Skip to main content

Mitochondria and Cardiac Hypertrophy

  • Chapter
  • First Online:
Book cover Mitochondrial Dynamics in Cardiovascular Medicine

Abstract

Cardiac tissue responds to long-term hemodynamic load through initiation of a hypertrophic remodeling program. Importantly, if not counteracted this response will eventually lead to organ failure. Cardiac hypertrophic adaptations are complex, and involve multiple cellular events and the mechanisms underlying the development of cardiac hypertrophy are not well understood. Mitochondrial dysfunction has been indicated as a potential and important player in the development of cardiac hypertrophy. Additionally, substantial evidence shows that a significant portion of mitochondrial processes, necessary for normal cardiomyocyte physiology, are impacted by these hypertrophic changes. In this chapter, we will present and discuss the adaptations and changes in the mitochondrial electron transport system, mitochondrial metabolism, mitochondrial biogenesis, oxidative stress, the opening of the mitochondrial permeability transition pore following hypertrophic stimuli, as well as, review the various drugs (targeting mitochondria) that can be used in treatment of cardiac hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics – 2013 update: a report from the American Heart Association. Circulation. 2013;127(1):e6–245.

    Article  PubMed  Google Scholar 

  2. Frey N, McKinsey TA, Olson EN. Decoding calcium signals involved in cardiac growth and function. Nat Med. 2000;6(11):1221–7.

    Article  CAS  PubMed  Google Scholar 

  3. Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell. 1998;93(2):215–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Facundo HT, Brainard RE, Watson LJ, Ngoh GA, Hamid T, Prabhu SD, et al. O-GlcNAc signaling is essential for NFAT-mediated transcriptional reprogramming during cardiomyocyte hypertrophy. Am J Physiol Heart Circ Physiol. 2012;302(10):H2122–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Date M, Morita T, Yamashita N, Nishida K, Yamaguchi O, Higuchi Y, et al. The antioxidant N-2-mercaptopropionyl glycine attenuates left ventricular hypertrophy in in vivo murine pressure-overload model. J Am Coll Cardiol. 2002;39(5):907–12.

    Article  CAS  PubMed  Google Scholar 

  6. Dhalla AK, Singal PK. Antioxidant changes in hypertrophied and failing guinea pig hearts. Am J Phys. 1994;266(4 Pt 2):H1280–5.

    CAS  Google Scholar 

  7. Hirotani S, Otsu K, Nishida K, Higuchi Y, Morita T, Nakayama H, et al. Involvement of nuclear factor-kappaB and apoptosis signal-regulating kinase 1 in G-protein-coupled receptor agonist-induced cardiomyocyte hypertrophy. Circulation. 2002;105(4):509–15.

    Article  CAS  PubMed  Google Scholar 

  8. Pimentel DR, Amin JK, Xiao L, Miller T, Viereck J, Oliver-Krasinski J, et al. Reactive oxygen species mediate amplitude-dependent hypertrophic and apoptotic responses to mechanical stretch in cardiac myocytes. Circ Res. 2001;89(5):453–60.

    Article  CAS  PubMed  Google Scholar 

  9. Nakamura K, Fushimi K, Kouchi H, Mihara K, Miyazaki M, Ohe T, et al. Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation. 1998;98(8):794–9.

    Article  CAS  PubMed  Google Scholar 

  10. Rajasekaran NS, Connell P, Christians ES, Yan L-J, Taylor RP, Orosz A, et al. Human alpha B-crystallin mutation causes oxido-reductive stress and protein aggregation cardiomyopathy in mice. Cell. 2007;130(3):427–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Barth E, Stämmler G, Speiser B, Schaper J. Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man. J Mol Cell Cardiol. 1992;24(7):669–81.

    Article  CAS  PubMed  Google Scholar 

  12. Kolwicz SC, Purohit S, Tian R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res. 2013;113(5):603–16.

    Article  CAS  PubMed  Google Scholar 

  13. Osterholt M, Nguyen TD, Schwarzer M, Doenst T. Alterations in mitochondrial function in cardiac hypertrophy and heart failure. Heart Fail Rev. 2013;18(5):645–56.

    Article  CAS  PubMed  Google Scholar 

  14. Ashrafian H, Frenneaux MP, Opie LH. Metabolic mechanisms in heart failure. Circulation. 2007;116(4):434–48.

    Article  CAS  PubMed  Google Scholar 

  15. Writing Group Members, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, et al. Executive summary: heart disease and stroke statistics – 2016 update: a report from the American Heart Association. Circulation. 2016;133(4):447–54.

    Article  Google Scholar 

  16. Anversa P, Ricci R, Olivetti G. Quantitative structural analysis of the myocardium during physiologic growth and induced cardiac hypertrophy: a review. J Am Coll Cardiol. 1986;7(5):1140–9.

    Article  CAS  PubMed  Google Scholar 

  17. Friehs I, del Nido PJ. Increased susceptibility of hypertrophied hearts to ischemic injury. Ann Thorac Surg. 2003;75(2):S678–84.

    Article  PubMed  Google Scholar 

  18. Gradman AH, Alfayoumi F. From left ventricular hypertrophy to congestive heart failure: management of hypertensive heart disease. Prog Cardiovasc Dis. 2006;48(5):326–41.

    Article  PubMed  Google Scholar 

  19. De Boer RA, Pinto YM, Van Veldhuisen DJ. The imbalance between oxygen demand and supply as a potential mechanism in the pathophysiology of heart failure: the role of microvascular growth and abnormalities. Microcirculation. 2003;10(2):113–26.

    Article  PubMed  Google Scholar 

  20. Santulli G, Xie W, Reiken SR, Marks AR. Mitochondrial calcium overload is a key determinant in heart failure. Proc Natl Acad Sci U S A. 2015;112:11389–94.

    Google Scholar 

  21. Figueira TR, Barros MH, Camargo AA, Castilho RF, Ferreira JCB, Kowaltowski AJ, et al. Mitochondria as a source of reactive oxygen and nitrogen species: from molecular mechanisms to human health. Antioxid Redox Signal. 2013;18(16):2029–74.

    Article  CAS  PubMed  Google Scholar 

  22. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552(2):335–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tahara EB, Navarete FDT, Kowaltowski AJ. Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation. Free Radic Biol Med. 2009;46(9):1283–97.

    Article  CAS  PubMed  Google Scholar 

  24. Madamanchi NR, Runge MS. Redox signaling in cardiovascular health and disease. Free Radic Biol Med. 2013;61C:473–501.

    Article  CAS  Google Scholar 

  25. Berndt C, Lillig CH, Holmgren A. Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: implications for diseases in the cardiovascular system. Am J Physiol Heart Circ Physiol. 2007;292(3):H1227–36.

    Article  CAS  PubMed  Google Scholar 

  26. Dhalla AK, Hill MF, Singal PK. Role of oxidative stress in transition of hypertrophy to heart failure. J Am Coll Cardiol. 1996;28(2):506–14.

    Article  CAS  PubMed  Google Scholar 

  27. Xie Z, Kometiani P, Liu J, Li J, Shapiro JI, Askari A. Intracellular reactive oxygen species mediate the linkage of Na+/K± ATPase to hypertrophy and its marker genes in cardiac myocytes. J Biol Chem. 1999;274(27):19323–8.

    Article  CAS  PubMed  Google Scholar 

  28. Matsushima S, Kuroda J, Ago T, Zhai P, Park JY, Xie L-H, et al. Increased oxidative stress in the nucleus caused by Nox4 mediates oxidation of HDAC4 and cardiac hypertrophy. Circ Res. 2013;112(4):651–63.

    Article  CAS  PubMed  Google Scholar 

  29. Kwon SH, Pimentel DR, Remondino A, Sawyer DB, Colucci WS. H(2)O(2) regulates cardiac myocyte phenotype via concentration-dependent activation of distinct kinase pathways. J Mol Cell Cardiol. 2003;35(6):615–21.

    Article  CAS  PubMed  Google Scholar 

  30. Saraste M. Oxidative phosphorylation at the fin de siècle. Science. 1999;283(5407):1488–93.

    Article  CAS  PubMed  Google Scholar 

  31. Hatefi Y. The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem. 1985;54:1015–69.

    Article  CAS  PubMed  Google Scholar 

  32. Kindo M, Gerelli S, Bouitbir J, Charles A-L, Zoll J, Hoang Minh T, et al. Pressure overload-induced mild cardiac hypertrophy reduces left ventricular transmural differences in mitochondrial respiratory chain activity and increases oxidative stress. Front Physiol. 2012;3:332.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lin CS, Sun YL, Liu CY. Structural and biochemical evidence of mitochondrial depletion in pigs with hypertrophic cardiomyopathy. Res Vet Sci. 2003;74(3):219–26.

    Article  CAS  PubMed  Google Scholar 

  34. Kwong LK, Sohal RS. Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria. Arch Biochem Biophys. 1998;350(1):118–26.

    Article  CAS  PubMed  Google Scholar 

  35. St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem. 2002;277(47):44784–90.

    Article  CAS  PubMed  Google Scholar 

  36. Grivennikova VG, Vinogradov AD. Generation of superoxide by the mitochondrial complex I. Biochim Biophys Acta. 2006;1757(5–6):553–61.

    Article  CAS  PubMed  Google Scholar 

  37. Griffiths ER, Friehs I, Scherr E, Poutias D, McGowan FX, Del Nido PJ. Electron transport chain dysfunction in neonatal pressure-overload hypertrophy precedes cardiomyocyte apoptosis independent of oxidative stress. J Thorac Cardiovasc Surg. 2010;139(6):1609–17.

    Article  CAS  PubMed  Google Scholar 

  38. Dai D-F, Hsieh EJ, Liu Y, Chen T, Beyer RP, Chin MT, et al. Mitochondrial proteome remodelling in pressure overload-induced heart failure: the role of mitochondrial oxidative stress. Cardiovasc Res. 2012;93(1):79–88.

    Article  CAS  PubMed  Google Scholar 

  39. Bugger H, Schwarzer M, Chen D, Schrepper A, Amorim PA, Schoepe M, et al. Proteomic remodelling of mitochondrial oxidative pathways in pressure overload-induced heart failure. Cardiovasc Res. 2010;85(2):376–84.

    Article  CAS  PubMed  Google Scholar 

  40. Rosca MG, Vazquez EJ, Kerner J, Parland W, Chandler MP, Stanley W, et al. Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation. Cardiovasc Res. 2008;80(1):30–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schmidt O, Pfanner N, Meisinger C. Mitochondrial protein import: from proteomics to functional mechanisms. Nat Rev Mol Cell Biol. 2010;11(9):655–67.

    Article  CAS  PubMed  Google Scholar 

  42. Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N. Importing mitochondrial proteins: machineries and mechanisms. PubMed – NCBICell. 2009;138(4):628–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li J, Qi M, Li C, Shi D, Zhang D, Xie D, et al. Tom70 serves as a molecular switch to determine pathological cardiac hypertrophy. Cell Res. 2014;24(8):977–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Taegtmeyer H, Golfman L, Sharma S, Razeghi P, van Arsdall M. Linking gene expression to function: metabolic flexibility in the normal and diseased heart. Ann N Y Acad Sci. 2004;1015:202–13.

    Article  CAS  PubMed  Google Scholar 

  45. Bishop SP, Altschuld RA. Increased glycolytic metabolism in cardiac hypertrophy and congestive failure. Am J Phys. 1970;218(1):153–9.

    CAS  Google Scholar 

  46. Taegtmeyer H, Overturf ML. Effects of moderate hypertension on cardiac function and metabolism in the rabbit. Hypertension. 1988;11(5):416–26.

    Article  CAS  PubMed  Google Scholar 

  47. Korvald C, Elvenes OP, Myrmel T. Myocardial substrate metabolism influences left ventricular energetics in vivo. Am J Physiol Heart Circ Physiol. 2000;278(4):H1345–51.

    CAS  PubMed  Google Scholar 

  48. Ren J, Gintant GA, Miller RE, Davidoff AJ. High extracellular glucose impairs cardiac E-C coupling in a glycosylation-dependent manner. Am J Phys. 1997;273(6 Pt 2):H2876–83.

    CAS  Google Scholar 

  49. Nascimben L, Ingwall JS, Lorell BH, Pinz I, Schultz V, Tornheim K, et al. Mechanisms for increased glycolysis in the hypertrophied rat heart. Hypertens (Dallas, Tex 1979). 2004;44(5):662–7.

    Article  CAS  Google Scholar 

  50. Zhang J, Duncker DJ, Ya X, Zhang Y, Pavek T, Wei H, Merkle H, Uğurbil K, From AHBR. Effect of left ventricular hypertrophy secondary to chronic pressure overload on transmural myocardial 2- deoxyglucose uptake. Circulation. 1995;92(5):1274–83.

    Article  CAS  PubMed  Google Scholar 

  51. Allard MF, Wambolt RB, Longnus SL, Grist M, Lydell CP, Parsons HL, et al. Hypertrophied rat hearts are less responsive to the metabolic and functional effects of insulin. Am J Physiol Endocrinol Metab. 2000;279(3):E487–93.

    CAS  PubMed  Google Scholar 

  52. El Alaoui-Talibi Z, Guendouz A, Moravec M, Moravec J. Control of oxidative metabolism in volume-overloaded rat hearts: effect of propionyl-L-carnitine. Am J Phys. 1997;272(4 Pt 2):H1615–24. 1997;272:H1615–24

    Google Scholar 

  53. Leong HS, Grist M, Parsons H, Wambolt RB, Lopaschuk GD, Brownsey R, et al. Accelerated rates of glycolysis in the hypertrophied heart: are they a methodological artifact? Am J Physiol Endocrinol Metab. 2002;282(5):E1039–45.

    Article  CAS  PubMed  Google Scholar 

  54. Sorokina N, O’Donnell JM, McKinney RD, Pound KM, Woldegiorgis G, LaNoue KF, et al. Recruitment of compensatory pathways to sustain oxidative flux with reduced carnitine palmitoyltransferase I activity characterizes inefficiency in energy metabolism in hypertrophied hearts. Circulation. 2007;115(15):2033–41.

    Article  CAS  PubMed  Google Scholar 

  55. Doenst T, Pytel G, Schrepper A, Amorim P, Färber G, Shingu Y, et al. Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload. Cardiovasc Res. 2010;86(3):461–70.

    Article  CAS  PubMed  Google Scholar 

  56. Lydell CP, Chan A, Wambolt RB, Sambandam N, Parsons H, Bondy GP, et al. Pyruvate dehydrogenase and the regulation of glucose oxidation in hypertrophied rat hearts. Cardiovasc Res. 2002;53(4):841–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Akki A, Smith K, Seymour A-ML. Compensated cardiac hypertrophy is characterised by a decline in palmitate oxidation. Mol Cell Biochem. 2008;311(1–2):215–24.

    Article  CAS  PubMed  Google Scholar 

  58. Christe ME, Rodgers RL. Altered glucose and fatty acid oxidation in hearts of the spontaneously hypertensive rat. J Mol Cell Cardiol. 1994;26(10):1371–5.

    Article  CAS  PubMed  Google Scholar 

  59. Qanud K, Mamdani M, Pepe M, Khairallah RJ, Gravel J, Lei B, et al. Reverse changes in cardiac substrate oxidation in dogs recovering from heart failure. Am J Physiol Heart Circ Physiol. 2008;295(5):H2098–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Scholz TD, Koppenhafer SL. Reducing equivalent shuttles in developing porcine myocardium: enhanced capacity in the newborn heart. Pediatr Res. 1995;38(2):221–7.

    Article  CAS  PubMed  Google Scholar 

  61. Rupert BE, Segar JL, Schutte BC, Scholz T. Metabolic adaptation of the hypertrophied heart: role of the malate/aspartate and alpha-glycerophosphate shuttles. J Mol Cell Cardiol. 2000;32(12):2287–97. 2000;32(12):2287–97

    Article  CAS  PubMed  Google Scholar 

  62. Lewandowski ED, O’donnell JM, Scholz TD, Sorokina N, Buttrick PM. Recruitment of NADH shuttling in pressure-overloaded and hypertrophic rat hearts. Am J Phys Cell Phys. 2007;292(5):C1880–6.

    Article  CAS  Google Scholar 

  63. Pound KM, Sorokina N, Ballal K, Berkich DA, Fasano M, Lanoue KF, et al. Substrate-enzyme competition attenuates upregulated anaplerotic flux through malic enzyme in hypertrophied rat heart and restores triacylglyceride content: attenuating upregulated anaplerosis in hypertrophy. Circ Res. 2009;104(6):805–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Allard MF, Schönekess BO, Henning SL, English DR, Lopaschuk GD. Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am J Phys. 1994;267(2 Pt 2):H742–50.

    CAS  Google Scholar 

  65. Hue L, Taegtmeyer H. The Randle cycle revisited: a new head for an old hat. Am J Physiol Endocrinol Metab. 2009;297(3):E578–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sambandam N, Lopaschuk GD, Brownsey RW, Allard MF. Energy metabolism in the hypertrophied heart. Heart Fail Rev. 2002;7(2):161–73.

    Article  CAS  PubMed  Google Scholar 

  67. Schwenk RW, Luiken JJFP, Bonen A, Glatz JFC. Regulation of sarcolemmal glucose and fatty acid transporters in cardiac disease. Cardiovasc Res. 2008;79(2):249–58.

    Article  CAS  PubMed  Google Scholar 

  68. van der Vusse GJ, van Bilsen M, Glatz JF. Cardiac fatty acid uptake and transport in health and disease. Cardiovasc Res. 2000;45(2):279–93.

    Article  PubMed  Google Scholar 

  69. Chess DJ, Khairallah RJ, O’Shea KM, Xu W, Stanley WC. A high-fat diet increases adiposity but maintains mitochondrial oxidative enzymes without affecting development of heart failure with pressure overload. Am J Physiol Heart Circ Physiol. 2009;297(5):H1585–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Okere IC, Young ME, McElfresh TA, Chess DJ, Sharov VG, Sabbah HN, et al. Low carbohydrate/high-fat diet attenuates cardiac hypertrophy, remodeling, and altered gene expression in hypertension. Hypertens (Dallas, Tex 1979). 2006;48(6):1116–23.

    Article  CAS  Google Scholar 

  71. Hafstad AD, Khalid AM, Hagve M, Lund T, Larsen TS, Severson DL, et al. Cardiac peroxisome proliferator-activated receptor-alpha activation causes increased fatty acid oxidation, reducing efficiency and post-ischaemic functional loss. Cardiovasc Res. 2009;83(3):519–26.

    Article  CAS  PubMed  Google Scholar 

  72. Finck BN, Kelly DP. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) regulatory cascade in cardiac physiology and disease. Circulation. 2007;115(19):2540–8.

    Article  PubMed  Google Scholar 

  73. Young ME, Laws FA, Goodwin GW, Taegtmeyer H. Reactivation of peroxisome proliferator-activated receptor alpha is associated with contractile dysfunction in hypertrophied rat heart. J Biol Chem. 2001;276(48):44390–5.

    Article  CAS  PubMed  Google Scholar 

  74. Yang J, Sambandam N, Han X, Gross RW, Courtois M, Kovacs A, et al. CD36 deficiency rescues lipotoxic cardiomyopathy. Circ Res. 2007;100(8):1208–17.

    Article  CAS  PubMed  Google Scholar 

  75. Lebrasseur NK, Duhaney T-AS, De Silva DS, Cui L, Ip PC, Joseph L, et al. Effects of fenofibrate on cardiac remodeling in aldosterone-induced hypertension. Hypertens (Dallas, Tex 1979). 2007;50(3):489–96.

    Article  CAS  Google Scholar 

  76. Brigadeau F, Gelé P, Wibaux M, Marquié C, Martin-Nizard F, Torpier G, et al. The PPARalpha activator fenofibrate slows down the progression of the left ventricular dysfunction in porcine tachycardia-induced cardiomyopathy. J Cardiovasc Pharmacol. 2007;49(6):408–15.

    Article  CAS  PubMed  Google Scholar 

  77. Labinskyy V, Bellomo M, Chandler MP, Young ME, Lionetti V, Qanud K, et al. Chronic activation of peroxisome proliferator-activated receptor-alpha with fenofibrate prevents alterations in cardiac metabolic phenotype without changing the onset of decompensation in pacing-induced heart failure. J Pharmacol Exp Ther. 2007;321(1):165–71.

    Article  CAS  PubMed  Google Scholar 

  78. Morgan EE, Rennison JH, Young ME, McElfresh TA, Kung TA, Tserng K-Y, et al. Effects of chronic activation of peroxisome proliferator-activated receptor-alpha or high-fat feeding in a rat infarct model of heart failure. Am J Physiol Heart Circ Physiol. 2006;290(5):H1899–904.

    Article  CAS  PubMed  Google Scholar 

  79. Graham BH, Waymire KG, Cottrell B, Trounce IA, MacGregor GR, Wallace DC. A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat Genet. 1997;16(3):226–34.

    Article  CAS  PubMed  Google Scholar 

  80. Walther T, Tschöpe C, Sterner-Kock A, Westermann D, Heringer-Walther S, Riad A, et al. Accelerated mitochondrial adenosine diphosphate/adenosine triphosphate transport improves hypertension-induced heart disease. Circulation. 2007;115(3):333–44.

    Article  CAS  PubMed  Google Scholar 

  81. Ingwall JS, Weiss RG. Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ Res. 2004;95(2):135–45.

    Article  CAS  PubMed  Google Scholar 

  82. Neubauer S. The failing heart--an engine out of fuel. N Engl J Med. 2007;356(11):1140–51.

    Article  PubMed  Google Scholar 

  83. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman B. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. PubMed – NCBICell. 1999;98(1):115–24.

    Article  CAS  PubMed  Google Scholar 

  84. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman B. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998;92(6):829–39.

    Article  CAS  PubMed  Google Scholar 

  85. Esterbauer H, Oberkofler H, Krempler F, Patsch W. Human peroxisome proliferator activated receptor gamma coactivator 1 (PPARGC1) gene: cDNA sequence, genomic organization, chromosomal localization…. PubMed – NCBIGenomics. 1999;62(1):98–102.

    Article  CAS  PubMed  Google Scholar 

  86. Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta ), a novel PGC-1-related transcription coactivator associated with host cell factor. J Biol Chem. 2002;277(3):1645–8.

    Article  CAS  PubMed  Google Scholar 

  87. Lelliott CJ, Medina-Gomez G, Petrovic N, Kis A, Feldmann HM, Bjursell M, et al. Ablation of PGC-1beta results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance. PLoS Biol. 2006;4(11):e369.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Arany Z, Novikov M, Chin S, Ma Y, Rosenzweig A, Spiegelman BM. Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-gamma coactivator 1alpha. Proc Natl Acad Sci U S A. 2006;103(26):10086–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Garnier A, Fortin D, Deloménie C, Momken I, Veksler V, Ventura-Clapier R. Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles. J Physiol. 2003;551(Pt 2):491–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Riehle C, Wende AR, Zaha VG, Pires KM, Wayment B, Olsen C, et al. PGC-1β deficiency accelerates the transition to heart failure in pressure overload hypertrophy. Circ Res. 2011;109(7):783–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lehman JJ, Kelly DP. Transcriptional activation of energy metabolic switches in the developing and hypertrophied heart. Clin Exp Pharmacol Physiol. 2002;29(4):339–45.

    Article  CAS  PubMed  Google Scholar 

  92. Arany Z, He H, Lin J, Hoyer K, Handschin C, Toka O, Ahmad F, Matsui T, Chin S, Wu PH, Rybkin II, Shelton JM, Manieri M, Cinti S, Schoen FJ, Bassel-Duby R, Rosenzweig A, Ingwall JSSB. Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. PubMed – NCBICell Metab. 2005;4:259–71.

    Article  CAS  Google Scholar 

  93. Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, et al. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 2005;3(4):e101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Liu XP, Gao H, Huang XY, Chen YF, Feng XJ, He YH, Li ZM, Liu PQ. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha protects cardiomyocytes from hypertrophy by suppressing calcineurin-nuclear factor of activated T cells c4 signaling pathway. Transl Res. 2015;166(5):459–73.

    Article  CAS  PubMed  Google Scholar 

  95. Lai L, Leone TC, Zechner C, Schaeffer PJ, Kelly SM, Flanagan DP, et al. Transcriptional coactivators PGC-1alpha and PGC-lbeta control overlapping programs required for perinatal maturation of the heart. Genes Dev. 2008;22(14):1948–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Huss JM, Kopp RP, Kelly DP. Peroxisome proliferator-activated receptor coactivator-1alpha (PGC-1alpha) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-alpha and -gamma. Identification of novel leucine-rich interaction motif within PGC-1alpha. J Biol Chem. 2002;277(43):40265–74.

    Article  CAS  PubMed  Google Scholar 

  97. Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP. Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest. 2000;106(7):847–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Russell LK, Mansfield CM, Lehman JJ, Kovacs A, Courtois M, Saffitz JE, et al. Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner. Circ Res. 2004;94(4):525–33.

    Article  CAS  PubMed  Google Scholar 

  99. Vega RB, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol. 2000;20(5):1868–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Karamanlidis G, Garcia-Menendez L, Kolwicz SC, Lee CF, Tian R. Promoting PGC-1α-driven mitochondrial biogenesis is detrimental in pressure-overloaded mouse hearts. Am J Physiol Heart Circ Physiol. 2014;307(9):H1307–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sack MN, Rader TA, Park S, Bastin J, McCune SA, Kelly DP. Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation. 1996;94(11):2837–42.

    Article  CAS  PubMed  Google Scholar 

  102. Hu X, Xu X, Lu Z, Zhang P, Fassett J, Zhang Y, et al. AMP activated protein kinase-α2 regulates expression of estrogen-related receptor-α, a metabolic transcription factor related to heart failure development. Hypertens (Dallas, Tex 1979). 2011;58(4):696–703.

    Article  CAS  Google Scholar 

  103. Kuroda J, Ago T, Matsushima S, Zhai P, Schneider MD, Sadoshima J. NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc Natl Acad Sci U S A. 2010;107(35):15565–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yamamoto M, Yang G, Hong C, Liu J, Holle E, Yu X, et al. Inhibition of endogenous thioredoxin in the heart increases oxidative stress and cardiac hypertrophy. J Clin Invest. 2003;112(9):1395–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yancey DM, Guichard JL, Ahmed MI, Zhou L, Murphy MP, Johnson MS, et al. Cardiomyocyte mitochondrial oxidative stress and cytoskeletal breakdown in the heart with a primary volume overload. Am J Physiol Heart Circ Physiol. 2015;308(6):H651–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dai D-F, Santana LF, Vermulst M, Tomazela DM, Emond MJ, MacCoss MJ, et al. Overexpression of catalase targeted to mitochondria attenuates murine cardiac aging. Circulation. 2009;119(21):2789–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Siwik DA, Tzortzis JD, Pimental DR, Chang DL, Pagano PJ, Singh K, et al. Inhibition of copper-zinc superoxide dismutase induces cell growth, hypertrophic phenotype, and apoptosis in neonatal rat cardiac myocytes in vitro. Circ Res. 1999;85(2):147–53.

    Article  CAS  PubMed  Google Scholar 

  108. Shih NL, Cheng TH, Loh SH, Cheng PY, Wang DL, Chen YS, et al. Reactive oxygen species modulate angiotensin II-induced beta-myosin heavy chain gene expression via Ras/Raf/extracellular signal-regulated kinase pathway in neonatal rat cardiomyocytes. Biochem Biophys Res Commun. 2001;283(1):143–8.

    Article  CAS  PubMed  Google Scholar 

  109. Lemos Caldas FR, Rocha Leite IM, Tavarez Filgueiras AB, de Figueiredo Júnior IL, Gomes Marques de Sousa TA, Martins PR, et al. Mitochondrial ATP-sensitive potassium channel opening inhibits isoproterenol-induced cardiac hypertrophy by preventing oxidative damage. J Cardiovasc Pharmacol. 2015;65(4):393–7.

    Article  PubMed  CAS  Google Scholar 

  110. Koyama H, Nojiri H, Kawakami S, Sunagawa T, Shirasawa T, Shimizu T. Antioxidants improve the phenotypes of dilated cardiomyopathy and muscle fatigue in mitochondrial superoxide dismutase-deficient mice. Molecules. 2013;18(2):1383–93.

    Article  CAS  PubMed  Google Scholar 

  111. Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol. 2011;301(6):H2181–90.

    Article  CAS  PubMed  Google Scholar 

  112. Adiga IK, Nair RR. Multiple signaling pathways coordinately mediate reactive oxygen species dependent cardiomyocyte hypertrophy. Cell Biochem Funct. 2008;26(3):346–51.

    Article  CAS  PubMed  Google Scholar 

  113. Cai J, Yi F-F, Bian Z-Y, Shen D-F, Yang L, Yan L, et al. Crocetin protects against cardiac hypertrophy by blocking MEK-ERK1/2 signalling pathway. J Cell Mol Med. 2009;13(5):909–25.

    Article  CAS  PubMed  Google Scholar 

  114. Erickson JR, Joiner ML, Guan X, Kutschke W, Yang J, Oddis CV, Bartlett RK, Lowe JS, O’Donnell SE, Aykin-Burns N, Zimmerman MC, Zimmerman K, Ham AJ, Weiss RM, Spitz DR, Shea MA, Colbran RJ, Mohler PJ, Anderson M. A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell. 2008;133(3):462–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Guo J, Gertsberg Z, Ozgen N, Steinberg SF. p66Shc links alpha1-adrenergic receptors to a reactive oxygen species-dependent AKT-FOXO3A phosphorylation pathway in cardiomyocytes. Circ Res. 2009;104(5):660–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet. 1995;11(4):376–81.

    Article  CAS  PubMed  Google Scholar 

  117. Zhang G-X, Kimura S, Nishiyama A, Shokoji T, Rahman M, Yao L, et al. Cardiac oxidative stress in acute and chronic isoproterenol-infused rats. Cardiovasc Res. 2005;65(1):230–8.

    Article  CAS  PubMed  Google Scholar 

  118. Zou X-J, Yang L, Yao S-L. Propofol depresses angiotensin II-induced cardiomyocyte hypertrophy in vitro. Exp Biol Med (Maywood). 2008;233(2):200–8.

    Article  CAS  Google Scholar 

  119. Li H-L, Huang Y, Zhang C-N, Liu G, Wei Y-S, Wang A-B, et al. Epigallocathechin-3 gallate inhibits cardiac hypertrophy through blocking reactive oxidative species-dependent and -independent signal pathways. Free Radic Biol Med. 2006;40(10):1756–75.

    Article  CAS  PubMed  Google Scholar 

  120. Anderson ME, Brown JHBD. CaMKII in myocardial hypertrophy and heart failure. J Mol Cell Cardiol. 2011;51(4):468–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bossuyt J, Helmstadter K, Wu X, Clements-Jewery H, Haworth RS, Avkiran M, et al. Ca2+/calmodulin-dependent protein kinase IIdelta and protein kinase D overexpression reinforce the histone deacetylase 5 redistribution in heart failure. Circ Res. 2008;102(6):695–702.

    Article  CAS  PubMed  Google Scholar 

  122. Backs J, Olson EN. Control of cardiac growth by histone acetylation/deacetylation. Circ Res. 2006;98(1):15–24.

    Article  CAS  PubMed  Google Scholar 

  123. Ago T, Liu T, Zhai P, Chen W, Li H, Molkentin JD, et al. A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy. Cell. 2008;133(6):978–93.

    Article  CAS  PubMed  Google Scholar 

  124. Ago T, Kuroda J, Pain J, Fu C, Li H, Sadoshima J. Upregulation of Nox4 by hypertrophic stimuli promotes apoptosis and mitochondrial dysfunction in cardiac myocytes. Circ Res. 2010;106(7):1253–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Theccanat T, Philip JL, Razzaque AM, Ludmer N, Li J, Xu X, et al. Regulation of cellular oxidative stress and apoptosis by G protein-coupled receptor kinase-2; the role of NADPH oxidase 4. Cell Signal. 2016;28(3):190–203.

    Article  CAS  PubMed  Google Scholar 

  126. Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem. 1995;64:97–112.

    Article  CAS  PubMed  Google Scholar 

  127. Kowaltowski AJ, Vercesi A. Mitochondrial damage induced by conditions of oxidative stress. Free Radic Biol Med. 1999;26(3–4):463–71.

    Article  CAS  PubMed  Google Scholar 

  128. Radi R, Turrens JF, Chang LY, Bush KM, Crapo JD, Freeman BA. Detection of catalase in rat heart mitochondria. J Biol Chem. 1991;266(32):22028–34.

    CAS  PubMed  Google Scholar 

  129. Esworthy RS, Ho YS, Chu F. The Gpx1 gene encodes mitochondrial glutathione peroxidase in the mouse liver. Arch Biochem Biophys. 1997;340(1):59–63.

    Article  CAS  PubMed  Google Scholar 

  130. Watabe S, Hiroi T, Yamamoto Y, Fujioka Y, Hasegawa H, Yago N, et al. SP-22 is a thioredoxin-dependent peroxide reductase in mitochondria. Eur J Biochem. 1997;249(1):52–60.

    Article  CAS  PubMed  Google Scholar 

  131. Cho J, Won K, Wu D, Soong Y, Liu S, Szeto HH, et al. Potent mitochondria-targeted peptides reduce myocardial infarction in rats. Coron Artery Dis. 2007;18(3):215–20.

    Article  PubMed  Google Scholar 

  132. Chakrabarti AK, Feeney K, Abueg C, Brown DA, Czyz E, Tendera M, Janosi A, Giugliano RP, Kloner RA, Weaver WD, Bode C, Godlewski J, Merkely B, Gibson. Rationale and design of the EMBRACE STEMI study: a phase 2a, randomized, double-blind, placebo-controlled trial to evaluate the safety, tolerability and efficacy of intravenous Bendavia on reperfusion injury in patients treated with standard therapy including primary percutaneous coronary intervention and stenting for ST-segment elevation myocardial infarction. Am Heart J. 2013;165(4):509–14.

    Article  CAS  PubMed  Google Scholar 

  133. Dai D-F, Chen T, Szeto H, Nieves-Cintrón M, Kutyavin V, Santana LF, et al. Mitochondrial targeted antioxidant peptide ameliorates hypertensive cardiomyopathy. J Am Coll Cardiol. 2011;58(1):73–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Szeto HH, Lovelace JL, Fridland G, Soong Y, Fasolo J, Wu D, et al. In vivo pharmacokinetics of selective mu-opioid peptide agonists. J Pharmacol Exp Ther. 2001;298(1):57–61.

    CAS  PubMed  Google Scholar 

  135. Shi J, Dai W, Hale SL, Brown DA, Wang M, Han X, et al. Bendavia restores mitochondrial energy metabolism gene expression and suppresses cardiac fibrosis in the border zone of the infarcted heart. Life Sci. 2015;141:170–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Szeto HH. Mitochondria-targeted cytoprotective peptides for ischemia-reperfusion injury. Antioxid Redox Signal. 2008;10(3):601–19.

    Article  CAS  PubMed  Google Scholar 

  137. Zhao K, Zhao G-M, Wu D, Soong Y, Birk AV, Schiller PW, et al. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem. 2004;279(33):34682–90.

    Article  CAS  PubMed  Google Scholar 

  138. Graham D, Huynh NN, Hamilton CA, Beattie E, Smith RAJ, Cochemé HM, et al. Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertension. 2009;54(2):322–8.

    Article  CAS  PubMed  Google Scholar 

  139. McLachlan J, Beattie E, Murphy MP, Koh-Tan CHH, Olson E, Beattie W, et al. Combined therapeutic benefit of mitochondria-targeted antioxidant, MitoQ10, and angiotensin receptor blocker, losartan, on cardiovascular function. J Hypertens. 2014;32(3):555–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Murphy MP, Smith RAJ. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol. 2007;47:629–56.

    Article  CAS  PubMed  Google Scholar 

  141. Smith RAJ, Murphy MP. Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Ann N Y Acad Sci. 2010;1201:96–103.

    Article  CAS  PubMed  Google Scholar 

  142. Dai D-F, Johnson SC, Villarin JJ, Chin MT, Nieves-Cintrón M, Chen T, et al. Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circ Res. 2011;108(7):837–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Loch T, Vakhrusheva O, Piotrowska I, Ziolkowski W, Ebelt H, Braun T, et al. Different extent of cardiac malfunction and resistance to oxidative stress in heterozygous and homozygous manganese-dependent superoxide dismutase-mutant mice. Cardiovasc Res. 2009;82(3):448–57.

    Article  CAS  PubMed  Google Scholar 

  144. Smith RAJ, Hartley RC, Murphy MP. Mitochondria-targeted small molecule therapeutics and probes. Antioxid Redox Signal. 2011;15(12):3021–38.

    Article  CAS  PubMed  Google Scholar 

  145. Xia Y, Rajapurohitam V, Cook MA, Karmazyn M. Inhibition of phenylephrine induced hypertrophy in rat neonatal cardiomyocytes by the mitochondrial KATP channel opener diazoxide. J Mol Cell Cardiol. 2004;37(5):1063–7.

    Article  CAS  PubMed  Google Scholar 

  146. Facundo HTF, de Paula JG, Kowaltowski AJ. Mitochondrial ATP-sensitive K+ channels are redox-sensitive pathways that control reactive oxygen species production. Free Radic Biol Med. 2007;42(7):1039–48.

    Article  CAS  PubMed  Google Scholar 

  147. Facundo HTF, Carreira RS, de Paula JG, Santos CCX, Ferranti R, Laurindo FRM, et al. Ischemic preconditioning requires increases in reactive oxygen release independent of mitochondrial K+ channel activity. Free Radic Biol Med. 2006;40(3):469–79.

    Article  CAS  PubMed  Google Scholar 

  148. Andrukhiv A, Costa AD, West IC, Garlid KD. Opening mitoKATP increases superoxide generation from complex I of the electron transport chain. Am J Physiol Heart Circ Physiol. 2006;291(5):H2067–74.

    Article  CAS  PubMed  Google Scholar 

  149. Facundo HTF, de Paula JG, Kowaltowski AJ. Mitochondrial ATP-sensitive K+ channels prevent oxidative stress, permeability transition and cell death. J Bioenerg Biomembr. 2005;37(2):75–82.

    Article  CAS  PubMed  Google Scholar 

  150. González G, Zaldívar D, Carrillo E, Hernández A, García M, Sánchez J. Pharmacological preconditioning by diazoxide downregulates cardiac L-type Ca(2+) channels. Br J Pharmacol. 2010;161(5):1172–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Ventura-Clapier R, Garnier A, Veksler V. Energy metabolism in heart failure. J Physiol. 2004;555(Pt 1):1–13.

    Article  CAS  PubMed  Google Scholar 

  152. Izem-Meziane M, Djerdjouri B, Rimbaud S, Caffin F, Fortin D, Garnier A, et al. Catecholamine-induced cardiac mitochondrial dysfunction and mPTP opening: protective effect of curcumin. Am J Physiol Heart Circ Physiol. 2012;302(3):H665–74.

    Article  CAS  PubMed  Google Scholar 

  153. Michels G, Khan IF, Endres-Becker J, Rottlaender D, Herzig S, Ruhparwar A, et al. Regulation of the human cardiac mitochondrial Ca2+ uptake by 2 different voltage-gated Ca2+ channels. Circulation. 2009;119(18):2435–43.

    Article  CAS  PubMed  Google Scholar 

  154. Javadov S, Karmazyn M. Mitochondrial permeability transition pore opening as an endpoint to initiate cell death and as a putative target for cardioprotection. Cell Physiol Biochem. 2007;20(1–4):1–22.

    Article  CAS  PubMed  Google Scholar 

  155. Marcil M, Ascah A, Matas J, Belanger S, Deschepper C, Burelle Y. Compensated volume overload increases the vulnerability of heart mitochondria without affecting their functions in the absence of stress. J Mol Cell Cardiol. 2006;41(6):998–1009.

    Article  CAS  PubMed  Google Scholar 

  156. Xie W, Santulli G, Reiken SR, Yuan Q, Osborne BW, Chen BX, Marks AR. Mitochondrial oxidative stress promotes atrial fibrillation. Sci Rep. 2015;5:11427.

    Google Scholar 

  157. Xie W, Santulli G, Guo X, Gao M, Chen BX, Marks AR. Imaging atrial arrhythmic intracellular calcium in intact heart. J Mol Cell Cardiol. 2013;64:120–3.

    Google Scholar 

  158. Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature. 2005;434(7033):652–8.

    Article  CAS  PubMed  Google Scholar 

  159. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature. 2005;434(7033):658–62.

    Article  CAS  PubMed  Google Scholar 

  160. Matas J, Young NT, Bourcier-Lucas C, Ascah A, Marcil M, Deschepper CF, Burelle Y. Increased expression and intramitochondrial translocation of cyclophilin-D associates with increased vulnerability of the permeability transition pore to stress-induced opening during compensated ventricular hypertrophy. J Mol Cell Cardiol. 2009;46(3):420–30.

    Article  CAS  PubMed  Google Scholar 

  161. Nakayama H, Chen X, Baines CP, Klevitsky R, Zhang X, Zhang H, et al. Ca2± and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. J Clin Invest. 2007;117(9):2431–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Javadov S, Baetz D, Rajapurohitam V, Zeidan A, Kirshenbaum LA, Karmazyn M. Antihypertrophic effect of Na+/H+ exchanger isoform 1 inhibition is mediated by reduced mitogen-activated protein kinase activation secondary to improved mitochondrial integrity and decreased generation of mitochondrial-derived reactive oxygen species. J Pharmacol Exp Ther. 2006;317(3):1036–43.

    Article  CAS  PubMed  Google Scholar 

  163. Shao J, Iwashita N, Ikeda F, Ogihara T, Uchida T, Shimizu T, Uchino H, Hirose T, Kawamori R, Watada H. Beneficial effects of candesartan, an angiotensin II type 1 receptor blocker, on beta-cell function and morphology in db/db mice. PubMed – NCBIBiochem Biophys Res Commun. 2006;344(4):1224–33.

    Article  CAS  PubMed  Google Scholar 

  164. Oliveira PJ, Rolo AP, Palmeira CM, Moreno AJ. Carvedilol reduces mitochondrial damage induced by hypoxanthine/xanthine oxidase: relevance to hypoxia/reoxygenation injury. Cardiovasc Toxicol. 2001;1(3):205–13.

    Article  CAS  PubMed  Google Scholar 

  165. Oliveira PJ, Esteves T, Rolo AP, Palmeira CM, Moreno AJM. Carvedilol inhibits the mitochondrial permeability transition by an antioxidant mechanism. Cardiovasc Toxicol. 2004;4(1):11–20.

    Article  CAS  PubMed  Google Scholar 

  166. Barone FC, Willette RN, Nelson AH, Ohlstein EH, Brooks DP, Coatney RW. Carvedilol prevents and reverses hypertrophy-induced cardiac dysfunction. Pharmacology. 2007;80(2–3):166–76.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heberty di Tarso Fernandes Facundo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Facundo, H.d.T.F., Brainard, R.E., Caldas, F.R.d.L., Lucas, A.M.B. (2017). Mitochondria and Cardiac Hypertrophy. In: Santulli, G. (eds) Mitochondrial Dynamics in Cardiovascular Medicine. Advances in Experimental Medicine and Biology, vol 982. Springer, Cham. https://doi.org/10.1007/978-3-319-55330-6_11

Download citation

Publish with us

Policies and ethics