi:10.1163/156854199508757

    Article  Google Scholar 

  • Müller H, Berg C, Landa BB et al (2015) Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees. Front Microbiol 6:Article 138. doi:10.3389/fmicb.2015.00138

  • Nascimento FX, Rossi MJ, Soares CR et al (2014) New insights into 1-aminocyclopropane-1-carboxylate (ACC) deaminase phylogeny, evolution and ecological significance. PLoS One 9:e99168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nascimento FX, Hasegawa K, Mota M, Vicente CSL (2015) Bacterial role in pine wilt disease development – review and future perspectives. Environ Microbiol Rep 7:51–63. doi:10.1111/1758-2229.12202

    Article  PubMed  Google Scholar 

  • Nassar AH, El-Tarabily KA, Sivasithamparam K (2005) Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays L.) roots. Biol Fertil Soils 42:97–108

    Article  CAS  Google Scholar 

  • Nissinen RM, Männistö MK, van Elsas JD (2012) Endophytic bacterial communities in three arctic plants from low arctic fell tundra are cold-adapted and host-plant specific. FEMS Microbiol Ecol 82:510–522. doi:10.1111/j.1574-6941.2012.01464.x

    Article  CAS  PubMed  Google Scholar 

  • Nutaratat P, Srisuk N, Arunrattiyakorn P, Limtong S (2014) Plant growth-promoting traits of epiphytic and endophytic yeasts isolated from rice and sugar cane leaves in Thailand. Fungal Biol 118:683–694

    Article  CAS  PubMed  Google Scholar 

  • Olivares FL, Baldani VLD, Reis VM et al (1996) Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems, and leaves, predominantly of Gramineae. Biol Fertil Soils 21:197–200

    Article  Google Scholar 

  • Oliveira ALM, Urquiaga S, Döbereiner J, Baldani JI (2002) The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant Soil 242:205–215. doi:10.1023/A:1016249704336

    Article  CAS  Google Scholar 

  • Oliveira ALM, Canuto EL, Urquiaga S et al (2006) Yield of micropropagated sugarcane varieties in different soil types following inoculation with diazotrophic bacteria. Plant Soil 284:23–32. doi:10.1007/s11104-006-0025-0

    Article  CAS  Google Scholar 

  • Page AJ, Cummins CA, Hunt M et al (2015) Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31:3691–3693. doi:10.1093/bioinformatics/btv421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paiva G, Proença DN, Francisco R et al (2013) Nematicidal bacteria associated to pinewood nematode produce extracellular proteases. PLoS One 8:e79705. doi:10.1371/journal.pone.0079705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paiva G, Abreu P, Proença DN et al (2014) Mucilaginibacter pineti sp. nov., isolated from Pinus pinaster wood in mixed grove of pines trees. Int J Syst Evol Microbiol 64:2223–2228. doi:10.1099/ijs.0.057737-0

    Article  CAS  PubMed  Google Scholar 

  • Parmar P, Sindhu SS (2013) Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbiol Res 3:25–31

    Google Scholar 

  • Paungfoo-Lonhienne C, Lonhienne TGA, Yeoh YK et al (2014) A new species of Burkholderia isolated from sugarcane roots promotes plant growth. Microb Biotechnol 7:142–154. doi:10.1111/1751-7915.12105

    Article  CAS  PubMed  Google Scholar 

  • Pereira W, Leite JM, de Hipólito GS et al (2013) Acúmulo de biomassa em variedades de cana-de-açúcar inoculadas com diferentes estirpes de bactérias diazotróficas. Rev Ciência Agronômica 44:363–370

    Article  Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, pp 179–197

    Chapter  Google Scholar 

  • Pirttilä AM, Laukkanen H, Pospiech H et al (2000) Detection of intracellular bacteria in the buds of Scotch pine (Pinus sylvestris L.) by in situ hybridization. Appl Environ Microbiol 66:3073–3077

    Article  PubMed  PubMed Central  Google Scholar 

  • Pirttilä AM, Podolich O, Koskimäki JJ et al (2008) Role of origin and endophyte infection in browning of bud-derived tissue cultures of Scots pine (Pinus sylvestris L.) Plant Cell Tissue Organ Cult 95:47–55. doi:10.1007/s11240-008-9413-x

    Article  CAS  Google Scholar 

  • Pleban S, Chernin L, Chet I (1997) Chitinolytic activity of an endophytic strain of Bacillus cereus. Lett Appl Microbiol 25:284–288

    Article  CAS  PubMed  Google Scholar 

  • Prakamhang J, Minamisawa K, Teamtaisong K et al (2009) The communities of endophytic diazotrophic bacteria in cultivated rice (Oryza sativa L.) Appl Soil Ecol 42:141–149

    Article  Google Scholar 

  • Proença DN (2014) Role of endophytic microbial community in pine wilt disease. University of Coimbra, Portugal

    Google Scholar 

  • Proença DN, Francisco R, Santos CV et al (2010) Diversity of bacteria associated with Bursaphelenchus xylophilus and other nematodes isolated from Pinus pinaster trees with pine wilt disease. PLoS One 5:e15191. doi:10.1371/journal.pone.0015191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Proença DN, Espírito Santo C, Grass G, Morais PV (2012a) Draft genome sequence of Serratia sp. strain M24T3, isolated from pinewood disease nematode Bursaphelenchus xylophilus. J Bacteriol 194:3764. doi:10.1128/JB.00670-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Proença DN, Espírito Santo C, Grass G, Morais PV (2012b) Draft genome sequence of Pseudomonas sp. strain M47T1, carried by Bursaphelenchus xylophilus isolated from Pinus pinaster. J Bacteriol 194:4789–4790. doi:10.1128/JB.01116-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Proença DN, Fonseca L, Powers TO et al (2014a) Diversity of bacteria carried by pinewood nematode in USA and phylogenetic comparison with isolates from other countries. PLoS One 9:e105190. doi:10.1371/journal.pone.0105190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Proença DN, Nobre MF, Morais PV (2014b) Chitinophaga costaii sp. nov., an endophyte of Pinus pinaster, and emended description of Chitinophaga niabensis. Int J Syst Evol Microbiol 64:1237–1243. doi:10.1099/ijs.0.053454-0

    Article  PubMed  CAS  Google Scholar 

  • Proença DN, Grass G, Morais PV (2016) Understanding pine wilt disease: roles of the pine endophytic bacteria and of the bacteria carried by the disease-causing pinewood nematode. Microbiologyopen:1–20. doi:10.1002/mbo3.415

  • Rapulana T, Bouwer G (2013) Toxicity to Eldana saccharina of a recombinant Gluconacetobacter diazotrophicus strain carrying a truncated Bacillus thuringiensis cry1Ac gene. African J Microbiol Res 7:1207–1214

    Article  CAS  Google Scholar 

  • Reinhold B, Hurek T (1989) Location of diazotrophs in the root interior with special attention to the kallar grass association. In: Skinner FA, Boddey RM, Fendrik I (eds) Nitrogen fixation with non-legumes. Kluwer Academic Publishers, Dordrecht, pp 199–208

    Chapter  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443. doi:10.1016/j.pbi.2011.04.004

    Article  PubMed  Google Scholar 

  • Reinhold-Hurek B, Maes T, Gemmer S et al (2006) An endoglucanase is involved in infection of rice roots by the not-cellulose-metabolizing endophyte Azoarcus sp. strain BH72. Mol Plant-Microbe Interact 19:181–188. doi:10.1094/MPMI-19-0181

    Article  CAS  PubMed  Google Scholar 

  • Reis VM, Teixeira KRS (2015) Nitrogen fixing bacteria in the family Acetobacteraceae and their role in agriculture. J Basic Microbiol 55:931–949

    Google Scholar 

  • dos Reis Júnior FB, da Silva LG, Reis VM, Döbereiner J (2000) Ocorrência de bactérias diazotróficas em diferentes genótipos de cana-de-açúcar. Pesqui Agropecuária Bras 35:985–994

    Article  Google Scholar 

  • Reis VM, Olivares F, Döbereiner J (1994) Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World J Microbiol Biotechnol 10:401–405

    Article  CAS  PubMed  Google Scholar 

  • Reis VM, Baldani JI, Urquiaga S (2009) Recomendação de uma mistura de estirpes de cinco bactérias fixadoras de nitrogênio para inoculação de cana-de-açúcar: Gluconacetobacter diazotrophicus (BR 11281), Herbaspirillum seropedicae (BR 11335), Herbaspirillum rubrisubalbicans. Circ Técnica Embrapa Agrobiol 30:1–4

    Google Scholar 

  • Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330. doi:10.1111/j.1469-8137.2009.02773.x

    Article  CAS  PubMed  Google Scholar 

  • Rolim Neto FC, Schaefer CEGR, Costa LM et al (2004) Phosphorus adsorption, specific surface, and mineralogical attributes of soils developed from volcanic rocks from the upper Paranaíba, MG (Brazil). Rev Bras Ciência do Solo 28:953–964

    Article  CAS  Google Scholar 

  • Romão-Dumaresq AS, de Araujo WL, Talbot NJ, Thornton CR (2012) RNA interference of endochitinases in the sugarcane endophyte Trichoderma virens 223 reduces its fitness as a biocontrol agent of pineapple disease. PLoS One 7:e47888

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosenberg E, Sharon G, Zilber-Rosenberg I (2009) The hologenome theory of evolution contains Lamarckian aspects within a Darwinian framework. Environ Microbiol 11:2959–2962. doi:10.1111/j.1462-2920.2009.01995.x

    Article  PubMed  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837. doi:10.1094/MPMI-19-0827

    Article  CAS  PubMed  Google Scholar 

  • Rothballer M, Eckert B, Schmid M et al (2008) Endophytic root colonization of gramineous plants by Herbaspirillum frisingense. FEMS Microbiol Ecol 66:85–95

    Article  CAS  PubMed  Google Scholar 

  • Rouli L, Merhej V, Fournier P-E, Raoult D (2015) The bacterial pangenome as a new tool for analyzing pathogenic bacteria. New Microbes New Infect 7:72–85. doi:10.1016/j.nmni.2015.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouws LFM, Leite J, de Matos GF et al (2013) Endophytic Bradyrhizobium spp. isolates from sugarcane obtained through different culture strategies. Environ Microbiol Rep 6:354–363. doi:10.1111/1758-2229.12122

    Article  PubMed  CAS  Google Scholar 

  • Rouws LFM, Fischer D, Schmid M et al (2015) Culture-independent assessment of diazotrophic bacteria in sugarcane and isolation of Bradyrhizobium spp. from field-grown sugarcane plants using legume trap plants. In: De Bruijn FJ (ed) Biological nitrogen fixation. Wiley, Hoboken, pp 955–966

    Google Scholar 

  • Ryan RP, Germaine K, Franks A et al (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9. doi:10.1111/j.1574-6968.2007.00918.x

    Article  CAS  PubMed  Google Scholar 

  • Sabry SR, Saleh SA, Batchelor CA et al (1997) Endophytic establishment of Azorhizobium caulinodans in wheat. Proc R Soc London B Biol Sci 264:341–346

    Article  Google Scholar 

  • de Santi Ferrara FI, Oliveira ZM, Gonzales HHS et al (2012) Endophytic and rhizospheric enterobacteria isolated from sugar cane have different potentials for producing plant growth-promoting substances. Plant Soil 353:409–417

    Article  CAS  Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    Article  CAS  PubMed  Google Scholar 

  • Saravanan V, Madhaiyan M, Thangaraju M (2007a) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66:1794–1798

    Article  CAS  PubMed  Google Scholar 

  • Saravanan VS, Kalaiarasan P, Madhaiyan M, Thangaraju M (2007b) Solubilization of insoluble zinc compounds by Gluconacetobacter diazotrophicus and the detrimental action of zinc ion (Zn2+) and zinc chelates on root knot nematode Meloidogyne incognita. Lett Appl Microbiol 44:235–241. doi:10.1111/j.1472-765X.2006.02079.x

    Article  CAS  PubMed  Google Scholar 

  • Schlaeppi K, Dombrowski N, Oter RG et al (2014) Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc Natl Acad Sci 111:585–592. doi:10.1073/pnas.1321597111

    Article  CAS  PubMed  Google Scholar 

  • Schloter M, Hartmann A (1998) Endophytic and surface colonization of wheat roots (Triticum aestivum) by different Azospirillum brasilense strains studied with strain-specific monoclonal antibodies. Symbiosis 25:159–179

    Google Scholar 

  • Scholz M, Ward DV, Pasolli E et al (2016) Strain-level microbial epidemiology and population genomics from shotgun metagenomics. Nat Methods. doi:10.1038/nmeth.3802

    PubMed  Google Scholar 

  • Schultz N, de Morais RF, da Silva JA et al (2012) Avaliação agronômica de variedades de cana-de-açúcar inoculadas com bactérias diazotróficas e adubadas com nitrogênio. Pesqui Agropecuária Bras 47:261–268

    Article  Google Scholar 

  • Sessitsch A, Hardoim P, Döring J et al (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant-Microbe Interact 25:28–36

    Article  CAS  PubMed  Google Scholar 

  • Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and nif mutant strains. Mol Plant-Microbe Interact 14:358–366

    Article  CAS  PubMed  Google Scholar 

  • Shakeel M, Rais A, Hassan MN, Hafeez FY (2015) Root associated Bacillus sp. improves growth, yield and zinc translocation for basmati rice (Oryza sativa) varieties. Front Microbiol 6:1286. doi:10.3389/fmicb.2015.01286

    Article  PubMed  PubMed Central  Google Scholar 

  • Shishido M, Loeb BM, Chanway CP (1995) External and internal root colonization of lodgepole pine seedlings by two growth-promoting Bacillus strains originated from different root microsites. Can J Microbiol 41:707–713. doi:10.1139/m95-097

    Article  CAS  Google Scholar 

  • da Silva-Froufe LG, Boddey RM, Reis VM (2009) Quantification of natural populations of Gluconacetobacter diazotrophicus and Herbaspirillum spp. in sugar cane (Saccharum spp.) using different polyclonal antibodies. Brazilian J Microbiol 40:866–878

    Article  Google Scholar 

  • de Souza RSC, Okura VK, Armanhi JSL et al (2016) Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci Rep 6:28774. doi:10.1038/srep28774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Stone J, Petrini O (1997) Endophytes of forest trees: a model for fungus-plant interactions. In: Carroll GC, Tudzynski P (eds) The Mycota V Part B. Springer, New York, pp 129–140

    Google Scholar 

  • Stone JK, Bacon CW, White JF (2000) An overview of endophytic microbes: endophytism defined. In: Bacon CW, White JFJ (eds) Microbial endophytes. Marcel Dekker, Inc., New York, pp 3–29

    Google Scholar 

  • Strzelczyk E, Li CY (2000) Bacterial endobionts in the big non-mycorrhizal roots of scots pine (Pinus sylvestris L.) Microbiol Res 155:229–232. doi:10.1016/S0944-5013(00)80037-3

    Article  CAS  PubMed  Google Scholar 

  • Stuart RM, Romão AS, Pizzirani-Kleiner AA et al (2010) Culturable endophytic filamentous fungi from leaves of transgenic imidazolinone-tolerant sugarcane and its non-transgenic isolines. Arch Microbiol 192:307–313

    Article  CAS  PubMed  Google Scholar 

  • Subashini M, Moushumi Priya A, Sundarakrishnan B, Jayachandran S (2011) Recombinant Gluconacetobacter diazotrophicus containing cry1Ac gene codes for 130-kDa toxin protein. J Mol Microbiol Biotechnol 20:236–242

    Article  CAS  PubMed  Google Scholar 

  • Subramanian S, Smith DL (2015) Bacteriocins from the rhizosphere microbiome – from an agriculture perspective. Front Plant Sci 6:909. doi:10.3389/fpls.2015.00909

    PubMed  PubMed Central  Google Scholar 

  • Sun L, Qiu F, Zhang X et al (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol 55:415–424. doi:10.1007/s00248-007-9287-1

    Article  CAS  PubMed  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites (1987 to 2000). Nat Prod Rep 18:448–459. doi:10.1039/b100918o

    Article  CAS  PubMed  Google Scholar 

  • Taulé C, Mareque C, Barlocco C et al (2012) The contribution of nitrogen fixation to sugarcane (Saccharum officinarum L.), and the identification and characterization of part of the associated diazotrophic bacterial community. Plant Soil 356:35–49

    Article  CAS  Google Scholar 

  • Tenorio-Salgado S, Tinoco R, Vazquez-Duhalt R et al (2013) Identification of volatile compounds produced by the bacterium Burkholderia tropica that inhibit the growth of fungal pathogens. Bioengineered 4:236–243

    Article  PubMed  PubMed Central  Google Scholar 

  • Tettelin H, Masignani V, Cieslewicz MJ et al (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci U S A 102:13950–13955. doi:10.1073/pnas.0506758102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thaweenut N, Hachisuka Y, Ando S et al (2011) Two seasons’ study on nifH gene expression and nitrogen fixation by diazotrophic endophytes in sugarcane (Saccharum spp. hybrids): expression of nifH genes similar to those of rhizobia. Plant Soil 338:435–449

    Article  CAS  Google Scholar 

  • Tien TM, Gaskins MH, Hubbell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.) Appl Environ Microbiol 37:1016–1024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Timmers ACJ, Soupène E, Auriac M-C et al (2000) Saprophytic intracellular rhizobia in alfalfa nodules. Mol Plant-Microbe Interact 13:1204–1213

    Article  CAS  PubMed  Google Scholar 

  • Timmusk S, Paalme V, Pavlicek T et al (2011) Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates. PLoS One 6:e17968. doi:10.1371/journal.pone.0017968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tóth Á (2011) Bursaphelenchus xylophilus, the pinewood nematode: its significance and a historical review. Acta Biol Szeged 55:213–217

    Google Scholar 

  • Treangen TJ, Ondov BD, Koren S, Phillippy AM (2014) The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol 15:524. doi:10.1186/PREACCEPT-2573980311437212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsavkelova EA, Cherdyntseva TA, Botina SG, Netrusov AI (2007) Bacteria associated with orchid roots and microbial production of auxin. Microbiol Res 162:69–76

    Article  CAS  PubMed  Google Scholar 

  • Urquiaga S, Xavier RP, de Morais RF et al (2012) Evidence from field nitrogen balance and 15N natural abundance data for the contribution of biological N2 fixation to Brazilian sugarcane varieties. Plant Soil 356:5–21

    Article  CAS  Google Scholar 

  • Utturkar SM, Cude WN, Robeson MS et al (2016) Enrichment of root endophytic bacteria from Populus deltoides and single-cell genomics analysis. Appl Environ Microbiol online. doi:10.1128/AEM.01285-16

    Google Scholar 

  • Vaughan MJ, Mitchell T, McSpadden Gardener BB (2015) What’s inside that seed we brew? A new approach to mining the coffee microbiome. Appl Environ Microbiol 81:6518–6527. doi:10.1128/AEM.01933-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velázquez E, Silva LR, Ramírez-Bahena M-H, Peix A (2016) Diversity of potassium-solubilizing microorganisms and their interactions with plants. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 99–110

    Chapter  Google Scholar 

  • Wang H-X, Geng Z-L, Zeng Y, Shen Y-M (2008) Enriching plant microbiota for a metagenomic library construction. Environ Microbiol 10:2684–2691. doi:10.1111/j.1462-2920.2008.01689.x

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yang X, Zhang X et al (2014) Improved plant growth and Zn accumulation in grains of rice (Oryza sativa L.) by inoculation of endophytic microbes isolated from a Zn hyperaccumulator, Sedum alfredii H. J Agric Food Chem 62:1783–1791

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Zhai Y, Cao L et al (2016) Endophytic bacterial and fungal microbiota in sprouts, roots and stems of rice (Oryza sativa L.) Microbiol Res 188:1–8

    Article  PubMed  Google Scholar 

  • Wilson D (1995) Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73:274–276. doi:10.2307/3545919

    Article  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87:4576–4579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao J, Zhang Z, Wu J, Yu J (2015) A brief review of software tools for Pangenomics. Genomics Proteomics Bioinformatics 13:73–76. doi:10.1016/j.gpb.2015.01.007

    Article  PubMed  PubMed Central  Google Scholar 

  • Yanni YG, Rizk RY, Corich V et al (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194:99–114

    Article  CAS  Google Scholar 

  • Zamioudis C, Mastranesti P, Dhonukshe P et al (2013) Unraveling root developmental programs initiated by beneficial Pseudomonas spp. bacteria. Plant Physiol 162:304–318. doi:10.1104/pp.112.212597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Kong F (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl Soil Ecol 82:18–25

    Article  Google Scholar 

  • Zhang Y, He L, Chen Z et al (2011) Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 83:57–62

    Article  CAS  PubMed  Google Scholar 

  • Zhao BG, Lin F (2005) Mutualistic symbiosis between Bursaphelenchus xylophilus and bacteria of the genus Pseudomonas. For Pathol 35:339–345. doi:10.1111/j.1439-0329.2005.00417.x

    Article  Google Scholar 

  • Zhao Y, Wu J, Yang J et al (2012) PGAP: pan-genomes analysis pipeline. Bioinformatics 28:416–418. doi:10.1093/bioinformatics/btr655

    Article  CAS  PubMed  Google Scholar 

  • Zinniel DK, Lambrecht P, Harris NB et al (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

D.N.P. was supported by Fundação para a Ciência e a Tecnologia, postdoctoral fellowship SFRH/BPD/100721/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo Neves Proença .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Proença, D.N., Schwab, S., Baldani, J.I., Morais, P.V. (2017). Diversity and Function of Endophytic Microbial Community of Plants with Economical Potential. In: de Azevedo, J., Quecine, M. (eds) Diversity and Benefits of Microorganisms from the Tropics . Springer, Cham. https://doi.org/10.1007/978-3-319-55804-2_10

Download citation

Publish with us

Policies and ethics