Skip to main content

Mitochondrial Mutations in Cardiac Disorders

  • Chapter
  • First Online:
Mitochondrial Dynamics in Cardiovascular Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 982))

Abstract

Mitochondria individually encapsulate their own genome, unlike other cellular organelles. Mitochondrial DNA (mtDNA) is a circular, double-stranded, 16,569-base paired DNA containing 37 genes: 13 proteins of the mitochondrial respiratory chain, two ribosomal RNAs (rRNAs; 12S and 16S), and 22 transfer RNAs (tRNAs). The mtDNA is more vulnerable to oxidative modifications compared to nuclear DNA because of its proximity to ROS-producing sites, limited presence of DNA damage repair systems, and continuous replication in the cell. mtDNA mutations can be inherited or sporadic. Simple mtDNA mutations are point mutations, which are frequently found in mitochondrial tRNA loci, causing mischarging of mitochondrial tRNAs or deletion, duplication, or reduction in mtDNA content. Because mtDNA has multiple copies and a specific replication mechanism in cells or tissues, it can be heterogenous, resulting in characteristic phenotypic presentations such as heteroplasmy, genetic drift, and threshold effects. Recent studies have increased the understanding of basic mitochondrial genetics, providing an insight into the correlations between mitochondrial mutations and cardiac manifestations including hypertrophic or dilated cardiomyopathy, arrhythmia, autonomic nervous system dysfunction, heart failure, or sudden cardiac death with a syndromic or non-syndromic phenotype. Clinical manifestations of mitochondrial mutations, which result from structural defects, functional impairment, or both, are increasingly detected but are not clear because of the complex interplay between the mitochondrial and nuclear genomes, even in homoplasmic mitochondrial populations. Additionally, various factors such as individual susceptibility, nutritional state, and exposure to chemicals can influence phenotypic presentation, even for the same mtDNA mutation.

In this chapter, we summarize our current understanding of mtDNA mutations and their role in cardiac involvement. In addition, epigenetic modifications of mtDNA are briefly discussed for future elucidation of their critical role in cardiac involvement. Finally, current strategies for dealing with mitochondrial mutations in cardiac disorders are briefly stated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaniak-Golik A, Skoneczna A. Mitochondria-nucleus network for genome stability. Free Radic Biol Med. 2015;82:73–104.

    Article  CAS  PubMed  Google Scholar 

  2. da Cunha FM, Torelli NQ, Kowaltowski AJ. Mitochondrial retrograde signaling: triggers, pathways, and outcomes. Oxidative Med Cell Longev. 2015;2015:482582.

    Article  Google Scholar 

  3. McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol. 2006;16:R551–60.

    Article  CAS  PubMed  Google Scholar 

  4. Picard M, Wallace DC, Burelle Y. The rise of mitochondria in medicine. Mitochondrion. 2016;30:105–16.

    Article  CAS  PubMed  Google Scholar 

  5. Chaudhary KR, El-Sikhry H, Seubert JM. Mitochondria and the aging heart. J Geriatr Cardiol JGC. 2011;8:159–67.

    Article  CAS  PubMed  Google Scholar 

  6. Schwarz K, Siddiqi N, Singh S, Neil CJ, Dawson DK, Frenneaux MP. The breathing heart – mitochondrial respiratory chain dysfunction in cardiac disease. Int J Cardiol. 2014;171:134–43.

    Article  PubMed  Google Scholar 

  7. Finsterer J, Kothari S. Cardiac manifestations of primary mitochondrial disorders. Int J Cardiol. 2014;177:754–63.

    Article  PubMed  Google Scholar 

  8. Lee S, Kim N, Noh Y, Xu Z, Ko K, Rhee B, Han J. Mitochondrial DNA, mitochondrial dysfunction, and cardiac manifestations. Front Biosci (Landmark Ed). 2016;21:1410–26.

    Article  Google Scholar 

  9. Wang Q. Molecular genetics of coronary artery disease. Curr Opin Cardiol. 2005;20:182–8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tyynismaa H, Suomalainen A. Mouse models of mitochondrial DNA defects and their relevance for human disease. EMBO Rep. 2009;10:137–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Krzywanski DM, Moellering DR, Fetterman JL, Dunham-Snary KJ, Sammy MJ, Ballinger SW. The mitochondrial paradigm for cardiovascular disease susceptibility and cellular function: a complementary concept to Mendelian genetics. Lab Investig. 2011;91:1122–35.

    Article  PubMed  Google Scholar 

  12. Wang J, Lin F, Guo LL, Xiong XJ, Fan X. Cardiovascular disease, mitochondria, and traditional chinese medicine. Evid Based Complement Alternat Med. 2015;2015:143145.

    PubMed  PubMed Central  Google Scholar 

  13. Scheibye-Knudsen M, Fang EF, Croteau DL, Wilson Iii DM, Bohr VA. Protecting the mitochondrial powerhouse. Trends Cell Biol. 2015;25:158–70.

    Article  CAS  PubMed  Google Scholar 

  14. Wallace DC. A mitochondrial bioenergetic etiology of disease. J Clin Invest. 2013;123:1405–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pikó L, Hougham AJ, Bulpitt KJ. Studies of sequence heterogeneity of mitochondrial DNA from rat and mouse tissues: evidence for an increased frequency of deletions/additions with aging. Mech Ageing Dev. 1988;43:279–93.

    Article  PubMed  Google Scholar 

  16. Stewart JB, Larsson N-G. Keeping mtDNA in shape between generations. PLoS Genet. 2014;10:e1004670.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Golob MJ, Tian L, Wang Z, Zimmerman TA, Caneba CA, Hacker TA, Song G, Chesler NC. Mitochondria DNA mutations cause sex-dependent development of hypertension and alterations in cardiovascular function. J Biomech. 2015;48:405–12.

    Article  PubMed  Google Scholar 

  18. Farrar GJ, Chadderton N, Kenna PF, Millington-Ward S. Mitochondrial disorders: aetiologies, models systems, and candidate therapies. Trends Genet. 2013;29:488–97.

    Article  CAS  PubMed  Google Scholar 

  19. Taylor RW, Turnbull DM. Mitochondrial dna mutations in human disease. Nat Rev Genet. 2005;6:389–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. El-Hattab AW, Scaglia F. Mitochondrial cardiomyopathies. Front Cardiovasc Med. 2016;3:25.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ritzenthaler T, Luis D, Hullin T, Fayssoil A. Cardiac manifestations of mitochondrial diseases. Presse Med. 2015;44:492–7.

    Article  PubMed  Google Scholar 

  22. Vincent AE, Ng YS, White K, Davey T, Mannella C, Falkous G, Feeney C, Schaefer AM, McFarland R, Gorman GS, Taylor RW, Turnbull DM, Picard M. The spectrum of mitochondrial ultrastructural defects in mitochondrial myopathy. Sci Report. 2016;6:30610.

    Article  CAS  Google Scholar 

  23. Meyers DE, Basha HI, Koenig MK. Mitochondrial cardiomyopathy: pathophysiology, diagnosis, and management. Tex Heart Inst J. 2013;40:385–94.

    PubMed  PubMed Central  Google Scholar 

  24. Magner M, Kolarova H, Honzik T, Svandova I, Zeman J. Clinical manifestation of mitochondrial diseases. Dev Period Med. 2015;19:441–9.

    PubMed  Google Scholar 

  25. Lightowlers RN, Taylor RW, Turnbull DM. Mutations causing mitochondrial disease: what is new and what challenges remain? Science. 2015;349:1494–9.

    Article  CAS  PubMed  Google Scholar 

  26. Chinnery PF. Mitochondrial disease in adults: what’s old and what’s new? EMBO Mol Med. 2015;7:1503–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brunel-Guitton C, Levtova A, Sasarman F. Mitochondrial diseases and cardiomyopathies. Can J Cardiol. 2015;31:1360–76.

    Article  PubMed  Google Scholar 

  28. Finsterer J. Cardiogenetics, neurogenetics, and pathogenetics of left ventricular hypertrabeculation/noncompaction. Pediatr Cardiol. 2009;30:659–81.

    Article  PubMed  Google Scholar 

  29. Ong SB, Hausenloy DJ. Mitochondrial morphology and cardiovascular disease. Cardiovasc Res. 2010;88:16–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Beraud N, Pelloux S, Usson Y, Kuznetsov AV, Ronot X, Tourneur Y, Saks V. Mitochondrial dynamics in heart cells: very low amplitude high frequency fluctuations in adult cardiomyocytes and flow motion in non beating Hl-1 cells. J Bioenerg Biomembr. 2009;41:195–214.

    Article  CAS  PubMed  Google Scholar 

  31. Kuznetsov AV, Hermann M, Saks V, Hengster P, Margreiter R. The cell-type specificity of mitochondrial dynamics. Int J Biochem Cell Biol. 2009;41:1928–39.

    Article  CAS  PubMed  Google Scholar 

  32. MacKenzie JA, Payne RM. Mitochondrial protein import and human health and disease. Biochim Biophys Acta (BBA) – Mol Basis Dis. 2007;1772:509–23.

    Article  CAS  Google Scholar 

  33. Suzuki T, Nagao A, Suzuki T. Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annu Rev Genet. 2011;45:299–329.

    Article  CAS  PubMed  Google Scholar 

  34. Scheffler IE. Mitochondria. 2nd ed. New Jersey: Wiley; 2008.

    Google Scholar 

  35. Horvath SE, Rampelt H, Oeljeklaus S, Warscheid B, van der Laan M, Pfanner N. Role of membrane contact sites in protein import into mitochondria. Protein Sci. 2015;24:277–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lemieux H, Hoppel CL. Mitochondria in the human heart. J Bioenerg Biomembr. 2009;41:99–106.

    Article  CAS  PubMed  Google Scholar 

  37. Meisinger C, Sickmann A, Pfanner N. The mitochondrial proteome: from inventory to function. Cell. 2008;134:22–4.

    Article  CAS  PubMed  Google Scholar 

  38. Johnson DT, Harris RA, French S, Blair PV, You J, Bemis KG, Wang M, Balaban RS. Tissue heterogeneity of the mammalian mitochondrial proteome. Am J Phys Cell Phys. 2007;292:C689–97.

    Article  CAS  Google Scholar 

  39. Mootha VK, Bunkenborg J, Olsen JV, Hjerrild M, Wisniewski JR, Stahl E, Bolouri MS, Ray HN, Sihag S, Kamal M, Patterson N, Lander ES, Mann M. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell. 2003;115:629–40.

    Article  CAS  PubMed  Google Scholar 

  40. Falkenberg M, Larsson N-G, Gustafsson CM. DNA replication and transcription in mammalian mitochondria. Annu Rev Biochem. 2007;76:679–99.

    Article  CAS  PubMed  Google Scholar 

  41. Chen H, Chan DC. Emerging functions of mammalian mitochondrial fusion and fission. Hum Mol Genet. 2005;14(2):R283–9.

    Article  CAS  PubMed  Google Scholar 

  42. Naini A, Shanske S. Detection of mutations in mtDNA. Methods Cell Biol. 2007;80:437–63.

    Article  CAS  PubMed  Google Scholar 

  43. Haas RH, Parikh S, Falk MJ, Saneto RP, Wolf NI, Darin N, Wong LJ, Cohen BH, Naviaux RK. The in-depth evaluation of suspected mitochondrial disease. Mol Genet Metab. 2008;94:16–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tuppen HAL, Blakely EL, Turnbull DM, Taylor RW. Mitochondrial DNA mutations and human disease. Biochim Biophys Acta (BBA) – Bioenerg. 2010;1797:113–28.

    Article  CAS  Google Scholar 

  45. Holmgren D, Wahlander H, Eriksson BO, Oldfors A, Holme E, Tulinius M. Cardiomyopathy in children with mitochondrial disease; clinical course and cardiological findings. Eur Heart J. 2003;24:280–8.

    Article  CAS  PubMed  Google Scholar 

  46. Klopstock T, Metz G, Yu-Wai-Man P, Büchner B, Gallenmüller C, Bailie M, Nwali N, Griffiths PG, von Livonius B, Reznicek L, Rouleau J, Coppard N, Meier T, Chinnery PF. Persistence of the treatment effect of idebenone in Leber’s hereditary optic neuropathy. Brain. 2013;136:e230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pieczenik SR, Neustadt J. Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol. 2007;83:84–92.

    Article  CAS  PubMed  Google Scholar 

  48. Brand MD, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochem J. 2011;435:297–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Held NM, Houtkooper RH. Mitochondrial quality control pathways as determinants of metabolic health. BioEssays. 2015;37:867–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol. 2011;12:9–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schwartz M, Vissing J. Paternal inheritance of mitochondrial DNA. N Engl J Med. 2002;347:576–80.

    Article  PubMed  Google Scholar 

  52. Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG. Sequence and organization of the human mitochondrial genome. Nature. 1981;290:457–65.

    Article  CAS  PubMed  Google Scholar 

  53. Kucej M, Butow RA. Evolutionary tinkering with mitochondrial nucleoids. Trends Cell Biol. 2007;17:586–92.

    Article  CAS  PubMed  Google Scholar 

  54. Wang Y, Bogenhagen DF. Human mitochondrial DNA nucleoids are linked to protein folding machinery and metabolic enzymes at the mitochondrial inner membrane. J Biol Chem. 2006;281:25791–802.

    Article  CAS  PubMed  Google Scholar 

  55. Brown TA, Tkachuk AN, Shtengel G, Kopek BG, Bogenhagen DF, Hess HF, Clayton DA. Superresolution fluorescence imaging of mitochondrial nucleoids reveals their spatial range, limits, and membrane interaction. Mol Cell Biol. 2011;31:4994–5010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kukat C, Wurm CA, Spåhr H, Falkenberg M, Larsson N-G, Jakobs S. Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. Proc Natl Acad Sci. 2011;108:13534–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gilkerson R. Commentary: mitochondrial DNA damage and loss in diabetes. Diabetes Metab Res Rev. 2016;32:672–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shokolenko I, Venediktova N, Bochkareva A, Wilson GL, Alexeyev MF. Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Res. 2009;37:2539–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jornayvaz FR, Shulman GI. Regulation of mitochondrial biogenesis. Essays Biochem. 2010;47:69–84. doi:10.1042/bse0470069.

    Article  CAS  PubMed  Google Scholar 

  60. Valero T. Mitochondrial biogenesis: pharmacological approaches. Curr Pharm Des. 2014;20:5507–9.

    Article  CAS  PubMed  Google Scholar 

  61. Arnould T, Michel S, Renard P. Mitochondria retrograde signaling and the UPR(mt): where are we in mammals? Int J Mol Sci. 2015;16:18224–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Biala AK, Dhingra R, Kirshenbaum LA. Mitochondrial dynamics: orchestrating the journey to advanced age. J Mol Cell Cardiol. 2015;83:37–43.

    Article  CAS  PubMed  Google Scholar 

  63. Stotland A, Gottlieb RA. Mitochondrial quality control: easy come, easy go. Biochim Biophys Acta (BBA) – Mol Cell Res. 2015;1853:2802–11.

    Article  CAS  Google Scholar 

  64. Suliman HB, Piantadosi CA. Mitochondrial quality control as a therapeutic target. Pharmacol Rev. 2016;68:20–48.

    Article  CAS  PubMed  Google Scholar 

  65. Bogenhagen D, Clayton DA. Mouse L cell mitochondrial DNA molecules are selected randomly for replication throughout the cell cycle. Cell. 1977;11:719–27.

    Article  CAS  PubMed  Google Scholar 

  66. Clayton DA. Replication of animal mitochondrial DNA. Cell. 1982;28:693–705.

    Article  CAS  PubMed  Google Scholar 

  67. Korhonen JA, Pham XH, Pellegrini M, Falkenberg M. Reconstitution of a minimal mtDNA replisome in vitro. EMBO J. 2004;23:2423–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fish J, Raule N, Attardi G. Discovery of a major D-loop replication origin reveals two modes of human mtDNA synthesis. Science. 2004;306:2098–101.

    Article  CAS  PubMed  Google Scholar 

  69. St John JC, Facucho-Oliveira J, Jiang Y, Kelly R, Salah R. Mitochondrial DNA transmission, replication and inheritance: a journey from the gamete through the embryo and into offspring and embryonic stem cells. Hum Reprod Update. 2010;16:488–509.

    Article  CAS  PubMed  Google Scholar 

  70. Van Haute L, Pearce SF, Powell CA, D’Souza AR, Nicholls TJ, Minczuk M. Mitochondrial transcript maturation and its disorders. J Inherit Metab Dis. 2015;38:655–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Fernandez-Silva P, Enriquez JA, Montoya J. Replication and transcription of mammalian mitochondrial DNA. Exp Physiol. 2003;88:41–56.

    Article  CAS  PubMed  Google Scholar 

  72. Rackham O, Mercer TR, Filipovska A. The human mitochondrial transcriptome and the RNA-binding proteins that regulate its expression. Wiley Interdiscip Rev RNA. 2012;3:675–95.

    Article  CAS  PubMed  Google Scholar 

  73. Yarham JW, Elson JL, Blakely EL, McFarland R, Taylor RW. Mitochondrial tRNA mutations and disease. Wiley Interdiscip Rev RNA. 2010;1:304–24.

    Article  CAS  PubMed  Google Scholar 

  74. Bonawitz ND, Clayton DA, Shadel GS. Initiation and beyond: multiple functions of the human mitochondrial transcription machinery. Mol Cell. 2006;24:813–25.

    Article  CAS  PubMed  Google Scholar 

  75. Pomerantz RT, O’Donnell M. What happens when replication and transcription complexes collide? Cell Cycle. 2010;9:2537–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Agaronyan K, Morozov YI, Anikin M, Temiakov D. Mitochondrial biology. Replication-transcription switch in human mitochondria. Science. 2015;347:548–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dunbar DR, Moonie PA, Jacobs HT, Holt IJ. Different cellular backgrounds confer a marked advantage to either mutant or wild-type mitochondrial genomes. Proc Natl Acad Sci. 1995;92:6562–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. DiMauro S, Schon EA. Mitochondrial respiratory-chain diseases. N Engl J Med. 2003;348:2656–68.

    Article  CAS  PubMed  Google Scholar 

  79. Huss JM, Kelly DP. Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest. 2005;115:547–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nass S, Nass MM. Intramitochondrial fibers with DNA characteristics. II. Enzymatic and other hydrolytic treatments. J Cell Biol. 1963;19:613–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Holt IJ, Harding AE, Morgan-Hughes JA. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature. 1988;331:717–9.

    Article  CAS  PubMed  Google Scholar 

  82. Wallace DC, Chalkia D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb Perspect Biol. 2013;5:a021220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Andreu AL, Hanna MG, Reichmann H, Bruno C, Penn AS, Tanji K, Pallotti F, Iwata S, Bonilla E, Lach B, Morgan-Hughes J, DiMauro S. Exercise intolerance due to mutations in the cytochrome b gene of mitochondrial DNA. N Engl J Med. 1999;341:1037–44.

    Article  CAS  PubMed  Google Scholar 

  84. Elliott HR, Samuels DC, Eden JA, Relton CL, Chinnery PF. Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet. 2008;83:254–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gorman GS, Schaefer AM, Ng Y, Gomez N, Blakely EL, Alston CL, Feeney C, Horvath R, Yu-Wai-Man P, Chinnery PF, Taylor RW, Turnbull DM, McFarland R. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol. 2015;77:753–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nachman MW, Brown WM, Stoneking M, Aquadro CF. Nonneutral mitochondrial DNA variation in humans and chimpanzees. Genetics. 1996;142:953–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Brown WM, George M, Wilson AC. Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci. 1979;76:1967–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Itsara LS, Kennedy SR, Fox EJ, Yu S, Hewitt JJ, Sanchez-Contreras M, Cardozo-Pelaez F, Pallanck LJ. Oxidative stress is not a major contributor to somatic mitochondrial DNA mutations. PLoS Genet. 2014;10:e1003974.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Levin L, Blumberg A, Barshad G, Mishmar D. Mito-nuclear co-evolution: the positive and negative sides of functional ancient mutations. Front Genet. 2014;5:448.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. De Bont R, van Larebeke N. Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis. 2004;19:169–85.

    Article  PubMed  Google Scholar 

  91. de Mendoza C, Sanchez-Conde M, Ribera E, Domingo P, Soriano V. Could mitochondrial DNA quantitation be a surrogate marker for drug mitochondrial toxicity? AIDS Rev. 2004;6:169–80.

    PubMed  Google Scholar 

  92. Muftuoglu M, Mori MP, de Souza-Pinto NC. Formation and repair of oxidative damage in the mitochondrial DNA. Mitochondrion. 2014;17:164–81.

    Article  CAS  PubMed  Google Scholar 

  93. Davey GP, Peuchen S, Clark JB. Energy thresholds in brain mitochondria. Potential involvement in neurodegeneration. J Biol Chem. 1998;273:12753–7.

    Article  CAS  PubMed  Google Scholar 

  94. Leon LJ, Gustafsson AB. Staying young at heart: autophagy and adaptation to cardiac aging. J Mol Cell Cardiol. 2016;95:78–85.

    Google Scholar 

  95. Jones DP. Disruption of mitochondrial redox circuitry in oxidative stress. Chem Biol Interact. 2006;163:38–53.

    Article  CAS  PubMed  Google Scholar 

  96. Sies H, Jones D. Oxidative stress*. In: Fink G, editor. Encyclopedia of stress. 2nd ed. New York: Academic; 2007. p. 45–8.

    Google Scholar 

  97. Payne BAI, Chinnery PF. Mitochondrial dysfunction in aging: much progress but many unresolved questions. Biochim Biophys Acta. 1847;2015:1347–53.

    Google Scholar 

  98. Gruber J, Schaffer S, Halliwell B. The mitochondrial free radical theory of ageing – where do we stand? Front Biosci. 2008;13:6554–79.

    Article  CAS  PubMed  Google Scholar 

  99. Stuart JA, Bourque BM, de Souza-Pinto NC, Bohr VA. No evidence of mitochondrial respiratory dysfunction in OGG1-null mice deficient in removal of 8-oxodeoxyguanine from mitochondrial DNA. Free Radic Biol Med. 2005;38:737–45.

    Article  CAS  PubMed  Google Scholar 

  100. Trifunovic A, Hansson A, Wredenberg A, Rovio AT, Dufour E, Khvorostov I, Spelbrink JN, Wibom R, Jacobs HT, Larsson N-G. Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc Natl Acad Sci U S A. 2005;102:17993–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, Hofer T, Seo AY, Sullivan R, Jobling WA, Morrow JD, Van Remmen H, Sedivy JM, Yamasoba T, Tanokura M, Weindruch R, Leeuwenburgh C, Prolla TA. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science. 2005;309:481–4.

    Article  CAS  PubMed  Google Scholar 

  102. Richter C, Park JW, Ames BN. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci. 1988;85:6465–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Szczepanowska K, Trifunovic A. Different faces of mitochondrial DNA mutators. Biochim Biophys Acta. 1847;2015:1362–72.

    Google Scholar 

  104. Larsson NG, Oldfors A, Holme E, Clayton DA. Low levels of mitochondrial transcription factor a in mitochondrial DNA depletion. Biochem Biophys Res Commun. 1994;200:1374–81.

    Article  CAS  PubMed  Google Scholar 

  105. Young MJ, Copeland WC. Human mitochondrial DNA replication machinery and disease. Curr Opin Genet Dev. 2016;38:52–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 2003;17:1195–214.

    Article  CAS  PubMed  Google Scholar 

  107. Gredilla R, Bohr VA, Stevnsner T. Mitochondrial DNA repair and association with aging – an update. Exp Gerontol. 2010;45:478–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gredilla R. DNA damage and base excision repair in mitochondria and their role in aging. J Aging Res. 2010;2011:257093.

    PubMed  PubMed Central  Google Scholar 

  109. Hu JJ, Dubin N, Kurland D, Ma BL, Roush GC. The effects of hydrogen peroxide on DNA repair activities. Mutat Res. 1995;336:193–201.

    Article  CAS  PubMed  Google Scholar 

  110. Forsberg L, de Faire U, Morgenstern R. Oxidative stress, human genetic variation, and disease. Arch Biochem Biophys. 2001;389:84–93.

    Article  CAS  PubMed  Google Scholar 

  111. Samuels DC, Schon EA, Chinnery PF. Two direct repeats cause most human mtDNA deletions. Trends Genet. 2004;20:393–8.

    Article  CAS  PubMed  Google Scholar 

  112. Chen Y, Liu C, Parker WD, Chen H, Beach TG, Liu X, Serrano GE, Lu Y, Huang J, Yang K, Wang C. Mitochondrial DNA rearrangement spectrum in brain tissue of Alzheimer’s disease: analysis of 13 cases. PLoS One. 2016;11:e0154582.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Szumiel I. Ionizing radiation-induced oxidative stress, epigenetic changes and genomic instability: the pivotal role of mitochondria. Int J Radiat Biol. 2015;91:1–12.

    Article  CAS  PubMed  Google Scholar 

  114. Yang N, Galick H, Wallace SS. Attempted base excision repair of ionizing radiation damage in human lymphoblastoid cells produces lethal and mutagenic double strand breaks. DNA Repair. 2004;3:1323–34.

    Article  CAS  PubMed  Google Scholar 

  115. Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet. 2006;38:518–20.

    Article  CAS  PubMed  Google Scholar 

  116. Bjelland S, Seeberg E. Mutagenicity, toxicity and repair of DNA base damage induced by oxidation. Mutat Res/Fundam Mol Mech Mutagen. 2003;531:37–80.

    Article  CAS  Google Scholar 

  117. Schon EA, Rizzuto R, Moraes CT, Nakase H, Zeviani M, DiMauro S. A direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA. Science. 1989;244:346–9.

    Article  CAS  PubMed  Google Scholar 

  118. Spinazzola A. Mitochondrial DNA mutations and depletion in pediatric medicine. Semin Fetal Neonatal Med. 2011;16:190–6.

    Article  CAS  PubMed  Google Scholar 

  119. Taylor RW, Schaefer AM, Barron MJ, McFarland R, Turnbull DM. The diagnosis of mitochondrial muscle disease. Neuromuscul Disord. 2004;14:237–45.

    Article  PubMed  Google Scholar 

  120. Haack TB, Haberberger B, Frisch E-M, Wieland T, Iuso A, Gorza M, Strecker V, Graf E, Mayr JA, Herberg U, Hennermann JB, Klopstock T, Kuhn KA, Ahting U, Sperl W, Wilichowski E, Hoffmann GF, Tesarova M, Hansikova H, Zeman J, Plecko B, Zeviani M, Wittig I, Strom TM, Schuelke M, Freisinger P, Meitinger T, Prokisch H. Molecular diagnosis in mitochondrial complex I deficiency using exome sequencing. J Med Genet. 2012;49:277–83.

    Article  CAS  PubMed  Google Scholar 

  121. Zaragoza MV, Brandon MC, Diegoli M, Arbustini E, Wallace DC. Mitochondrial cardiomyopathies: how to identify candidate pathogenic mutations by mitochondrial DNA sequencing, MITOMASTER and phylogeny. Eur J Hum Genet. 2011;19:200–7.

    Article  CAS  PubMed  Google Scholar 

  122. Prithivirajsingh S, Story MD, Bergh SA, Geara FB, Kian Ang K, Ismail SM, Stevens CW, Buchholz TA, Brock WA. Accumulation of the common mitochondrial DNA deletion induced by ionizing radiation. FEBS Lett. 2004;571:227–32.

    Article  CAS  PubMed  Google Scholar 

  123. Berneburg M, Grether-Beck S, Kürten V, Ruzicka T, Briviba K, Sies H, Krutmann J. Singlet oxygen mediates the UVA-induced generation of the photoaging-associated mitochondrial common deletion. J Biol Chem. 1999;274:15345–9.

    Article  CAS  PubMed  Google Scholar 

  124. Dumont P, Burton M, Chen QM, Gonos ES, Frippiat C, Mazarati J-B, Eliaers F, Remacle J, Toussaint O. Induction of replicative senescence biomarkers by sublethal oxidative stresses in normal human fibroblast. Free Radic Biol Med. 2000;28:361–73.

    Article  CAS  PubMed  Google Scholar 

  125. Zheng W, Khrapko K, Coller HA, Thilly WG, Copeland WC. Origins of human mitochondrial point mutations as DNA polymerase γ-mediated errors. Mutat Res/Fundam Mol Mech Mutagen. 2006;599:11–20.

    Article  CAS  Google Scholar 

  126. Kennedy SR, Salk JJ, Schmitt MW, Loeb LA. Ultra-sensitive sequencing reveals an age-related increase in somatic mitochondrial mutations that are inconsistent with oxidative damage. PLoS Genet. 2013;9:e1003794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Marcelino LA, Thilly WG. Mitochondrial mutagenesis in human cells and tissues. Mutat Res. 1999;434:177–203.

    Article  CAS  PubMed  Google Scholar 

  128. Bannwarth S, Procaccio V, Lebre AS, Jardel C, Chaussenot A, Hoarau C, Maoulida H, Charrier N, Gai X, Xie HM, Ferre M, Fragaki K, Hardy G, Mousson de Camaret B, Marlin S, Dhaenens CM, Slama A, Rocher C, Paul Bonnefont J, Rotig A, Aoutil N, Gilleron M, Desquiret-Dumas V, Reynier P, Ceresuela J, Jonard L, Devos A, Espil-Taris C, Martinez D, Gaignard P, Le Quan Sang KH, Amati-Bonneau P, Falk MJ, Florentz C, Chabrol B, Durand-Zaleski I, Paquis-Flucklinger V. Prevalence of rare mitochondrial DNA mutations in mitochondrial disorders. J Med Genet. 2013;50:704–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Morten KJ, Ashley N, Wijburg F, Hadzic N, Parr J, Jayawant S, Adams S, Bindoff L, Bakker HD, Mieli-Vergani G, Zeviani M, Poulton J. Liver mtDNA content increases during development: a comparison of methods and the importance of age- and tissue-specific controls for the diagnosis of mtDNA depletion. Mitochondrion. 2007;7:386–95.

    Article  CAS  PubMed  Google Scholar 

  130. El-Hattab AW, Scaglia F. Mitochondrial DNA depletion syndromes: review and updates of genetic basis, manifestations, and therapeutic options. Neurotherapeutics. 2013;10:186–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Clay Montier LL, Deng JJ, Bai Y. Number matters: control of mammalian mitochondrial DNA copy number. J Genet Genomics. 2009;36:125–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Herrera A, Garcia I, Gaytan N, Jones E, Maldonado A, Gilkerson R. Endangered species: mitochondrial DNA loss as a mechanism of human disease. Front Biosci (Schol Ed). 2015;7:109–24.

    Article  Google Scholar 

  133. McCormick EM, Kenyon L, Falk MJ. Desmin common mutation is associated with multi-systemic disease manifestations and depletion of mitochondria and mitochondrial DNA. Front Genet. 2015;6:199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Scheffler IE. Mitochondrial mutations and disease. Mitochondria: Wiley; 2007. p. 345–416.

    Google Scholar 

  135. Lin YF, Schulz AM, Pellegrino MW, Lu Y, Shaham S, Haynes CM. Maintenance and propagation of a deleterious mitochondrial genome by the mitochondrial unfolded protein response. Nature. 2016;533:416–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chinnery PF, Elliott HR, Hudson G, Samuels DC, Relton CL. Epigenetics, epidemiology and mitochondrial DNA diseases. Int J Epidemiol. 2012;41:177–87.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Lambertini L, Byun HM. Mitochondrial epigenetics and environmental exposure. Curr Environ Health Rep. 2016;3:214.

    Article  PubMed  CAS  Google Scholar 

  138. Hernandez-Aguilera A, Fernandez-Arroyo S, Cuyas E, Luciano-Mateo F, Cabre N, Camps J, Lopez-Miranda J, Menendez JA, Joven J. Epigenetics and nutrition-related epidemics of metabolic diseases: current perspectives and challenges. Food Chem Toxicol. 2016;96:191–204.

    Article  CAS  PubMed  Google Scholar 

  139. Shen H, Laird PW. Interplay between the cancer genome and epigenome. Cell. 2013;153:38–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kauppila JHK, Stewart JB. Mitochondrial DNA: radically free of free-radical driven mutations. Biochim Biophys Acta (BBA) – Biomembr. 2015;1847:1354–61.

    Article  CAS  Google Scholar 

  141. Limongelli G, Masarone D, D’Alessandro R, Elliott PM. Mitochondrial diseases and the heart: an overview of molecular basis, diagnosis, treatment and clinical course. Futur Cardiol. 2012;8:71–88.

    Article  Google Scholar 

  142. Wallace DC. Mitochondrial diseases in man and mouse. Science. 1999;283:1482–8.

    Article  CAS  PubMed  Google Scholar 

  143. Mancuso C, Scapagini G, Curro D, Giuffrida Stella AM, De Marco C, Butterfield DA, Calabrese V. Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Front Biosci. 2007;12:1107–23.

    Article  CAS  PubMed  Google Scholar 

  144. DiMauro S. Mitochondrial myopathies. Curr Opin Rheumatol. 2006;18:636–41.

    Article  CAS  PubMed  Google Scholar 

  145. Khrapko K. Two ways to make a mtDNA bottleneck. Nat Genet. 2008;40:134–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Sasarman F, Antonicka H, Shoubridge EA. The A3243G tRNALeu(UUR) MELAS mutation causes amino acid misincorporation and a combined respiratory chain assembly defect partially suppressed by overexpression of EFTu and EFG2. Hum Mol Genet. 2008;17:3697–707.

    Article  CAS  PubMed  Google Scholar 

  147. Sacconi S, Salviati L, Nishigaki Y, Walker WF, Hernandez-Rosa E, Trevisson E, Delplace S, Desnuelle C, Shanske S, Hirano M, Schon EA, Bonilla E, De Vivo DC, DiMauro S, Davidson MM. A functionally dominant mitochondrial DNA mutation. Hum Mol Genet. 2008;17:1814–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Swalwell H, Blakely EL, Sutton R, Tonska K, Elstner M, He L, Taivassalo T, Burns DK, Turnbull DM, Haller RG, Davidson MM, Taylor RW. A homoplasmic mtDNA variant can influence the phenotype of the pathogenic m.7472Cins MTTS1 mutation: are two mutations better than one? Eur J Hum Genet. 2008;16:1265–74.

    Article  CAS  PubMed  Google Scholar 

  149. DiMauro S. Mitochondrial diseases. Biochim Biophys Acta Biomembr. 2004;1658:80–8.

    Article  CAS  Google Scholar 

  150. Ahuja P, Wanagat J, Wang Z, Wang Y, Liem DA, Ping P, Antoshechkin IA, Margulies KB, MacLellan WR. Divergent mitochondrial biogenesis responses in human cardiomyopathy. Circulation. 2013;127:1957–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Chen C, Chen Y, Guan MX. A peep into mitochondrial disorder: multifaceted from mitochondrial DNA mutations to nuclear gene modulation. Protein Cell. 2015;6:862–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wajner M, Amaral AU. Mitochondrial dysfunction in fatty acid oxidation disorders: insights from human and animal studies. Biosci Rep. 2016;36:e00281.

    Article  PubMed Central  CAS  Google Scholar 

  153. Anan R, Nakagawa M, Miyata M, Higuchi I, Nakao S, Suehara M, Osame M, Tanaka H. Cardiac involvement in mitochondrial diseases. A study on 17 patients with documented mitochondrial DNA defects. Circulation. 1995;91:955–61.

    Article  CAS  PubMed  Google Scholar 

  154. Bates MGD, Bourke JP, Giordano C, d’Amati G, Turnbull DM, Taylor RW. Cardiac involvement in mitochondrial DNA disease: clinical spectrum, diagnosis, and management. Eur Heart J. 2012;33:3023–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Montaigne D, Pentiah AD. Mitochondrial cardiomyopathy and related arrhythmias. Card Electrophysiol Clin. 2015;7:293–301.

    Article  PubMed  Google Scholar 

  156. Pohjoismäki JLO, Boettger T, Liu Z, Goffart S, Szibor M, Braun T. Oxidative stress during mitochondrial biogenesis compromises mtDNA integrity in growing hearts and induces a global DNA repair response. Nucleic Acids Res. 2012;40:6595–607.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Dominic EA, Ramezani A, Anker SD, Verma M, Mehta N, Rao M. Mitochondrial cytopathies and cardiovascular disease. Heart. 2014;100:611–8.

    Article  CAS  PubMed  Google Scholar 

  158. Mitomap. A human mitochondrial genome database. 2009. http://www.mitomaporg.

  159. Scaglia F, Towbin JA, Craigen WJ, Belmont JW, Smith EO, Neish SR, Ware SM, Hunter JV, Fernbach SD, Vladutiu GD, Wong LJ, Vogel H. Clinical spectrum, morbidity, and mortality in 113 pediatric patients with mitochondrial disease. Pediatrics. 2004;114:925–31.

    Article  PubMed  Google Scholar 

  160. Brega A, Narula J, Arbustini E. Functional, structural, and genetic mitochondrial abnormalities in myocardial diseases. J Nucl Cardiol. 2001;8:89–97.

    Google Scholar 

  161. Finsterer J. Histiocytoid cardiomyopathy: a mitochondrial disorder. Clin Cardiol. 2008;31:225–7.

    Article  PubMed  Google Scholar 

  162. Finsterer J, Harbo HF, Baets J, Van Broeckhoven C, Di Donato S, Fontaine B, De Jonghe P, Lossos A, Lynch T, Mariotti C, Schols L, Spinazzola A, Szolnoki Z, Tabrizi SJ, Tallaksen CM, Zeviani M, Burgunder JM, Gasser T. EFNS guidelines on the molecular diagnosis of mitochondrial disorders. Eur J Neurol. 2009;16:1255–64.

    Article  CAS  PubMed  Google Scholar 

  163. Schapira AHV. Mitochondrial diseases. Lancet. 2012;379:1825–34.

    Article  CAS  PubMed  Google Scholar 

  164. Elson JL, Samuels DC, Turnbull DM, Chinnery PF. Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age. Am J Hum Genet. 2001;68:802–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Copeland WC. Defects of mitochondrial DNA replication. J Child Neurol. 2014;29:1216–24.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Suomalainen A, Kaukonen J. Diseases caused by nuclear genes affecting mtDNA stability. Am J Med Genet. 2001;106:53–61.

    Article  CAS  PubMed  Google Scholar 

  167. Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly YM, Gidlof S, Oldfors A, Wibom R, Tornell J, Jacobs HT, Larsson NG. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004;429:417–23.

    Article  CAS  PubMed  Google Scholar 

  168. Dunbar DR, Moonie PA, Jacobs HT, Holt IJ. Different cellular backgrounds confer a marked advantage to either mutant or wild-type mitochondrial genomes. Proc Natl Acad Sci U S A. 1995;92:6562–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Wallace DC. Diseases of the mitochondrial DNA. Annu Rev Biochem. 1992;61:1175–212.

    Article  CAS  PubMed  Google Scholar 

  170. Fulka Jr J, Fulka H, John JC. Transmission of mitochondrial DNA disorders: possibilities for the elimination of mutated mitochondria. Cloning Stem Cells. 2007;9:47–50.

    Article  CAS  PubMed  Google Scholar 

  171. Korzeniewski B. Faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart related to cytosolic inorganic phosphate (Pi) accumulation. J Appl Physiol (1985). 2016;121:424–37.

    Article  CAS  Google Scholar 

  172. Manuscript R. Apoptotic properties of the type 1 interferon induced family of human mitochondrial membrane ISG12 proteins, Manuscript ID:BOC.201600034.R1. 2016-08-05.

    Google Scholar 

  173. Arbustini E, Diegoli M, Fasani R, Grasso M, Morbini P, Banchieri N, Bellini O, Dal Bello B, Pilotto A, Magrini G, Campana C, Fortina P, Gavazzi A, Narula J, Vigano M. Mitochondrial DNA mutations and mitochondrial abnormalities in dilated cardiomyopathy. Am J Pathol. 1998;153:1501–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Yaplito-Lee J, Weintraub R, Jamsen K, Chow CW, Thorburn DR, Boneh A. Cardiac manifestations in oxidative phosphorylation disorders of childhood. J Pediatr. 2007;150:407–11.

    Article  CAS  PubMed  Google Scholar 

  175. Jackson S, Schaefer J, Meinhardt M, Reichmann H. Mitochondrial abnormalities in the myofibrillar myopathies. Eur J Neurol. 2015;22:1429–35.

    Article  CAS  PubMed  Google Scholar 

  176. Leone O, Veinot JP, Angelini A, Baandrup UT, Basso C, Berry G, Bruneval P, Burke M, Butany J, Calabrese F, d’Amati G, Edwards WD, Fallon JT, Fishbein MC, Gallagher PJ, Halushka MK, McManus B, Pucci A, Rodriguez ER, Saffitz JE, Sheppard MN, Steenbergen C, Stone JR, Tan C, Thiene G, van der Wal AC, Winters GL. 2011 consensus statement on endomyocardial biopsy from the Association for European Cardiovascular Pathology and the Society for Cardiovascular Pathology. Cardiovasc Pathol. 2012;21:245–74.

    Article  PubMed  Google Scholar 

  177. McCormick E, Place E, Falk MJ. Molecular genetic testing for mitochondrial disease: from one generation to the next. Neurotherapeutics. 2013;10:251–61.

    Article  CAS  PubMed  Google Scholar 

  178. McFarland R, Elson JL, Taylor RW, Howell N, Turnbull DM. Assigning pathogenicity to mitochondrial tRNA mutations: when “definitely maybe” is not good enough. Trends Genet. 2004;20:591–6.

    Article  CAS  PubMed  Google Scholar 

  179. Roberts LD, Gerszten RE. Toward new biomarkers of cardiometabolic diseases. Cell Metab. 2013;18:43–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Rhee EP, Gerszten RE. Metabolomics and cardiovascular biomarker discovery. Clin Chem. 2012;58:139–47.

    Article  CAS  PubMed  Google Scholar 

  181. Tarnopolsky M. Exercise testing as a diagnostic entity in mitochondrial myopathies. Mitochondrion. 2004;4:529–42.

    Article  CAS  PubMed  Google Scholar 

  182. Sciacco M, Bonilla E, Schon EA, DiMauro S, Moraes CT. Distribution of wild-type and common deletion forms of mtDNA in normal and respiration-deficient muscle fibers from patients with mitochondrial myopathy. Hum Mol Genet. 1994;3:13–9.

    Article  CAS  PubMed  Google Scholar 

  183. Skrzynia C, Berg JS, Willis MS, Jensen BC. Genetics and heart failure: a concise guide for the clinician. Curr Cardiol Rev. 2015;11:10–7.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Russell O, Turnbull D. Mitochondrial DNA disease – molecular insights and potential routes to a cure. Exp Cell Res. 2014;325:38–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Wang W, Karamanlidis G, Tian R. Novel targets for mitochondrial medicine. Sci Transl Med. 2016;8:326rv3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Finsterer J, Bindu PS. Therapeutic strategies for mitochondrial disorders. Pediatr Neurol. 2015;52:302–13.

    Article  PubMed  Google Scholar 

  187. Scarpulla RC, Vega RB, Kelly DP. Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol Metab TEM. 2012;23:459–66.

    Article  CAS  PubMed  Google Scholar 

  188. Scarpelli M, Todeschini A, Rinaldi F, Rota S, Padovani A, Filosto M. Strategies for treating mitochondrial disorders: an update. Mol Genet Metab. 2014;113:253–60.

    Article  CAS  PubMed  Google Scholar 

  189. Whitaker RM, Corum D, Beeson CC, Schnellmann RG. Mitochondrial biogenesis as a pharmacological target: a new approach to acute and chronic diseases. Annu Rev Pharmacol Toxicol. 2016;56:229.

    Article  CAS  PubMed  Google Scholar 

  190. Lee SR, Kim HK, Song IS, Youm J, Dizon LA, Jeong SH, Ko TH, Hye-Jin H, Ko KS, Rhee BD, Kim N, Han J. Glucocorticoids and their receptors: insights into specific roles in mitochondria. Prog Biophys Mol Biol. 2013;112:44–54.

    Article  CAS  PubMed  Google Scholar 

  191. De Stefano N, Matthews PM, Ford B, Genge A, Karpati G, Arnold DL. Short-term dichloroacetate treatment improves indices of cerebral metabolism in patients with mitochondrial disorders. Neurology. 1995;45:1193–8.

    Article  PubMed  Google Scholar 

  192. Taivassalo T, Gardner JL, Taylor RW, Schaefer AM, Newman J, Barron MJ, Haller RG, Turnbull DM. Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions. Brain. 2006;129:3391–401.

    Article  PubMed  Google Scholar 

  193. Lam BL, Feuer WJ, Schiffman JC, Porciatti V, Vandenbroucke R, Rosa PR, Gregori G, Guy J. Trial end points and natural history in patients with G11778A leber hereditary optic neuropathy: preparation for gene therapy clinical trial. JAMA Ophthalmol. 2014;132:428–36.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Gammage P, Van Haute L, Minczuk M. Engineered mtZFNs for manipulation of human mitochondrial DNA heteroplasmy. In: McKenzie M, editor. Mitochondrial DNA. New York: Springer; 2016. p. 145–62.

    Chapter  Google Scholar 

  195. Dovydenko I, Tarassov I, Venyaminova A, Entelis N. Method of carrier-free delivery of therapeutic RNA importable into human mitochondria: lipophilic conjugates with cleavable bonds. Biomaterials. 2016;76:408–17.

    Article  CAS  PubMed  Google Scholar 

  196. Smith RA, Hartley RC, Murphy MP. Mitochondria-targeted small molecule therapeutics and probes. Antioxid Redox Signal. 2011;15:3021–38.

    Article  CAS  PubMed  Google Scholar 

  197. Clark KM, Bindoff LA, Lightowlers RN, Andrews RM, Griffiths PG, Johnson MA, Brierley EJ, Turnbull DM. Reversal of a mitochondrial DNA defect in human skeletal muscle. Nat Genet. 1997;16(3):222–4.

    Article  CAS  PubMed  Google Scholar 

  198. Safdar A, Khrapko K, Flynn JM, Saleem A, De Lisio M, Johnston AP, Kratysberg Y, Samjoo IA, Kitaoka Y, Ogborn DI, Little JP, Raha S, Parise G, Akhtar M, Hettinga BP, Rowe GC, Arany Z, Prolla TA, Tarnopolsky MA. Exercise-induced mitochondrial p53 repairs mtDNA mutations in mutator mice. Skelet Muscle. 2015;6:7.

    Article  CAS  Google Scholar 

  199. Mitalipov S, Wolf DP. Clinical and ethical implications of mitochondrial gene transfer. Trends Endocrinol Metab. 2014;25:5–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. McCully JD, Levitsky S, Del Nido PJ, Cowan DB. Mitochondrial transplantation for therapeutic use. Clin Transl Med. 2016;5:16.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Lee HC, Wei YH. Mitochondria and aging. Adv Exp Med Biol. 2012;942:311–27.

    Article  CAS  PubMed  Google Scholar 

  202. Patananan AN, Wu TH, Chiou PY, Teitell MA. Modifying the mitochondrial genome. Cell Metab. 2016;23:785–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Koopman WJ, Willems PH, Smeitink JA. Monogenic mitochondrial disorders. N Engl J Med. 2012;366:1132–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize for the vast number of outstanding publications that could not be cited because of space limitations. This work was supported by the Priority Research Centers Program (2010-0020224) and the Basic Science Research Program (2015R1A2A1A13001900 and 2015R1D1A3A01015596) through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science, and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lee, S.R., Han, J. (2017). Mitochondrial Mutations in Cardiac Disorders. In: Santulli, G. (eds) Mitochondrial Dynamics in Cardiovascular Medicine. Advances in Experimental Medicine and Biology, vol 982. Springer, Cham. https://doi.org/10.1007/978-3-319-55330-6_5

Download citation

Publish with us

Policies and ethics