Skip to main content

Biofuels and Bioenergy

  • Chapter
  • First Online:
A Sustainable Bioeconomy

Abstract

The depletion of fossil fuels and the global environmental awareness along, with several economic concerns, are the major driving forces behind the worldwide orientation towards renewable bioresources and agro-industrial wastes for the production of alternative fuels in a sustainable manner. Consequently, the development of more efficient biomass-producing systems and biomass-processing technologies are becoming serious challenges for industrialists and researchers in order to provide markets with eco-friendly fuels at competitive prices and contribute to the reduction of CO2 emissions.

In this chapter, multiple opportunities to valorize biomass as feedstock for fuel and energy production are highlighted. This includes various woody, herbaceous, agro-industrial, and aquatic bioresources, as well as animals, and microorganisms, rich in cellulose, hemicellulose, starch, chitin, and lipids for the production of bioethanol, biodiesels, and biogas. The conversion of those bioresources to the desired biofuels involves a variety of technologies and processes, which are presented and compared in this chapter, including biomass pretreatments, thermochemical and biological conversion procedures, as well as separation, purification, and upgrading technologies. The need for more R&D breakthroughs enabling the production of biofuels at more competitive prices is also highlighted as a major step to accelerate the shift towards bioeconomy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kang Y, Khan S, Ma X. Climate change impacts on crop yield, crop water productivity and food security – a review. Prog Nat Sci. 2009;19:1665–74.

    Article  Google Scholar 

  2. Eliasson J. The rising pressure of global water shortages. Nature. 2015;517:6.

    Article  CAS  Google Scholar 

  3. Milà-Villarroel R, Homs C, Ngo J, Martín J, Vidal M. Famine, hunger, and undernourishment. Reference module in food science. In: Caballero B, Finglas PM, Toldrá F, editors. Encyclopedia of food and health. Amsterdam: Academic Press; 2016. p. 581–8.

    Chapter  Google Scholar 

  4. Alonso DM, Bonda JQ, Dumesic JA. Catalytic conversion of biomass to biofuels. Green Chem. 2010;12:1493–513.

    Article  CAS  Google Scholar 

  5. Brennan L, Owende P. Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev. 2010;14:557–77.

    Article  CAS  Google Scholar 

  6. Sticklen MB. Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet. 2008;9:433–43.

    Article  CAS  Google Scholar 

  7. Youngs H, Somerville C. Best practices for biofuels. Science. 2014;344:1095–6.

    Article  CAS  Google Scholar 

  8. Cheng JJ, Timilsina GR. Status and barriers of advanced biofuel technologies: a review. Renew Energy. 2011;36:3541–9.

    Article  CAS  Google Scholar 

  9. Mussatto SI, Dragone G, Guimaraes PMR, et al. Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv. 2010;28:817–30.

    Article  CAS  Google Scholar 

  10. Khalil SRA, Abdelhafez AA, Amer EAM. Evaluation of bioethanol production from juice and bagasse of some sweet sorghum varieties. Ann Agric Sci. 2015;60:317–24.

    Google Scholar 

  11. Bull TA, Glasziou KT. Sugarcane. In: Evans LT, editor. Sugarcane in crop physiology. Some case histories. London: Cambridge University Press; 1975. p. 51–72.

    Google Scholar 

  12. Rabelo SC, Andrade RR, Filho RM, Costa AC. Alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis and fermentation of sugarcane bagasse to ethanol. Fuel. 2014;136:349–57.

    Article  CAS  Google Scholar 

  13. Inyang M, Gao B, Pullammanappallil P, Ding W, Zimmerman AR. Biochar from anaerobically digested sugarcane bagasse. Bioresour Technol. 2010;101:8868–72.

    Article  CAS  Google Scholar 

  14. Prado RM, Caione G, Campos CNS. Filter cake and vinasse as fertilizers contributing to conservation agriculture. Appl Environ Soil Sci. 2013;2013:1–8.

    Article  CAS  Google Scholar 

  15. Asadi M. Beet-sugar handbook. Hoboken, NJ: Wiley; 2006.

    Book  Google Scholar 

  16. Elliott MC, Weston GD. Biology and physiology of the sugar-beet plant. In: Cooke DA, Scott RK, editors. The sugar beet crop. Berlin: Springer; 1993.

    Google Scholar 

  17. Bichsel SE An overview of the U.S. sugar beet industry. Proceedings of the symposium on the chemistry and processing of sugar beet. Denver, Colorado; 1987.

    Google Scholar 

  18. Nersesian RL. Energy for the 21st century: a comprehensive guide to conventional and alternative sources. 2nd ed. Armonk, NY: M.E. Sharpe Inc.; 2015.

    Google Scholar 

  19. Billa E, Koullas D, Monties B. Structure and composition of sweet sorghum stalk components. Ind Crop Prod. 1997;6:297–302.

    Article  CAS  Google Scholar 

  20. Bridgers EN, Chinn MS, Veal MW, Stikeleather LF. Influence of juice preparations on the fermentability of sweet sorghum. Biol Eng. 2011;4:57–67.

    CAS  Google Scholar 

  21. Serna-Saldívar SO, Chuck-Hernández C, Pérez-Carrillo E, Heredia-Olea E. Sorghum as a multifunctional crop for the production of fuel ethanol: current status and future trends. In: Lima MAP, editor. Bioethanol. London: In Tech; 2012. p. 51–74.

    Google Scholar 

  22. Cinelli BA, Castilho LR, Freire DMG, Castro AM. A brief review on the emerging technology of ethanol production by cold hydrolysis of raw starch. Fuel. 2015;150:721–9.

    Article  CAS  Google Scholar 

  23. Buleon A, Colonna P, Planchot V, Ball S. Starch granules: structure and biosynthesis. Int J Biol Macromol. 1998;23:85–112.

    Article  CAS  Google Scholar 

  24. Baldwin TL, Bower BS, Chotani GK Expression of granular starch hydrolyzing enzymes in trichoderma and process for producing glucose from granular starch substrates. WO 2005052148 A2 (2005).

    Google Scholar 

  25. Thatoi H, Dash PK, Mohapatra S, Swain MR. Bioethanol production from tuber crops using fermentation technology: a review. Int J Sustainable Energy. 2016;35:443–68.

    Article  Google Scholar 

  26. Robertson MJ. Relationships between internode elongation, plant height and leaf appearance in maize. Field Crop Res. 1994;38:135–45.

    Article  Google Scholar 

  27. Shaw RH. Climate requirement. In: Sprague GF, Dudly JW, editors. Corn and corn improvement. 3rd ed. Madison, WI: American Society of Agronomy; 1988.

    Google Scholar 

  28. Dowswell CR, Paliwal RL, Cantrell RP. Maize in the third world. Boulder, CO: Westview Press; 1996.

    Google Scholar 

  29. Renewable Fuel Association. Industry Statistics – World Fuel Ethanol Production. http://www.ethanolrfa.org/resources/industry/statistics/#1454098996479-8715d404-e546

  30. Shewry PR, Hawkesford MJ, Piironen V, et al. Natural variation in grain composition of wheat and related cereals. J Agric Food Chem. 2013;61:8295–303.

    Article  CAS  Google Scholar 

  31. IDRC communications – facts and figures on food and biodiversity. http://www.idrc.ca/EN/Resources/Publications/Pages/ArticleDetails.aspx?PublicationID=565

  32. Koehler P, Wieser H. Chemistry of cereal grains. In: Gobbetti M, Gänzle M, editors. Handbook on sourdough biotechnology. New York: Springer; 2013.

    Google Scholar 

  33. Šramková Z, Gregová E, Šturdíka E. Chemical composition and nutritional quality of wheat grain. Acta Chim Slov. 2009;2:115–38.

    Google Scholar 

  34. European Biofuels Technology Platform. Bioethanol use in Europe and globally. http://biofuelstp.eu/overview.html

  35. Wertz JL, Mercier JP, Bédué O. Cellulose science and technology. Boca Raton, FL: CRC Press; 2010.

    Google Scholar 

  36. El-Sharkawy MA. Physiological characteristics of cassava tolerance to prolonged drought in the tropics: implications for breeding cultivars adapted to seasonally dry and semiarid environments. Braz J Plant Physiol. 2007;19:257–86.

    Article  CAS  Google Scholar 

  37. Osunsami AT, Akingbala JO, Oguntimein GB. Effect of storage on starch content and modification of cassava starch. Strach. 1989;41:54–7.

    CAS  Google Scholar 

  38. Zhou A, Thomson E. The development of biofuels in Asia. Appl Energy. 2009;86:11–20.

    Article  Google Scholar 

  39. Chaisinboon O, Chontanawat J. Factors determining the competing use of Thailand’s cassava for food and fuel. Energy Procedia. 2011;9:216–29.

    Article  Google Scholar 

  40. Anyanwu CN, Ibeto CN, Ezeoha SL, Ogbuagu NJ. Sustainability of cassava (Manihot esculenta Crantz) as industrial feedstock, energy and food crop in Nigeria Renew. Energy. 2015;81:745–52.

    Google Scholar 

  41. Kristensen SBP, Birch-Thomsen T, Rasmussen K, Rasmussen LV, Traoré O. Cassava as an energy crop: a case study of the potential for an expansion of cassava cultivation for bioethanol production in Southern Mali. Renew Energy. 2014;66:381–90.

    Article  Google Scholar 

  42. Srinivas T. Industrial demand for cassava starch in India. Starch. 2007;59:477–81.

    Article  CAS  Google Scholar 

  43. Abera S, Rakshit SK. Comparison of physicochemical and functional properties of cassava starch extracted from fresh root and dry chips. Starch. 2003;55:287–96.

    Article  CAS  Google Scholar 

  44. Kuiper L, Ekmekci B, Hamelinck C et al. Bio-ethanol from cassava. Ecofys Netherlands BV. 2007. http://www.mexicatel.com/EthanolExtraction4rmCassava.pdf

  45. Balat M, Balat H. Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy. 2009;86:2273–82.

    Article  CAS  Google Scholar 

  46. Yan Z, Li J, Li S, et al. Impact of lignin removal on the enzymatic hydrolysis of fermented sweet sorghum bagasse. Appl Energy. 2015;160:641–7.

    Article  CAS  Google Scholar 

  47. Lynd LR, Elander RT, Wyman CE. Likely features and costs of mature biomass ethanol technology. Appl Biochem Biotechnol. 1996;58:741–61.

    Article  Google Scholar 

  48. Cheng JJ, Timilsina GR Advanced biofuel technologies – status and barriers. The World Bank Policy Research Working Paper 5411 (2010).

    Google Scholar 

  49. Suess HU. Pulp bleaching today. Berlin: Walter de Gruyter GmbH; 2010.

    Book  Google Scholar 

  50. Räisänen T, Athanassiadis D. Basic chemical composition of the biomass components of pine spruce and birch. Forest Refine; 2013. http://www.biofuelregion.se/UserFiles/file/Forest%20Refine/1_2_IS_2013-01-31_Basic_chemical_composition.pdf

  51. Frederick Jr WJ, Lien SJ, Courchene CE, DeMartini NA, Ragauskas AJ, Iisa K. Production of ethanol from carbohydrates from loblolly pine: a technical and economic assessment. Bioresour Technol. 2008;99:5051–7.

    Article  CAS  Google Scholar 

  52. Lan TQ, Gleisner R, Zhu JY, Dien BS, Hector RE. High titer ethanol production from SPORL-pretreated lodgepole pine by simultaneous enzymatic saccharification and combined fermentation. Bioresour Technol. 2013;127:291–7.

    Article  CAS  Google Scholar 

  53. Shi Z, Yang Q, Ono Y, Funahashi R, Saito T, Isogai A. Creation of a new material stream from Japanese cedar resources to cellulose nanofibrils. React Funct Polym. 2015;95:19–24.

    Article  CAS  Google Scholar 

  54. Yamashita Y, Sasaki C, Nakamura Y. Effective enzyme saccharification and ethanol production from Japanese cedar using various pretreatment methods. J Biosci Bioeng. 2010;110:79–86.

    Article  CAS  Google Scholar 

  55. Cagelli L, Lefèvre F. The conservation of Populus nigra L. and gene flow with cultivated poplars in Europe. For Genet. 1995;2:135–44.

    Google Scholar 

  56. Zalesny Jr RS, Hall RB, Zalesny JA, McMahon BG, Berguson WE, Stanosz GR. Biomass and genotype × environment interactions of Populus energy crops in the Midwestern United States. Bioenerg Res. 2009;2:106–22.

    Article  Google Scholar 

  57. Kennedy JH. Cottonwood, an American wood. Washington, DC: U.S. Department of Agriculture, Forest Service; 1985.

    Google Scholar 

  58. Wang ZJ, Zhu JY, Zalesny RS, Chen KF. Ethanol production from poplar wood through enzymatic saccharification and fermentation by dilute acid and SPORL pretreatments. Fuel. 2012;95:606–14.

    Article  CAS  Google Scholar 

  59. Sjostrom E. Wood chemistry: fundamentals and applications. 2nd ed. San Diego: Academic Press; 1993.

    Google Scholar 

  60. Matsushita Y, Yamauchi K, Takabe K, et al. Enzymatic saccharification of Eucalyptus bark using hydrothermal pre-treatment with carbon dioxide. Bioresour Technol. 2010;10:4936–9.

    Article  CAS  Google Scholar 

  61. McIntosh S, Vancov T, Palmer J, Spain M. Ethanol production from Eucalyptus plantation thinnings. Bioresour Technol. 2012;110:264–72.

    Article  CAS  Google Scholar 

  62. Romani A, Garrote G, Parajo JC. Bioethanol production from autohydrolyzed Eucalyptus globulus by simultaneous saccharification and fermentation operating at high solids loading. Fuel. 2012;94:305–12.

    Article  CAS  Google Scholar 

  63. Lewandowski I, Clifton-Brown JC, Andersson B, et al. Biofuels: environment and harvest time affects the combustion qualities of Miscanthus genotypes. Agron J. 2003;95:1274–80.

    Article  Google Scholar 

  64. Brosse N, Dufour A, Meng X, Sun Q, Ragauskas A. Miscanthus: a fast growing crop for biofuels and chemicals production. Biofuels Bioprod Biorefin. 2012;6:580–98.

    Article  CAS  Google Scholar 

  65. Kim SJ, Kim MY, Jeong SJ, Jang MS, Chung IM. Analysis of the biomass content of various Miscanthus genotypes for biofuel production in Korea. Ind Crop Prod. 2012;38:46–9.

    Article  CAS  Google Scholar 

  66. Heaton E, Voigt T, Long SP. A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenergy. 2004;27:21–2730.

    Article  Google Scholar 

  67. Heaton EA, Dohlemann FG, Long SP. Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Chang Biol. 2008;14:2000–14.

    Article  Google Scholar 

  68. Vogel KP, Brejda JJ, Walters DT, Buxton DR. Switchgrass biomass production in the Midwest USA: harvest and nitrogen management. Agron J. 2002;94:413–20.

    Article  Google Scholar 

  69. Somerville C. The billion-ton biofuels vision. Science. 2006;312:1277.

    Article  CAS  Google Scholar 

  70. Morrow WR, Griffin WM, Matthews HS. Modeling switchgrass derived cellulosic ethanol distribution in the United States. Environ Sci Technol. 2006;40:2877–86.

    Article  CAS  Google Scholar 

  71. Schmer MR, Vogel KP, Mitchell RB, Perrin RK. Net energy of cellulosic ethanol from switchgrass. Proc Natl Acad Sci USA. 2008;105:464–9.

    Article  CAS  Google Scholar 

  72. Dale BE. Biomass refining: protein and ethanol from Alfalfa. Ind Eng Chem Prod Res Dev. 1983;22:466–72.

    Article  CAS  Google Scholar 

  73. Lamb JFS, Jung HJG, Riday H. Growth environment, harvest management and germplasm impacts on potential ethanol and crude protein yield in alfalfa. Biomass Bioenergy. 2014;63:114–25.

    Article  CAS  Google Scholar 

  74. Dien BS, Miller DJ, Hector RE, et al. Enhancing alfalfa conversion efficiencies for sugar recovery and ethanol production by altering lignin composition. Bioresour Technol. 2011;102:6479–86.

    Article  CAS  Google Scholar 

  75. Zhou S, Weimer PJ, Hatfield RD, Runge TM, Digman M. Improving ethanol production from alfalfa stems via ambient-temperature acid pretreatment and washing. Bioresour Technol. 2014;170:286–92.

    Article  CAS  Google Scholar 

  76. Rabelo SC, Carrere H, Filho RM, Costa AC. Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. Bioresour Technol. 2011;102:7887–95.

    Article  CAS  Google Scholar 

  77. Aguiar MM, Ferreira LFR, Monteiro RTR. Use of vinasse and sugarcane bagasse for the production of enzymes by lignocellulolytic fungi. Braz Arch Biol Technol. 2010;53:1245–54.

    Article  Google Scholar 

  78. Amorim HV, Lopes ML, de Castro OJV, Buckeridge MS, Goldman GH. Scientific challenges of bioethanol production in Brazil. Appl Microbiol Biotechnol. 2011;91:1267–75.

    Article  CAS  Google Scholar 

  79. Abril D, Medina M, Abril A. Sugar cane bagasse prehydrolysis using hot water. Braz J Chem Eng. 2012;29:31–8.

    Article  CAS  Google Scholar 

  80. Statista. World sugar cane production from 1965 to 2014. http://www.statista.com/statistics/249604/sugar-cane-production-worldwide/

  81. Dussan KJ, Silva DDV, Perez VH, da Silva SS. Evaluation of oxygen availability on ethanol production from sugarcane bagasse hydrolysate in a batch bioreactor using two strains of xylose-fermenting yeast. Renew Energy. 2016;87:703–10.

    Article  CAS  Google Scholar 

  82. Kumar S, Dheeran P, Singh SP, Mishra IM, Adhikari DK. Continuous ethanol production from sugarcane bagasse hydrolysate at high temperature with cell recycle and in-situ recovery of ethanol. Chem Eng Sci. 2015;138:524–30.

    Article  CAS  Google Scholar 

  83. Kim S, Dale BE. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy. 2004;26:361–75.

    Article  Google Scholar 

  84. Kadam KL, McMillan JD. Availability of corn stover as a sustainable feedstock for bioethanol production. Bioresour Technol. 2003;88:17–25.

    Article  CAS  Google Scholar 

  85. Yu H, Ren J, Liu LA, et al. New magnesium bisulfite pretreatment (MBSP) development for bio-ethanol production from corn stover. Bioresour Technol. 2016;199:188–93.

    Article  CAS  Google Scholar 

  86. Kaltschmitt M, Reingardt GA, Stelzer T. Life cycle analysis of biofuels under different environmental aspects. Biomass Bioenergy. 1997;12:121–34.

    Article  CAS  Google Scholar 

  87. Ballesteros I, Negro MJ, Oliva JM, Cabañas A, Manzanares P, Ballesteros M. Ethanol production from steam-explosion pretreated wheat straw. Appl Biochem Biotechnol. 2006;129:496–508.

    Article  Google Scholar 

  88. Saha BC, Iten LB, Cotta MA, Wu YV. Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem. 2005;40:3693–700.

    Article  CAS  Google Scholar 

  89. Paschos T, Xiros C, Christakopoulos P. Simultaneous saccharification and fermentation by co-cultures of Fusarium oxysporum and Saccharomyces cerevisiae enhances ethanol production from liquefied wheat straw at high solid content. Ind Crop Prod. 2015;76:793–802.

    Article  CAS  Google Scholar 

  90. Juliano BO. Rice hall and rice straw. In: Juliano BO, editor. Rice: chemistry and technology. 2nd ed. St. Paul, MN: AACC International; 1985.

    Google Scholar 

  91. Statista. Statistics and facts about rice. http://www.statista.com/topics/1443/rice/

  92. Poornejad N, Karimi K, Behzad T. Improvement of saccharification and ethanol production from rice straw by NMMO and [BMIM][OAc] pretreatments. Ind Crop Prod. 2013;41:408–13.

    Article  CAS  Google Scholar 

  93. Singh R, Srivastava M, Shukla A. Environmental sustainability of bioethanol production from rice straw in India: a review. Renew Sust Energ Rev. 2016;54:202–16.

    Article  CAS  Google Scholar 

  94. Swain MR, Krishnan C. Improved conversion of rice straw to ethanol and xylitol by combination of moderate temperature ammonia pretreatment and sequential fermentation using Candida tropicalis. Ind Crop Prod. 2015;77:1039–46.

    Article  CAS  Google Scholar 

  95. Suganya T, Varman M, Masjuki HH, Renganathan S. Macroalgae and microalgae as a potential source for commercial applications along with biofuel sproduction: a biorefinery approach. Renew Sust Energ Rev. 2016;55:909–41.

    Article  CAS  Google Scholar 

  96. Sheehan J, Dunahay T, Benemann J, Roessler P. A look back at the US Department of Energy’s aquatic species program – biodiesel from algae. NREL/TP-580–24190. NREL, Golden, CO; 1998.

    Google Scholar 

  97. Millar A. Macroalgae. NSW Department of Primary Industries; 2011. http://www.dpi.nsw.gov.au/__data/assets/pdf_file/0009/378774/Macroalgae-Primefact-947.pdf

  98. Roesijadi G, Jones SB, Snowden-Swan LJ, Zhu Y. Macroalgae as a biomass feedstock: a preliminary analysis. Washington, DC: U.S. Department of Energy; 2010.

    Book  Google Scholar 

  99. Kim NJ, Li H, Jung K, Chang HN, Lee PC. Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour Technol. 2011;102:7466–9.

    Article  CAS  Google Scholar 

  100. Lee JY, Li P, Lee J, Ryu HJ, Oh KK. Ethanol production from Saccharina japonica using an optimized extremely low acid pretreatment followed by simultaneous saccharification and fermentation. Bioresour Technol. 2013;127:119–25.

    Article  CAS  Google Scholar 

  101. Jiang R, Ingle KN, Golberg A. Macroalgae (seaweed) for liquid transportation biofuel production: what is next? Algal Res. 2016;14:48–57.

    Article  Google Scholar 

  102. Lee OK, Seong DH, Lee CG, Lee EY. Sustainable production of liquid biofuels from renewable microalgae biomass. J Ind Eng Chem. 2015;29:24–31.

    Article  CAS  Google Scholar 

  103. Jang SS. Production of mono sugar from acid hydrolysis of seaweed. Afr J Biotechnol. 2012;11:1953–61.

    CAS  Google Scholar 

  104. Kim GS, Shin MK, Kim YJ et al. Method of producing biofuel using sea algae. WO 2008105618 A1 (2008).

    Google Scholar 

  105. Wei N, Quarterman J, Jin YS. Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends Biotechnol. 2013;31:70–7.

    Article  CAS  Google Scholar 

  106. Short F, Carruthers T, Dennison W, Waycott M. Global seagrass distribution and diversity: a bioregional model. J Exp Mar Biol Ecol. 2007;350:3–20.

    Article  Google Scholar 

  107. Mustafa S, Shapawi R. Aquaculture ecosystems: adaptability and sustainability. Hoboken, NJ: Wiley; 2015.

    Book  Google Scholar 

  108. Bettaieb F, Khiari R, Hassan ML, et al. Preparation and characterization of new cellulose nanocrystals from marine biomass Posidonia oceanica. Ind Crop Prod. 2015;72:175–82.

    Article  CAS  Google Scholar 

  109. Ncibi MC, Ranguin R, Pintor MJ, Jeanne-Rose V, Sillanpää M, Gaspard S. Preparation and characterization of chemically activated carbons derived from Mediterranean Posidonia oceanica (L.) fibres. J Anal Appl Pyrolysis. 2014;109:205–14.

    Article  CAS  Google Scholar 

  110. Pilavtepe M, Celiktas MS, Sargin S, Yesil-Celiktas O. Transformation of Posidonia oceanica residues to bioethanol. Ind Crop Prod. 2013;51:348–54.

    Article  CAS  Google Scholar 

  111. Pilavtepe M, Sargin S, Celiktas MS, Yesil-Celiktas O. An integrated process for conversion of Zostera marina residues to bioethanol. J Supercrit Fluids. 2012;68:117–22.

    Article  CAS  Google Scholar 

  112. Rossillo-Calle F, Walter A. Global market for bio-ethanol: historical trends and future prospects. Energy Sustain Dev. 2006;10:20–32.

    Article  Google Scholar 

  113. Balat M, Balat H, Oz C. Progress in bioethanol processing. Prog Energy Combust Sci. 2008;34:551–73.

    Article  CAS  Google Scholar 

  114. Gupta VK, Tuohy MG. Biofuel technologies: recent developments. Berlin: Springer; 2013.

    Book  Google Scholar 

  115. Tan L, Sun ZY, Okamoto S, et al. Production of ethanol from raw juice and thick juice of sugar beet by continuous ethanol fermentation with flocculating yeast strain KF-7. Biomass Bioenergy. 2015;81:265–72.

    Article  CAS  Google Scholar 

  116. Içoz E, Tugrul MK, Saral A, Içoz E. Research on ethanol production and use from sugar beet in Turkey. Biomass Bioenergy. 2009;33:1–7.

    Article  Google Scholar 

  117. Chen JCP. Outline of raw sugar process and extraction of juice. In: Chen JCP, Chou CC, editors. Cane sugar handbook: a manual for cane sugar manufacturers and their chemists. Hoboken, NJ: Wiley; 1993.

    Google Scholar 

  118. Prati P, Moretti RH. Study of clarification process of sugar cane juice for consumption. Food Sci Technol (Campinas). 2010;30:776–83.

    Google Scholar 

  119. Thai CC, Bakir H, Doherty WO. Insights to the clarification of sugar cane juice expressed from sugar cane stalk and trash. J Agric Food Chem. 2012;21:2916–23.

    Article  CAS  Google Scholar 

  120. Laksameethanasan P, Somla N, Janprem S, Phochuen N. Clarification of sugarcane juice for syrup production. Proc Eng. 2012;32:141–7.

    Article  CAS  Google Scholar 

  121. Wyman CE. Ethanol fuel. In: Cleveland CJ, Ayres RU, Costanza R, et al., editors. Encyclopedia of energy, vol. 2. Philadelphia, PA: Elsevier Science; 2004. p. 541–55.

    Chapter  Google Scholar 

  122. Gonzales JE Method for producing sugar cane juice. US 6245153 B1 (2001).

    Google Scholar 

  123. Leiper KA, Schlee C, Tebble I, Stewart GG. The fermentation of beet sugar syrup to produce bioethanol. J Inst Brew. 2006;112:122–33.

    Article  CAS  Google Scholar 

  124. Hinková A, Bubník Z. Sugar beet as a raw material for bioethanol production. Czech J Food Sci. 2001;19:224–34.

    Google Scholar 

  125. Dodic S, Popov S, Dodic J, Rankovic J, Zavargo Z, Mucibabic RJ. Bioethanol production from thick juice as intermediate of sugar beet processing. Biomass Bioenergy. 2009;33:822–7.

    Article  CAS  Google Scholar 

  126. Di Nicola G, Santecchia E, Santori G, Polonara F. Advances in the development of bioethanol: a review. In: Bernardes MAD, editor. Biofuel’s engineering process technology. Rijeka, Croatia: InTech Publisher; 2011.

    Google Scholar 

  127. Cheesman OD. Environmental impacts of sugar production: the cultivation and processing of sugarcane and sugar beet: background. In: Cheesman OD, editor. Environmental impacts of sugar production: the cultivation and processing of sugarcane and sugar beet. Surrey: CABI Bioscience; 2004. p. 1–10.

    Chapter  Google Scholar 

  128. Zieminski K, Romanowska I, Kowalska-Wentel M, Cyran M. Effects of hydrothermal pretreatment of sugar beet pulp for methane production. Bioresour Technol. 2014;166:187–93.

    Article  CAS  Google Scholar 

  129. Ogbonna JC, Mashima H, Tanaka H. Scale up of fuel ethanol production from sugar beet juice using loofa sponge immobilized bioreactor. Bioresour Technol. 2001;76:1–8.

    Article  CAS  Google Scholar 

  130. Krajnc D, Glavi P. Assessment of different strategies for the co-production of bioethanol and beet sugar. Chem Eng Res Des. 2009;87:1217–31.

    Article  CAS  Google Scholar 

  131. Asadi M. Beet-sugar handbook. Hoboken, NJ: Wiley; 2007.

    Google Scholar 

  132. Loginova K, Loginova M, Vorobiev E, Lebovka NI. Better lime purification of sugar beet juice obtained by low temperature aqueous extraction assisted by pulsed electric field. LWT – Food Sci Technol. 2012;46:371–4.

    Article  CAS  Google Scholar 

  133. Dziugan P, Balcerek M, Pielech-Przybylska K, Patelski P. Evaluation of the fermentation of high gravity thick sugar beet juice worts for efficient bioethanol production. Biotechnol Biofuels. 2013;6:158–68.

    Article  CAS  Google Scholar 

  134. Rajagopalan S, Ponnampalam E, McCalla D, Stowers M. Enhancing profitability of dry mill ethanol plants. Appl Biochem Biotechnol. 2005;120:37–50.

    Article  CAS  Google Scholar 

  135. Yasri NG, Yaghmour A, Gunasekaran S. Effective removal of organics from corn wet milling steepwater effluent by electrochemical oxidation and adsorption on 3-D granulated graphite electrode. J Environ Chem Eng. 2015;3:930–7.

    Article  CAS  Google Scholar 

  136. Naguleswaran S, Li J, Vasanthan T, Bressler D, Hoove R. Amylolysis of large and small granules of native triticale, wheat and corn starches using a mixture of alpha-amylase and glucoamylase. Carbohydr Polym. 2012;88:864–74.

    Article  CAS  Google Scholar 

  137. Bothast RJ, Schlicher MA. Biotechnological processes for conversion of corn into ethanol. Appl Microbiol Biotechnol. 2005;67:19–25.

    Article  CAS  Google Scholar 

  138. Kwiatkowski JR, McAloon AJ, Taylor F, Johnston DB. Modeling the process and costs of fuel ethanol production by the corn dry-grind process. Ind Crop Prod. 2006;23:288–96.

    Article  CAS  Google Scholar 

  139. Sriroth K, Wanlapatit S, Piyachomkwan K. Cassava bioethanol. In: Lima MAP, Natalense APP, editors. Bioethanol. Rijeka, Croatia: In Tech Publisher; 2012.

    Google Scholar 

  140. Cates ES, Dinwiddie JA, Aux G, Batie C, Crabb G Process for starch liquefaction and fermentation. US 7915020 B2 (2011).

    Google Scholar 

  141. Kosugi A, Kondo A, Ueda M, et al. Production of ethanol from cassava pulp via fermentation with a surface-engineered yeast strain displaying glucoamylase. Renew Energy. 2009;34:1354–8.

    Article  CAS  Google Scholar 

  142. Rattanachomsri U, Tanapongpipat S, Eurwilaichitr L, Champreda V. Simultaneous non-thermal saccharification of cassava pulp by multi-enzyme activity and ethanol fermentation by Candida tropicalis. J Biosci Bioeng. 2009;107:488–93.

    Article  CAS  Google Scholar 

  143. Lynd LR. Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment and policy. Energy Environ. 1996;21:403–65.

    Google Scholar 

  144. Limayem A, Ricke SC. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci. 2012;38:449–67.

    Article  CAS  Google Scholar 

  145. Tesfaw A, Assefa F. Current trends in bioethanol production by Saccharomyces cerevisiae: substrate, inhibitor reduction, growth variables, coculture, and immobilization. Int Scholar Res Not. 2014;2014:1–11.

    Article  Google Scholar 

  146. Dien BS, Cotta MA, Jeffries TW. Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol. 2003;63:258–66.

    Article  CAS  Google Scholar 

  147. Larsson S, Sainz AQ, Reimann A, Nilvebrant NO, Jonsson LJ. Influence of lignocellulose-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae. Appl Biochem Biotechnol. 2000;84:617–32.

    Article  Google Scholar 

  148. Ncibi MC. Bioconversion of renewable bioresources and agricultural by-Products into bioethanol. Recent Pat Chem Eng. 2010;3:165–79.

    Article  CAS  Google Scholar 

  149. Kang Q, Appels L, Tan T, Dewil R. Bioethanol from lignocellulosic biomass: current findings determine research priorities. Sci World J. 2014;2014:1–13.

    CAS  Google Scholar 

  150. Banerjee S, Mudaliar S, Sen R, et al. Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels Bioprod Biorefin. 2010;4:77–93.

    Article  CAS  Google Scholar 

  151. Talebnia F, Karakashev D, Angelidaki I. Production of bioethanol from wheat straw: an overview on pre-treatment, hydrolysis and fermentation. Bioresour Technol. 2010;101:4744–53.

    Article  CAS  Google Scholar 

  152. Balcu I, Macarie CA, Segneanu AE, Oana R. Combined microwave-acid pretreatment of the biomass. In: Shaukai SS, editor. Progress in biomass and bioenergy production. Rijeka, Croatia: In Tech Publisher; 2011. p. 223–2238.

    Google Scholar 

  153. Lu X, Xi B, Zhang Y, Angelidaki I. Microwave pretreatment of rape straw for bioethanol production: focus on energy efficiency. Bioresour Technol. 2011;102:7937–40.

    Article  CAS  Google Scholar 

  154. Avellar BK, Glasser WG. Steam-assisted biomass fractionation I: process considerations and economic evaluation. Biomass Bioenergy. 1998;14:205–18.

    Article  CAS  Google Scholar 

  155. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB. Biomass pretreatment: fundamentals toward application. Biotechnol Adv. 2011;29:675–85.

    Article  CAS  Google Scholar 

  156. Sarkar N, Ghosh SK, Bannerjee S, Aikat K. Bioethanol production from agricultural wastes: an overview. Renew Energy. 2012;37:19–27.

    Article  CAS  Google Scholar 

  157. Mabee WE, Gregg DJ, Arato C, et al. Updates on softwood-to-ethanol process development. Appl Biochem Biotechnol. 2006;129:55–70.

    Article  Google Scholar 

  158. Li P, Cai D, Luo Z, Qin P, et al. Effect of acid pretreatment on different parts of corn stalk for second generation ethanol production. Bioresour Technol. 2016;206:86–92.

    Article  CAS  Google Scholar 

  159. Bouza RJ, Gub Z, Evans JH. Screening conditions for acid pretreatment and enzymatic hydrolysis of empty fruit bunches. Ind Crop Prod. 2016;84:67–71.

    Article  CAS  Google Scholar 

  160. Gaur R, Soam S, Sharma S, et al. Bench scale dilute acid pretreatment optimization for producing fermentable sugars from cotton stalk and physicochemical characterization. Ind Crop Prod. 2016;83:104–12.

    Article  CAS  Google Scholar 

  161. Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol. 2010;101:4851–61.

    Article  CAS  Google Scholar 

  162. Mosier N, Wyman C, Dale B, et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol. 2005;96:673–86.

    Article  CAS  Google Scholar 

  163. Zheng Y, Pan Z, Zhang R. Overview of biomass pretreatment for cellulosic production. Int J Agric Biol Eng. 2009;2:51–68.

    CAS  Google Scholar 

  164. Liu C, van der Heide E, Wang H, Li B, Yu G, Mu X. Alkaline twin-screw extrusion pretreatment for fermentable sugar production. Biotechnol Biofuels. 2013;6:97–108.

    Article  CAS  Google Scholar 

  165. Hage RE, Brosse N, Chrusciel L, Sanchez C, Sannigrahi P, Ragauskas A. Characterization of milled wood lignin and ethanol organosolv lignin from Miscanthus. Polym Degrad Stab. 2009;94:1632–8.

    Article  CAS  Google Scholar 

  166. Pan XJ, Arato C, Gilkes N, et al. Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel grade ethanol and co-products. Biotechnol Bioeng. 2005;90:473–81.

    Article  CAS  Google Scholar 

  167. Holtzapple MT, Humphrey AE. The effect of organosolv pretreatment on the enzymatic hydrolysis of poplar. Biotechnol Bioeng. 1984;26:670–6.

    Article  CAS  Google Scholar 

  168. Chen H, Zhao J, Hua T, Zhao X, Liu D. A comparison of several organosolv pretreatments for improving the enzymatic hydrolysis of wheat straw: Substrate digestibility, fermentability and structural features. Appl Energy. 2015;150:224–32.

    Article  CAS  Google Scholar 

  169. Hallett JP, Welton T. Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev. 2011;111:3508–76.

    Article  CAS  Google Scholar 

  170. Diego AF, Richard CR, Richard PS, Patrick M, Guillermo M, Robin DR. Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem. 2007;9:63–9.

    Article  Google Scholar 

  171. Hou XD, Li N, Zong MH. Significantly enhancing enzymatic hydrolysis of rice straw after pretreatment using renewable ionic liquid–water mixtures. Bioresour Technol. 2013;136:469–74.

    Article  CAS  Google Scholar 

  172. Haykir NI, Bahcegul E, Bicak N, Bakir U. Pretreatment of cotton stalk with ionic liquids including 2-hydroxy ethyl ammonium formate to enhance biomass digestibility. Ind Crop Prod. 2013;41:430–6.

    Article  CAS  Google Scholar 

  173. Financie R, Moniruzzaman M, Uemura Y. Enhanced enzymatic delignification of oil palm biomass with ionic liquid pretreatment. Biochem Eng J. 2016;110:1–7.

    Article  CAS  Google Scholar 

  174. Canilha L, Chandel AK, Milessi TSS, et al. Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J Biomed Biotechnol. 2012;2012:1–15.

    Article  CAS  Google Scholar 

  175. Salvachua D, Prieto A, Lopez-Abelairas M, Lu-Chau T, Martinez AT, Martinez MJ. Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresour Technol. 2011;102:7500–6.

    Article  CAS  Google Scholar 

  176. Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol. 2002;83:1–11.

    Article  CAS  Google Scholar 

  177. Eggeman T, Elander RT. Process economic analysis of pretreatment technologies. Bioresour Technol. 2005;96:2019–25.

    Article  CAS  Google Scholar 

  178. Soudham VP, Brandberg T, Mikkola JP, Larsson C. Detoxification of acid pretreated spruce hydrolysates with ferrous sulfate and hydrogen peroxide improves enzymatic hydrolysis and fermentation. Bioresour Technol. 2014;166:559–65.

    Article  CAS  Google Scholar 

  179. Cavka A, Jönsson LJ. Detoxification of lignocellulosic hydrolysates using sodium borohydride. Bioresour Technol. 2013;136:368–76.

    Article  CAS  Google Scholar 

  180. Monlau F, Sambusiti C, Antoniou N, Zabaniotou A, Solhy A, Barakat A. Pyrochars from bioenergy residue as novel bio-adsorbents for lignocellulosic hydrolysate detoxification. Bioresour Technol. 2015;187:379–86.

    Article  CAS  Google Scholar 

  181. Zhang D, Ong YL, Li Z, Wu JC. Biological detoxification of furfural and 5-hydroxyl methyl furfural in hydrolysate of oil palm empty fruit bunch by Enterobacter sp. FDS8. Biochem Eng J. 2013;72:77–82.

    Article  CAS  Google Scholar 

  182. Lee KM, Min K, Choi O, et al. Electrochemical detoxification of phenolic compounds in lignocellulosic hydrolysate for Clostridium fermentation. Bioresour Technol. 2015;187:228–34.

    Article  CAS  Google Scholar 

  183. Nguyen N, Fargues C, Guiga W, Lameloise ML. Assessing nanofiltration and reverse osmosis for the detoxification of lignocellulosic hydrolysates. J Membr Sci. 2015;487:40–50.

    Article  CAS  Google Scholar 

  184. Demirbas A. Bioethanol from cellulosic materials: a renewable motor fuel from biomass. Energy Sources. 2005;27:327–37.

    Article  CAS  Google Scholar 

  185. Jiang LQ, Fang Z, Li XK, Luo J, Fan SP. Combination of dilute acid and ionic liquid pretreatments of sugarcane bagasse for glucose by enzymatic hydrolysis. Process Biochem. 2013;48:1942–6.

    Article  CAS  Google Scholar 

  186. Chandel AK, Es C, Rudravaram R, Narasu ML, Rao LV, Ravindra P. Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol Mol Biol Rev. 2007;2:14–32.

    Google Scholar 

  187. Badger PC. Ethanol from cellulose: a general review. In: Janick J, Whipkey A, editors. Trends in new crops and new uses. Alexandria, VA: ASHS Press; 2002. p. 17–21.

    Google Scholar 

  188. Beguin P, Aubert JP. The biological degradation of cellulose. FEMS Microbiol Rev. 1994;13:25–58.

    Article  CAS  Google Scholar 

  189. Jeffries TW, Jin YS. Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Adv Appl Microbiol. 2000;47:221–68.

    Article  CAS  Google Scholar 

  190. Gong CS, Cao NJ, Du J, Tsao GT. Ethanol production from renewable resources. Adv Biochem Eng Biotechnol. 1999;65:207–41.

    CAS  Google Scholar 

  191. Kundu C, Lee JW. Bioethanol production from detoxified hydrolysate and the characterization of oxalic acid pretreated Eucalyptus (Eucalyptus globulus) biomass. Ind Crop Prod. 2016;83:322–8.

    Article  CAS  Google Scholar 

  192. Agbogbo FK, Haagensen FD, Milam D, Wenger KS. Fermentation of acid-pretreated corn stover to ethanol without detoxification using Pichia stipitis. Appl Biochem Biotechnol. 2008;145:53–8.

    Article  CAS  Google Scholar 

  193. Hamelinck CN, Hooijdonk GV, Faaij AP. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy. 2005;28:384–410.

    Article  CAS  Google Scholar 

  194. Menon V, Rao M. Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefinery concept. Prog Energy Combust Sci. 2012;38:522–50.

    Article  CAS  Google Scholar 

  195. Cantarella M, Cantarella L, Gallifuoco A, Spera A, Alfani F. Comparison of different detoxification methods for steam-exploded poplar wood as a substrate for the bioproduction of ethanol in SHF and SSF. Process Biochem. 2004;39:1533–42.

    Article  CAS  Google Scholar 

  196. Teixeira LC, Linden JC, Schroeder HA. Simultaneous saccharification and cofermentation of peracetic acid-pretreated biomass. Appl Biochem Biotechnol. 2000;84:111–27.

    Article  Google Scholar 

  197. Cardona CA, Sanchez OJ. Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol. 2007;98:2415–57.

    Article  CAS  Google Scholar 

  198. Eiteman MA, Lee SA, Altman E. A co-fermentation strategy to consume sugar mixtures effectively. J Biol Eng. 2008;2:3–11.

    Article  CAS  Google Scholar 

  199. Liu ZH, Chen HZ. Simultaneous saccharification and co-fermentation for improving the xylose utilization of steam exploded corn stover at high solid loading. Bioresour Technol. 2016;201:15–26.

    Article  CAS  Google Scholar 

  200. Ho NWY, Chen ZD Stable recombinant yeasts for fermenting xylose to ethanol. US 8652772 B2 (2014).

    Google Scholar 

  201. Waldron K. Bioalcohol production biochemical conversion of lignocellulosic biomass. Cambridge: Woodhead Publishing; 2010.

    Google Scholar 

  202. Parisutham V, Kim TH, Lee SK. Feasibilities of consolidated bioprocessing microbes: from pretreatment to biofuel production. Bioresour Technol. 2014;161:431–40.

    Article  CAS  Google Scholar 

  203. Akinosho H, Yee K, Close D, Ragauskas A. The emergence of Clostridium thermocellum as a high utility candidate for consolidate bioprocessing applications. Front Chem. 2014;2:1–17.

    Article  CAS  Google Scholar 

  204. Hu N, Yuan B, Sun J, Wang SA, Li FL. Thermotolerant Kluyveromyces marxianus and Saccharomyces cerevisiae strains representing potentials for bioethanol production from Jerusalem artichoke by consolidated bioprocessing. Appl Microbiol Biotechnol. 2012;95:1359–68.

    Article  CAS  Google Scholar 

  205. Treybal RE. Mass transfer operations. 3rd ed. Singapore: McGraw-Hill Books; 1980.

    Google Scholar 

  206. Madson PW. Ethanol distillation: the fundamentals. In: Jacques KA, Lyons TP, Kelsall DR, editors. The alcohol textbook. 4th ed. Nottingham: Nottingham University Press; 1995. p. 319–36.

    Google Scholar 

  207. Melo TCC, Machado GB, Belchior CRP. Hydrous ethanol–gasoline blends – combustion and emission investigations on a Flex-Fuel engine. Fuel. 2012;97:796–804.

    Article  CAS  Google Scholar 

  208. Masum BM, Kalam MA, Masjuki HH, Ashrafur Rahman SM, Daggig EE. Impact of denatured anhydrous ethanol–gasoline fuel blends on a spark-ignition engine. RSC Adv. 2014;4:51220–7.

    Article  CAS  Google Scholar 

  209. Kumar S, Singh N, Prasad R. Anhydrous ethanol: a renewable source of energy. Renew Sust Energ Rev. 2010;14:1830–44.

    Article  CAS  Google Scholar 

  210. Osman YA, Ingram LO. Mechanism of ethanol inhibition of fermentation in Zymomonas mobilis CP4. J Bacteriol. 1985;164:173–80.

    CAS  Google Scholar 

  211. Yuan S, Zou C, Yin H, Chen Z, Yang W. Study on the separation of binary azeotropic mixtures by continuous extractive distillation. Chem Eng Res Des. 2015;93:113–9.

    Article  CAS  Google Scholar 

  212. Gomis V, Pedraza R, Saquete MD, Font A, García-Cano J. Ethanol dehydration via azeotropic distillation with gasoline fractions as entrainers: a pilot-scale study of the manufacture of an ethanol–hydrocarbon fuel blend. Fuel. 2015;139:568–74.

    Article  CAS  Google Scholar 

  213. Kiran B, Jana AK. A hybrid heat integration scheme for bioethanol separation through pressure-swing distillation route. Sep Purif Technol. 2015;14:307–15.

    Article  CAS  Google Scholar 

  214. Magalad VT, Gokavi GS, Nadagouda MN, Aminabhavi TM. Pervaporation separation of water–ethanol mixtures using organic–inorganic nanocomposite membranes. J Phys Chem C. 2011;115:14731–44.

    Article  CAS  Google Scholar 

  215. Kupiec K, Rakoczy J, Komorowicz T, Larwa B. Heat and mass transfer in adsorption–desorption cyclic process for ethanol dehydration. Chem Eng J. 2014;241:485–94.

    Article  CAS  Google Scholar 

  216. Lapuerta M, Armas O, Rodriguez-Fernandez J. Effect of biodiesel fuels on diesel engine emissions. Prog Energy Combust Sci. 2008;34:198–223.

    Article  CAS  Google Scholar 

  217. Omidvarborna H, Kumar A, Kim DS Characterization and exhaust emission analysis of biodiesel at different temperatures and pressures: laboratory study. J Hazard Toxic Radioact Waste 2015;19(2):1–6.

    Google Scholar 

  218. Van Gerpen J. Biodiesel processing and production. Fuel Process Technol. 2005;86:1097–107.

    Article  CAS  Google Scholar 

  219. Kumar A, Nerella VKV. Experimental analysis of exhaust emissions from transit buses fuelled with biodiesel. Open Environ Eng J. 2009;2:81–96.

    Article  CAS  Google Scholar 

  220. Wang W, Clark NN, Lyons DW, et al. Emissions comparisons from alternative fuel uses and diesel buses with a chassis dynamometer testing facility. Environ Sci Technol. 1997;31:3132–7.

    Article  CAS  Google Scholar 

  221. Kegl B, Hribernik A. Experimental analysis of injection characteristics using biodiesel fuel. Energy Fuel. 2006;20:2239–40.

    Article  CAS  Google Scholar 

  222. He BQ. Advances in emission characteristics of diesel engines using different biodiesel fuels. Renew Sust Energ Rev. 2016;60:570–86.

    Article  CAS  Google Scholar 

  223. Can O, Öztürk E, Solmaz H, Aksoy F, Çinar C, Yücesu HS. Combined effects of soybean biodiesel fuel addition and EGR application on the combustion and exhaust emissions in a diesel engine. Appl Therm Eng. 2016;95:115–24.

    Article  CAS  Google Scholar 

  224. Datta A, Mandal BK. A comprehensive review of biodiesel as an alternative fuel for compression ignition engine. Renew Sustain Energy Rev. 2016;57:799–821.

    Article  CAS  Google Scholar 

  225. Anuar MR, Abdullah AZ. Challenges in biodiesel industry with regards to feedstock, environmental, social and sustainability issues: a critical review. Renew Sust Energ Rev. 2016;58:208–23.

    Article  CAS  Google Scholar 

  226. Atabani AE, Silitonga AS, Badruddin IA, Mahlia TMI, Masjuki HH, Mekhilef S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew Sust Energ Rev. 2012;16:2070–93.

    Article  Google Scholar 

  227. Gomes MCS, Arroyo PA, Pereira NC. Influence of oil quality on biodiesel purification by ultrafiltration. J Membr Sci. 2015;496:242–9.

    Article  CAS  Google Scholar 

  228. Firestone D. Gas chromatographic determination of mono- and diglycerides in fats and oils: summary of collaborative study. J AOAC Int. 1994;77:677–80.

    Google Scholar 

  229. Schenk PM, Thomas-Hall SR, Stephens E, et al. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res. 2008;1:20–43.

    Article  Google Scholar 

  230. Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25:294–306.

    Article  CAS  Google Scholar 

  231. Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng. 2006;101:87–96.

    Article  CAS  Google Scholar 

  232. Stansell GR, Gray VM, Sym SD. Microalgal fatty acid composition: implications for biodiesel quality. J Appl Phycol. 2012;24:791–801.

    Article  CAS  Google Scholar 

  233. Pagliero C, Ochoa N, Marchese J, Mattea M. Degumming of crude soybean oil by ultrafiltration using polymeric membranes. JAOCS. 2001;78:793–6.

    CAS  Google Scholar 

  234. Ncibi MC, Sillanpää M. Recent research and developments in biodiesel production from renewable bioresources. Recent Pat Chem Eng. 2013;6:183–91.

    Google Scholar 

  235. Singh J, Bargale PC. Development of a small capacity double stage compression screw press for oil expression. J Food Eng. 2000;43:75–82.

    Article  Google Scholar 

  236. Santori G, Di Nicola G, Moglie M, Polonara F. A review analyzing the industrial biodiesel production practice starting from vegetable oil refining. Appl Energy. 2012;92:109–32.

    Article  CAS  Google Scholar 

  237. Meher LC, Vidya SSD, Naik SN. Optimization of alkali catalyzed transesterification of Pongamia pinnata oil for production of biodiesel. Bioresour Technol. 2006;97:1392–7.

    Article  CAS  Google Scholar 

  238. Martin GJO. Energy requirements for wet solvent extraction of lipids from microalgal biomass. Bioresour Technol. 2016;205:40–7.

    Article  CAS  Google Scholar 

  239. Achten WMJ, Verchot L, Franken YJ, Mathijs E, Singh VP, Aerts R, Muys B. Jatropha bio-diesel production and use. Biomass Bioenergy. 2008;32:1063–84.

    Article  CAS  Google Scholar 

  240. Fauzi AHM, Amin NAS. An overview of ionic liquids as solvents in biodiesel synthesis. Renew Sust Energ Rev. 2012;16:5770–86.

    Article  CAS  Google Scholar 

  241. Pramparo M, Gregory S, Mattea M. Immersion vs. percolation in the extraction of oil from oleaginous seeds. J Am Oil Chem Soc. 2002;79:955–60.

    Article  CAS  Google Scholar 

  242. Taher H, Al-Zuhair S, Al-Marzouqi AH, Haik Y, Farid MM. A review of enzymatic transesterification of microalgal oil-based biodiesel using supercritical technology. Enzyme Res. 2011;2011:1–25.

    Article  CAS  Google Scholar 

  243. Shah S, Sharma A, Gupta MN. Extraction of oil from Jatropha curcas L. seed kernels by combination of ultrasonication and aqueous enzymatic oil extraction. Bioresour Technol. 2005;96:121–3.

    Article  CAS  Google Scholar 

  244. Rubio-Rodríguez N, De Diego SM, Beltran S, Jaime I, Sanz MT, Rovira J. Supercritical fluid extraction of fish oil from fish by-products: a comparison with other extraction methods. J Food Eng. 2012;109:238–48.

    Article  CAS  Google Scholar 

  245. Cardoso-Ugarte GA, Juarez-Becerra GP, Sosa-Morales ME, Lopez-Malo A. Microwave-assisted extraction of essential oils from herbs. J Microw Power Electromagn Energy. 2013;47:63–72.

    Article  Google Scholar 

  246. Govindarajan L, Raut N, Alsaeed A. Novel solvent extraction for extraction of oil from algae biomass growth in desalination reject stream. J Algal Biomass Util. 2009;1:18–28.

    Google Scholar 

  247. Robles MA, González MPA, Esteban CL, Molina GE. Biocatalysis: towards ever greener biodiesel production. Biotechnol Adv. 2009;27:398–408.

    Article  CAS  Google Scholar 

  248. Karmakar A, Karmakar S, Mukherjee S. Properties of various plants and animals feedstocks for biodiesel production. Bioresour Technol. 2010;101:7201–10.

    Article  CAS  Google Scholar 

  249. Helwani Z, Othman MR, Aziz N, Kim J, Fernando WJN. Solid heterogeneous catalysts for transesterification of triglycerides with methanol: a review. Appl Catal A. 2009;363:1–10.

    Article  CAS  Google Scholar 

  250. Berchmans HJ, Hirata S. Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour Technol. 2008;99:1716–21.

    Article  CAS  Google Scholar 

  251. Stojkovic IJ, Stamenković OS, Povrenović DS, Veljković VB. Purification technologies for crude biodiesel obtained by alkali-catalyzed transesterification. Renew Sust Energ Rev. 2014;32:1–15.

    Article  CAS  Google Scholar 

  252. Akoh CC, Chang SW, Lee GC, Shaw JF. Enzymatic approach to biodiesel production. J Agric Food Chem. 2007;55:8995–9005.

    Article  CAS  Google Scholar 

  253. Ribeiro BD, de Castro AM, Coelho MA, Freire DM. Production and use of lipases in bioenergy: a review from the feedstocks to biodiesel production. Enzyme Res. 2011;2011:1–16.

    Google Scholar 

  254. Narwal SK, Gupta R. Biodiesel production by transesterification using immobilized lipase. Biotechnol Lett. 2013;35:479–90.

    Article  CAS  Google Scholar 

  255. Kusdiana D, Saka S. Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresour Technol. 2004;91:289–95.

    Article  CAS  Google Scholar 

  256. Kafuku G, Lee KT, Mbarawa M. Non-catalytic and catalytic transesterification: A reaction kinetics comparison study. Int J Green Energy. 2015;12:551–8.

    Article  CAS  Google Scholar 

  257. da Silva C, Oliveira JV. Biodiesel production through non-catalytic supercritical transesterification: current state and perspectives. Braz J Chem Eng. 2014;31:271–85.

    Article  Google Scholar 

  258. Eriksson O, Bisaillon M, Haraldsson M, Sundberg J. Enhancement of biogas production from food waste and sewage sludge – environmental and economic life cycle performance. J Environ Manag. 2016;175:33–9.

    Article  CAS  Google Scholar 

  259. Melikoglu M. Vision 2023: assessing the feasibility of electricity and biogas production from municipal solid waste in Turkey. Renew Sust Energ Rev. 2013;19:52–63.

    Article  Google Scholar 

  260. Abdeshahian P, Lim JS, Ho WS, Hashim H, Lee CT. Potential of biogas production from farm animal waste in Malaysia. Renew Sust Energ Rev. 2016;60:714–23.

    Article  CAS  Google Scholar 

  261. Neves VT, Sales EA, Perelo LW. Influence of lipid extraction methods as pre-treatment of microalgal biomass for biogas production. Renew Sust Energ Rev. 2016;59:160–5.

    Article  CAS  Google Scholar 

  262. European Union Directive 2009/28/EC – Promotion of the use of energy from renewable sources, 2001/77/EC and 2003/30/EC (2009)

    Google Scholar 

  263. Holm-Nielsen JB, Al ST. Oleskowicz-Popiel P. Bioresour Technol. 2009;100:5478–84.

    Article  CAS  Google Scholar 

  264. Ali G, Nitivattananon V, Abbas S, Sabir M. Green waste to biogas: renewable energy possibilities for Thailand’s green markets. Renew Sust Energ Rev. 2012;16:5423–9.

    Article  Google Scholar 

  265. Mao C, Feng Y, Wang X, Ren G. Review on research achievements of biogas from anaerobic digestion. Renew Sust Energ Rev. 2015;45:540–55.

    Article  CAS  Google Scholar 

  266. Ncibi MC, Sillanpää M. Recent patents and research studies on biogas production from bioresources and wastes. Recent Innov Chem Eng. 2014;7:2–9.

    CAS  Google Scholar 

  267. Navaratnasamy M, Edeogu I, Papworth L. Economic feasibility of anaerobic digesters. http://www.thecropsite.com/articles/1773/economic-feasibility-of-anaerobic-digesters/#sthash.XPf8WY9D.dpuf

  268. Mussgnug JH, Klassen V, Schlüter A, Kruse O. Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol. 2010;150:51–6.

    Article  CAS  Google Scholar 

  269. Liu Q, Wu L, Jackstell R, Beller M. Using carbon dioxide as a building block in organic synthesis. Nat Commun. 2015;6:1–15.

    CAS  Google Scholar 

  270. Li H, Opgenorth PH, Wernick DG, et al. Integrated electromicrobial conversion of CO2 to higher alcohols. Science. 2012;335:1596.

    Article  CAS  Google Scholar 

  271. Burke D. Dairy waste anaerobic digestion handbook. Olympia, WA: Environmental Energy Company; 2001. p. 1–57. http://www.makingenergy.com/Dairy Waste Handbook.pdf

    Google Scholar 

  272. Molino A, Nanna F, Ding Y, Bikson B, Braccio G. Biomethane production by anaerobic digestion of organic waste. Fuel. 2013;103:1003–9.

    Article  CAS  Google Scholar 

  273. Tippayawong N, Thanompongchart P. Biogas quality upgrade by simultaneous removal of CO2 and H2S in a packed column reactor. Energy. 2010;35:4531–5.

    Article  CAS  Google Scholar 

  274. Andriani D, Wresta A, Atmaja TD, Saepudin A. A review on optimization production and upgrading biogas through CO2 removal using various techniques. Appl Biochem Biotechnol. 2014;172:1909–28.

    Article  CAS  Google Scholar 

  275. Nock WJ, Walker M, Kapoor R, Heaven S. Modeling the water scrubbing process and energy requirements for CO2 Capture to upgrade biogas to biomethane. Ind Eng Chem Res. 2014;53:12783–92.

    Article  CAS  Google Scholar 

  276. Kim YJ, Nam YS, Kang YT. Study on a numerical model and PSA (pressure swing adsorption) process experiment for CH4/CO2 separation from biogas. Energy. 2015;91:732–41.

    Article  CAS  Google Scholar 

  277. Allegue LB, Hinge J Biogas and bio-syngas upgrading. Aarhus, Denmark; 2012. http://www.teknologisk.dk/_root/media/52679_Report-Biogas and syngasupgrading.pdf

  278. Liu Y, Li H, Wei G, Zhang H, Li X, Jia Y. Mass transfer performance of CO2 absorption by alkanolamine aqueous solution for biogas purification. Sep Purif Technol. 2014;133:476–83.

    Article  CAS  Google Scholar 

  279. Scholz M, Melin T, Wessling M. Transforming biogas into biomethane using membrane technology. Renew Sustain Energy Rev. 2013;17:199–212.

    Article  CAS  Google Scholar 

  280. Sun Q, Li H, Yan J, Liu L, Yu Z, Yu X. Selection of appropriate biogas upgrading technology – a review of biogas cleaning, upgrading and utilization. Renew Sust Energ Rev. 2015;51:521–32.

    Article  CAS  Google Scholar 

  281. Deng L, Hägg MB. Techno-economic evaluation of biogas upgrading process using CO2 facilitated transport membrane. Int J Greenhouse Gas Control. 2010;4:638–46.

    Article  CAS  Google Scholar 

  282. Baker RW. Membrane technology and applications. 3rd ed. Hoboken, NJ: Wiley; 2012.

    Book  Google Scholar 

  283. Molino A, Chianese S, Musmarra D. Biomass gasification technology: the state of the art overview. J Energy Chem. 2016;25:10–25.

    Article  Google Scholar 

  284. Luque R, Pineda A, Colmenares JC. Carbonaceous residues from biomass gasification as catalysts for biodiesel production. J Nat Gas Chem. 2012;21:246–50.

    Article  CAS  Google Scholar 

  285. Molino A, Braccio G. Synthetic natural gas SNG production from biomass gasification – thermodynamics and processing aspects. Fuel. 2015;139:425–9.

    Article  CAS  Google Scholar 

  286. Colla L, Zanella D, Cavazzi M, Pelizza ML Apparatus and method for recovering energy from biomass, in particular from vegetable biomass. EP 2589646 A1 (2013).

    Google Scholar 

  287. Sharma AK. Equilibrium modeling of global reduction reactions for a downdraft (biomass) gasifier. Energy Convers Manag. 2008;49:832–42.

    Article  CAS  Google Scholar 

  288. Aylott M. Biomass gasification in the UK – where are we now? Biomass Magazine; 2010. http://biomassmagazine.com/articles/5149/biomass-gasification-in-the-ukundefinedwhere-are-we-now

  289. Lv P, Yuan Z, Wu C, Ma L, Chen Y, Tsubaki N. Bio-syngas production from biomass catalytic gasification. Energy Convers Manag. 2007;48:1132–9.

    Article  CAS  Google Scholar 

  290. Courson C, Makaga E, Petit C, Kiennemann A. Development of Ni catalysts for gas production from biomass gasification reactivity in steam- and dry-reforming. Catal Today. 2000;63:427–37.

    Article  CAS  Google Scholar 

  291. Guan Q, Wei C, Chai X. Energetic analysis of gasification of biomass by partial oxidation in supercritical water. Chin J Chem Eng. 2015;23:205–12.

    Article  CAS  Google Scholar 

  292. Puig AM, Bruno JC, Coronas A. Review and analysis of biomass gasification models. Renew Sust Energ Rev. 2010;14:2841–51.

    Article  CAS  Google Scholar 

  293. Hamelinck CN, Faaij APC, den Uil H, Boerrigter H. Production of FT transportation fuels from biomass; technical options, process analysis and optimisation, and development potential. Energy. 2004;29:1743–71.

    Article  CAS  Google Scholar 

  294. Schmid JC, Wolfesberger U, Koppatz S, Pfeifer C, Hofbauer H. Variation of feedstock in a dual fluidized bed steam gasifier – influence on product gas, tar content, and composition Environ. Prog Sustain Energy. 2012;31:205–15.

    Article  CAS  Google Scholar 

  295. Roos CJ. Clean heat and power using biomass gasification for industrial and agricultural projects. U.S. Department of Energy; 2010. http://www.energy.wsu.edu/Documents/BiomassGasification_2010.pdf

  296. de Jong W. Biosyngas generation via gasifaction of biomass, gas cleaning, and fuel gas upgrading. In: Hu YH, Ma X, Fox EB, Guo X, editors. Production and purification of ultraclean transportation fuels. Washington, DC: ACS Publications; 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sillanpää, M., Ncibi, C. (2017). Biofuels and Bioenergy. In: A Sustainable Bioeconomy. Springer, Cham. https://doi.org/10.1007/978-3-319-55637-6_4

Download citation

Publish with us

Policies and ethics