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Foreword

With the goal to achieve optimal precision and safety in the operating theater, a 
neurosurgeon must investigate not only the structure and vasculature of the brain 
but also its neural functions. The human central nervous system (CNS) is the single 
most complex organ in the known universe, and its functional networks are not yet 
perfectly understood. In this setting, in order to preserve the quality of life of 
patients who will undergo brain surgery, it is crucial to study the organization of 
neural circuits before removal of a part of the CNS affected by a cerebral disease, 
e.g., epilepsy or tumor. Due to a major interindividual anatomo-functional variabil-
ity, especially in case of brain lesions, which can induce mechanisms of neuroplas-
ticity, mapping techniques are very helpful to understand the distribution of cortical 
and subcortical pathways underlying motor, language, cognitive, and emotional 
functions at the individual level. To this end, intraoperative direct electrical stimula-
tion (DES) in awake patients remains the gold standard to optimize the extent of 
resection (EOR) while minimizing neurological morbidity. However, even though 
this method allows real-time anatomo-functional correlations throughout the surgi-
cal procedure, in order to detect and to preserve the structures crucial for brain func-
tions, it is also important to benefit from complementary techniques that permit a 
noninvasive preoperative mapping. Functional neuroimaging has been extensively 
used in the past decade, but its main limitation is the impossibility to differentiate 
critical areas which should not be removed during surgery, to avoid permanent defi-
cit, versus regions involved in a neural network but which can be compensated—
and thus surgically resected.

In this state of mind, navigated transcranial magnetic stimulation (nTMS) rep-
resents an original tool opening new avenues in the exploration of the CNS, espe-
cially in brain-damaged patients. Indeed, as intraoperative DES, nTMS offers the 
unique opportunity to create a transient virtual disruption of neural networks, with 
the aim to identify the cortical areas crucial for brain functions. However, contrary 
to DES, nTMS is a noninvasive technique that can be used before surgery to map 
the eloquent cortex and to plan the resection accordingly. This is the reason why a 
textbook on nTMS in neurosurgery was desperately needed. Led by the editor, 
Sandro M. Krieg, this collective body of work will serve as a comprehensive text-
book for all physicians with an individualized personal approach of brain surgery. 
What makes this book so unusual is that it contains all required information to use 
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nTMS in a department of neurosurgery and outlines pros and cons to other tech-
niques. The approach the authors have taken in defining this new technology and 
its implication for neurosurgical management are quite unique and innovative, to 
say the least.

The book is organized in a very logical and informative fashion, starting off with 
critically important chapters covering the basic principles of nTMS. The clinical 
aspects are further evoked in chapters on preoperative motor and language mapping. 
To this end, Dr. Krieg is a master at explaining and detailing how to use nTMS for 
surgical planning and how to combine this method with other techniques, as fiber 
tracking. I particularly like the way in which further brain functions can be mapped 
by nTMS and in which this methodology may be used in children—knowing that it 
is very difficult to achieve awake surgery in pediatric population, especially under 10 
years. Interestingly, the fact that nTMS is also able to modulate neural networks for 
neurosurgical applications, as previously done in neuropsychiatry for depression, is 
depicted in a series of detailed chapters on these subjects. For example, nTMS can be 
helpful to treat chronic pain. In the future, this technique could also be considered to 
induce and canalize neuroplasticity, allowing an increase of the EOR or even an 
improvement of the neurological status—for example, by combining it with specific 
programs of rehabilitation in patients with neurological deficits. Finally, in the field 
of cognitive neurosciences, nTMS may represent a unique tool to investigate CNS 
processing in humans. Indeed, thanks to recent advances in the new science of con-
nectomics, which aims to comprehensively map neural connections at both structural 
and functional levels, coordination of cognitive and behavioral domains is now 
attributed to parallel and intersecting large-scale neural circuits that contain intercon-
nected cortical and subcortical components. In this context, a technique based on the 
concept of transitory disruption of neural circuits will undoubtedly provide new 
insights into the organization of such a networking brain. Yet, it is worth noting that 
nTMS can achieve only a mapping of the cortex, but it is not able to map the white 
matter tracts that nonetheless constitute a crucial part of the connectome. From a 
clinical point of view, preservation of subcortical pathways is essential during brain 
surgery, because the white matter connectivity is a well- known limitation of neuro-
plasticity. In other words, currently, nTMS should still be combined with other map-
ping techniques, especially intraoperative DES, in order to be more extensively 
validated and to compensate its inability to investigate directly the function of the 
fibers.

It is crucial for modern clinical neuroscience, and especially for neurosurgery, to 
incorporate advances in this complex field of brain mapping in as timely a fashion 
as possible, so that patient care becomes guided by the latest increments of relevant 
technology and knowledge with regard to CNS processing. I have no doubt that this 
comprehensive volume edited by Dr. Krieg and his colleagues will serve this pur-
pose with considerable distinction. All in all, this text is a major contribution that 
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will be significant in the history of neurosurgery and cerebral mapping. If you only 
have one reference source on nTMS in brain surgery, this must be it!

Montpellier, France  Hugues Duffau, M.D., Ph.D.

Foreword
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A Word from the Editor

Seven years ago, our neurosurgical department started implementing nTMS. First, 
we performed preoperative motor mappings, and then we tried to establish language 
mapping protocols (using ourselves as volunteers). Finally, we used language map-
ping to analyze our brain tumor patients. Recently, we began applying nTMS to 
map other brain functions and using it for therapeutic applications.

At the same time, we have optimized the way that we actually integrate the func-
tional nTMS data into our neurosurgical routine. We started with surgeons, as they 
had to get used to these data, and then integrated nTMS data in our interdisciplinary 
tumor board discussions.

By making the data easily available to every physician via integration into our 
hospital’s electronic infrastructure, everyone in the department quickly became 
used to dealing with nTMS data.

Along with these developments, we engaged in seminal international collabora-
tions that led to highly valuable clinical data and—more importantly—many new 
friends.

This book is thus the result of our interaction with the international neurosurgical 
nTMS community. In this way, it serves as a signal to all of us that, in neurosurgery, 
nTMS research means cooperation with an international community.

In this spirit, each year, our group at TUM has served as a host for numerous 
guests from all over the world, providing them with training and insights into nTMS 
research and its clinical uses. In doing so, we have gained many collaborators and 
friends, as well as unlimited options for scientific exchange.

In the future, we want to welcome even more visitors and to continue establish-
ing a researcher exchange program, which we have already started with some of our 
closest collaborators.

This book was created through the efforts of a team that is composed of experi-
enced, well-known international experts, making this book an exclusive composi-
tion of information about the use of nTMS in neurosurgery, which has not previously 
been available in any other form. By containing different approaches of various 
international experts, I did not try to create a consensus for the described stimulation 
protocols, analysis software, or used nTMS devices. Contrariwise, I welcomed the 
description of differing approaches by the individual authors in order to make this 
book a collection of feasible approaches rather than a document of my personal 
opinion.
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Therefore, I want to encourage every reader to provide the team, and me in par-
ticular, with criticisms, suggestions, and personal wishes regarding how to further 
improve this unique collection of information for all those who work in this evolv-
ing field.

 Sandro M. Krieg, M.D., M.B.A. 

A Word from the Editor
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Introduction

Mapping and monitoring of brain function is far from being new. It has always been 
in the focus of neurosurgeons, i.e., already in the days of Wilder Penfield using 
awake surgery to map motor and sensory function (Penfield and Boldrey 1937). The 
reason for this being quite obvious is to completely remove tumors or epileptogenic 
tissue without hurting the patient. To achieve this ideal goal has stimulated many 
neurosurgeons ever since, among them myself. In the early stages of my career in 
the late 1980s, I developed an interest in clinical neurophysiology, focusing on the 
rather new technique of motor evoked potentials (MEP) (Meyer and Zentner 1992; 
Barker et al. 1985). This technique triggered a development of monitoring and map-
ping of motor function in the asleep (anesthetized) patient. Several innovative 
groups paved the road for the integration of this technique into clinical routine, 
while simultaneously, awake craniotomy for language mapping and monitoring saw 
a renaissance (Penfield and Boldrey 1937; Taniguchi et al. 1993; Cedzich et al. 
1996; Deletis 1993). Thus, it became part of the neurosurgeons’ armamentarium 
even before studies showed that intraoperative MEP mapping and intraoperative 
monitoring (IOM) can actually prevent neurological damage (Sanai and Berger 
2010; Duffau et al. 2005; De Witt Hamer et al. 2012). Today, IOM and intraopera-
tive MEP mapping via DES are well-established techniques, which according to me 
are mandatory for the resection of highly eloquent tumors.

More than ever, it has become clear that the aim of surgery of low- as well as of 
high-grade gliomas and metastases has to be gross total resection (GTR) to achieve 
the most favorable oncological and functional outcome (Laws et al. 1984; Polin 
et al. 2005; Stummer et al. 2006). Thus, neurosurgeons were seeking for a proper 
method, which would preoperatively allow outlining functionally relevant areas for 
estimating surgical risk and planning appropriate and safe approaches, in short, for 
being prepared before going to the operating room with our patients.

Preoperative mapping in a noninvasive fashion was for a long time reduced to 
functional magnetic resonance imaging (fMRI) and magnetoencephalography 
(MEG) (Sobottka et al. 2002; Tarapore et al. 2013; Leclercq et al. 2010). While 
MEG requires substantial infrastructure and thus never reached broad acceptance, 
fMRI was considered the standard for noninvasive mapping of neurosurgical 
patients for about two decades (FitzGerald et al. 1997). Yet, blood-oxygen-level- 
dependent (BOLD) contrast as measured by fMRI does not have the required spatial 
resolution and accuracy especially close to intracerebral tumors because these 
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tumors severely impair oxygenation and therefore BOLD contrast. As a result, 
fMRI mapping and intraoperative DES mapping do not correlate sufficiently in the 
vicinity of brain tumors (Lehericy et al. 2000; Bizzi et al. 2008; Roessler et al. 2005; 
Giussani et al. 2010). Consequently, there was still no proper methodology avail-
able, which reliably provided accurate preoperative noninvasive functional mapping 
in patients harboring brain gliomas or metastases. The gold standard being invasive 
mapping was also only available in dedicated centers (i.e., with an epilepsy pro-
gram) and required substantial logistics (Kral et al. 2006).

Only recently, nTMS was introduced as a new modality for preoperative map-
ping in neurosurgery. The combination of the “old” accurate method to map motor 
function via transcranial magnetic stimulation (TMS) (Barker et al. 1985) and neu-
ronavigation has been advanced over the years, resulting in real-time localization of 
the intracranially induced electric field and its field strength allowing for highly 
precise noninvasive mapping today (Ruohonen and Ilmoniemi 1999; Ilmoniemi 
et al. 1999; Picht et al. 2009; Krieg et al. 2012). For the first time, we neurosurgeons 
now have a tool, which allows us to outline eloquent and noneloquent cortex before 
surgery with a comparable accuracy to intraoperative DES. By providing such exact 
data, it changes our clinical practice by allowing functional data to influence patient 
consultations, surgical approaches, and oncological considerations. While preoper-
ative mapping of motor and language function has already been established, the 
possibilities of neuropsychological or cognitive mapping are currently further 
investigated. Their potential, e.g., by guiding intraoperative awake mapping, is 
rather high.

Additionally to pure functional mapping, navigated repetitive TMS (nrTMS) is 
also able to modulate function. Besides other therapeutic applications for depres-
sion or chronic pain, nrTMS also showed a positive effect on the improvement of 
aphasia as well as motor recovery in chronic stroke patients in randomized multi-
center studies by inducing functional reorganization (Huang et al. 2004; Kim et al. 
2006; Takeuchi et al. 2009; Takeuchi and Izumi 2012; Abo et al. 2014; Naeser et al. 
2011; Du et al. 2016). Thus, rather than waiting for tumor-induced functional reor-
ganization, the potential of nrTMS-induced spatial functional reorganization in 
order to move eloquent brain functions away from the planned resection cavity 
requires further investigation. Its impact, though, would be enormous. However, 
usually progress in clinical science comes in small steps. It is clear now already that 
nTMS is one of those small but distinct steps to enhance our performance and bring 
us somewhat closer to the ideal goal.

The following book therefore represents the first comprehensive guide, which 
aims to introduce this new modality to neurosurgeons, describing the currently 
available data, its clinical application, and future potential of this new technique.

Munich, Germany Bernhard Meyer, M.D.
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OrO Orbicularis oris muscle
OT Occupational therapy
PACS Picture archiving and communication system
PAS Paired associative stimulation
PCI Perturbational complexity index
PD Parkinson’s disease
PET Positron-emission tomography
PMC Premotor cortex
PMd Dorsal premotor cortex
PNS Peripheral nerve stimulation
PPC Posterior parietal cortex
PPFM Pli de passage fronto-pariétal moyen
PPV Positive predictive value
PT Phosphene threshold
PTI Picture-to-trigger interval
RC Recruitment curve
REM Rapid eye movement
RMS Root-mean-square
rMT Resting motor threshold
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ROI Region of interest
rTMS Repetitive transcranial magnetic stimulation (non-navigated)
S1 Primary somatosensory cortex
SAM Synthetic aperture magnetometry
SD Standard deviation
SEM Standard error of mean
SFG Superior frontal gyrus
sFS Superior frontal sulcus
SMA Supplementary motor areas
SMG Supramarginal gyrus
SPECT Single photon emission computed tomography
SQUID Superconducting quantum interference device
STDP Spike-timing-dependent plasticity
STG Superior temporal gyrus
STR Subtotal resection
TA Tibialis anterior muscle
tACS Transcranial alternating current stimulation
TBS Theta-burst stimulation
TCI Transcallosal inhibition
tDCS Transcranial direct cortical stimulation
TES Transcranial electrical stimulation
TMS Transcranial magnetic stimulation (non-navigated)
TPJ Temporoparietal junction
VAS Visual analog scale
VNS Vagus nerve stimulator
vPrG Ventral precentral gyrus
VS Vegetative state

Abbreviations
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