Skip to main content

Chemical and Physical Elicitation for Enhanced Cannabinoid Production in Cannabis

  • Chapter
  • First Online:
Cannabis sativa L. - Botany and Biotechnology

Abstract

Of the many medicinal plants with therapeutic potential, Cannabis sativa is, by far, the most promising in the near future for large scale utilization. However, the inherent chemical variability of plant based medicines must be addressed, before cannabis can be incorporated into modern medical practices. This chemical variability can only be controlled and potentially optimized if the underlying causes of the production of therapeutic compounds in cannabis is adequately understood. Many of the medically useful compounds produced by plants are the result of the plant stress response. Although not completely clear, there is a significant body of evidence suggesting a similar role for cannabinoids. Cannabinoids are implicating in both, biotic and abiotic stresses, including thermal, nutrient, and water stress, photoradiation, as well as bacterial and fungal pathogens. This chapter will explore the possible ecological roles of cannabinoids in cannabis and the potential utilization of these roles via biotic or abiotic elicitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Hadi F, Ali N (2015) Effective phytoextraction of Cadmium (Cd) with increasing concentration of total phenolics and free proline in Cannabis sativa (L) plant under various treatments of fertilizers, plant growth regulators and sodium salt. Int J Phytorem 17(1–6):56–65

    Article  CAS  Google Scholar 

  • Anand P, Whiteside G, Fowler CJ, Hohmann AG (2009) Targeting CB2 receptors and the endocannabinoid system for the treatment of pain. Brain Res Rev 60(1):255–266

    Article  CAS  PubMed  Google Scholar 

  • Appendino G, Gibbons S, Giana A, Pagani A, Grassi G, Stavri M, Smith E, Rahman MM (2008) Antibacterial cannabinoids from Cannabis sativa: a structure-activity study. J Nat Prod 71(8):1427–1430

    Article  CAS  PubMed  Google Scholar 

  • Bambico FR, Katz N, Debonnel G, Gobbi G (2007) Cannabinoids elicit antidepressant-like behavior and activate serotonergic neurons through the medial prefrontal cortex. J Neurosci 27(43):11700–11711

    Article  CAS  PubMed  Google Scholar 

  • Bari R, Jones J (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69(4):473–488

    Article  CAS  PubMed  Google Scholar 

  • Bazzaz FA, Dusek D, Seigler DS, Haney AW (1975) Photosynthesis and cannabinoid content of temperate and tropical populations of Cannabis sativa. Biochem Syst Ecol 3:15–18

    Article  CAS  Google Scholar 

  • Berenbaum MR (1995) The chemistry of defense: theory and practice. Proc Natl Acad Sci U S A 92:2–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bermudez-Silva FJ, Sanchez-Vera I, Suárez J, Serrano A, Fuentes E, Juan-Pico P, Nadal A, Rodríguez de Fonseca F (2007) Role of cannabinoid CB2 receptors in glucose homeostasis in rats. Eur J Pharmacol 565(1–3):207–211

    Article  CAS  PubMed  Google Scholar 

  • Bernáth J (2002) Strategies and recent achievements in selection of medicinal and aromatic plants. Acta Hort (ISHS) 576:115–128

    Article  Google Scholar 

  • Boucher F, Cosson L, Unger J, Paris MR (1974) Le Cannabis sativa L.; races chemiques ou varietes. Pl Med Phytotherap 8:20–31

    CAS  Google Scholar 

  • Bouquet J (1950) Cannabis. UN. Bull Narc 2:14–30

    Google Scholar 

  • Braut-Boucher F (1980) Effet des conditions ecophysiologiques sur la croissance, le developpement et le contenu en cannabinoides de clones correspondant aux deux types chimiques du Cannabis sativa L. originaire d’Afrique du Sud Physiol Veg 18:207–221

    Google Scholar 

  • Cabral GA, Griffin-Thomas L (2009) Emerging role of the cannabinoid receptor CB2 in immune regulation: therapeutic prospects for neuroinflammation. Expert Rev Mol Med 11:e3

    Article  PubMed  PubMed Central  Google Scholar 

  • Caldwell MM, Bornman JF, Ballaré CL, Flint SD, Kulandaivelu G (2007) Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochem Photobiol Sci 6(3):252–266

    Article  CAS  PubMed  Google Scholar 

  • Chandra S, Lata H, Khan IA, Elsohly MA (2008) Photosynthetic response of Cannabis sativa L. to variations in photosynthetic photon flux densities, temperature and CO2 conditions. Physiol Mol Biol Plants 14(4):299–306

    Google Scholar 

  • Chappell J (1995) The Biochemistry and Molecular Biology of Isoprenoid Metabolism. Plant Physiol 107(1):1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Guo Q, Liu L, Liao L, Zhu Z (2011) Influence of fertilization and drought stress on the growth and production of secondary metabolites in Prunella vulgaris L. J Med Plants Res 5:1749–1755

    CAS  Google Scholar 

  • Citterio S, Prato N, Fumagalli P, Aina R, Massa N, Santagostino A, Sgorbati S, Berta G (2005) The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L. Chemosphere 59(1):21–29

    Article  CAS  PubMed  Google Scholar 

  • Clive Lo S, Nicholson RL (1998) Reduction of light-induced anthocyanin accumulation in inoculated sorghum mesocotyls. Implications for a compensatory role in the defense response. Plant Physiol 116(3):979–989

    Article  Google Scholar 

  • Di Marzo V, Bifulco M, De Petrocellis L (2004) The endocannabinoid system and its therapeutic exploitation. Nat Rev Drug Discov 3:771–784

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-Induced phenylpropanoid metabolism. Plant cell 7:1085–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon RA (1986) The phytoalexin response: elicitation, signaling, and control of host gene expression. Biol Rev 61:239–291

    Article  CAS  Google Scholar 

  • Downum KR, Swain LA, Faleiro LJ (1991) Influence of light on plant allelochemicals: a synergistic defense in higher plants. Arch Insect Biochem 17:201–211

    Article  CAS  Google Scholar 

  • El-Sayed M, Verpoorte R (2004) Growth, metabolic profiling and enzymes activities of Catharanthus roseus seedlings treated with plant growth regulators. Plant Growth Regul 44:53–58

    Article  CAS  Google Scholar 

  • Eliasova A, Repca KM, Pastırova A (2004) Quantitative changes of secondary metabolites of Matricaria chamomilla by abiotic stress. Verlag der Zeitschrift für Naturforschung, Tübingen

    Google Scholar 

  • ElSohly H, Turner CE, Clark AM, ElSohly MA (1982) Synthesis and antimicrobial properties of certain cannabichrome and cannabigerol related compounds. J Pharm Sci 71:1319–1323

    Article  Google Scholar 

  • Facchini PJ (2001) Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Ann Rev Plant Physiol Molec Biol 52:29

    Article  CAS  Google Scholar 

  • Farmer EE, Alméras E, Krishnamurthy V (2003) Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr Opin Plant Biol 6:372–378

    Google Scholar 

  • Farag S, Lamshöft M, Pamplaniyil K, Spiteller M, Kayser O (2013) LCMS spectral evidence of the occurrence of Cannabinoid in Cannabis sativa Cell Cultures. Planta Med 79:PM2

    Google Scholar 

  • Farkas J, Andrassy E (1976) The sporostatic effect of cannabidiolic acid. Acta Alimentaria 5:57–67

    CAS  Google Scholar 

  • Ferenczy L, Grazca L, Jakobey I (1958) An antibacterial preparation from hemp (Cannabis sativa L.). Naturwissenschaften 45:188

    Article  CAS  Google Scholar 

  • Flores-Sanchez IJ, Pec J, Fei J, Choi YH, Dusek J, Verpoorte R (2009) Elicitation studies in cell suspension cultures of Cannabis sativa L. J Biotechnol 143(2):157–168

    Article  CAS  PubMed  Google Scholar 

  • Fluck H (1963) Intrinsic and extrinsic factors affecting the production of natural products. In: Swain T (ed) Chemical plant taxonomy. Academic Press, New York, p 167–186

    Google Scholar 

  • Gal IE, Vajda O (1970) Influence of cannabidiolic acid on microorganisms. Elelmez. Ipar. 23:336–339

    Google Scholar 

  • Gaoni Y, Mechoulam R (1964) Isolation, structure, and partial synthesis of an active constituent of Hashish. J Am Chem Soc 86(8):1646–1647

    Article  CAS  Google Scholar 

  • Gertsch J, Leonti M, Raduner S, Racz I, Chen JZ, Xie XQ (2008) Beta-caryophyllene is a dietary cannabinoid. Proc Natl Acad Sci USA 105:S9099–S9104

    Article  Google Scholar 

  • Gorelick J, Rosenberg R, Smotrich A, Bernstein N (2015) Hypoglycemic activity of withanolides and elicitated Withania somnifera. Phytochemistry 116:283–289

    Article  CAS  PubMed  Google Scholar 

  • Gorelick J, Bernstein N (2014) Elicitation: An underutilized tool for the development of medicinal plants as a source for therapeutic secondary metabolites. Adv Agron 124:201–230

    Article  CAS  Google Scholar 

  • Hakim HA, El Kheir YA, Mohamed MI (1986) Effect of climate on the content of a CBD-rich variant of Cannabis. Fitoterapia 57:239–241

    CAS  Google Scholar 

  • Hahlbrock K, Scheel D (1989) Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol 40:347–369

    Article  CAS  Google Scholar 

  • Haney A, Kutscheid BB (1973) Quantitative variation in chemical constituents of marihuana from stands of naturalized Cannabis sativa L. in east central Illinois. Econ Bot 27:193–203

    Article  CAS  Google Scholar 

  • Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25

    Article  CAS  Google Scholar 

  • Izzo AA, Camilleri M (2008) Emerging role of cannabinoids in gastrointestinal and liver diseases: basic and clinical aspects. Gut 57(8):1140–1155

    Article  CAS  PubMed  Google Scholar 

  • Izzo AA, Borrelli F, Capasso R, Di Marzo V, Mechoulam R (2009) Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb. Trends Pharmacol Sci 30(10):515–527

    Article  CAS  PubMed  Google Scholar 

  • Jiang CJ, Shimono M, Sugano S, Kojima M, Yazawa K, Yoshida R, Inoue H, Hayashi N, Sakakibara H, Takatsuji H (2010) Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice-Magnaporthe grisea interaction. Mol Plant Microbe Interact 23(6):791–798

    Article  CAS  PubMed  Google Scholar 

  • Jochum GM, Mudge KW Thomas RB (2007) Elevated temperatures increase leaf senescence and root secondary metabolite concentration in the understory herb Panax quinquefolius (Araliaceae). Am J Bot 94:819–826

    Google Scholar 

  • Kakani VG, Reddy KR, Zhao D, Mohammed A (2003) Effects of ultraviolet-B radiation on cotton (Gossypium hirsutum L.) morphology and anatomy. Ann Bot 91(7):817–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneshima H, Mori M, Mizuno N (1973) Studies on Cannabis in Hokkaido (Part 6). The dependence of Cannabis plants on iron nutrition. Hokkaidoritsu Eisei Kenkyusho 23:3–5

    Google Scholar 

  • Kirakosyan A, Kaufman P, Warber S, Zick S, Aaronson K, Bolling S, Chul Chang S (2004) Applied environmental stresses to enhance the levels of polyphenolics in leaves of hawthorn plants. Physiolo Plantarum 121:182–186

    Article  CAS  Google Scholar 

  • Krejci Z )1952) Antibacterial action of Canabis indica. Lek List 7(20):500–503

    Google Scholar 

  • Krejci Z (1970) Changes with maturation in amounts of biologically interesting substances of Cannabis. In: Joyce CRB, Curry SH (eds) The botany and chemistry of Cannabis. Churchill, London. Krjci 1952, p 49

    Google Scholar 

  • Kusari P, Kusari S, Spiteller M, Kayser O (2013) Endophytic fungi harbored in Cannabis sativa L.: diversity and potential as biocontrol agents against host plant-specific phytopathogens. Fungal Divers 60:137

    Article  Google Scholar 

  • Kusari P, Kusari S, Lamshöft M, Sezgin S, Spiteller M, Kayser O (2014) Quorum quenching is an antivirulence strategy employed by endophytic bacteria. Appl Microbiol Biotechnol 98(16):7173–7183

    Article  CAS  PubMed  Google Scholar 

  • Kusari P, Kusari S, Spiteller M, Kayser O (2015) Implications of endophyte-plant crosstalk in light of quorum responses for plant biotechnology. Appl Microbiol Biotechnol 99(13):5383–5390

    Article  CAS  PubMed  Google Scholar 

  • Kuzel S, Vydra J, Triska J, Vrchotova N, Hruby M, Cigler P (2009) Elicitation of pharmacologically active substances in an intact medical plant. J Agric Food Chem 57:7907–7911

    Article  CAS  PubMed  Google Scholar 

  • Lackman P, González-Guzmán M, Tilleman S, Carqueijeiro I, Pérez AC, Moses T, Seo M, Kanno Y, Häkkinen ST, Van Montagu MCE (2011) Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. PNAS 14:5891–5896

    Article  Google Scholar 

  • Latta RP, Eaton BJ (1975) Seasonal fluctuations in cannabinoid content of Kansas marijuana. Econ Bot 29:153–163

    Article  CAS  Google Scholar 

  • Ledbetter MC, Krikorian AD (1975) Trichomes of Cannabis sativa as viewed with scanning electron microscope. Phytomorphology 25:166–176

    Google Scholar 

  • Li WD, Hou JL, Wang WQ, Tang XM, Liu CL, Xing D (2011) Effect of water deficit on biomass production and accumulation of secondary metabolites in roots of Glycyrrhiza uralensis. Russ J Plant Physiol 58:538–542

    Article  CAS  Google Scholar 

  • Linden JC, Phisalaphong M (2000) Oligosaccharides potentiate methyl jasmonate-induced production of paclitaxel in Taxus canadensis. Plant Sci 158:41–51

    Article  CAS  PubMed  Google Scholar 

  • Linger P, Ostwald A, Haensler (2005) Cannabis sativa L. growing on heavy metal contaminated soil: growth, cadmium uptake and photosynthesis. J Biol Plant 49:567

    Google Scholar 

  • Loreti E, Povero G, Novi G, Solfanelli C, Alpi A, Perata P (2008) Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytol 179:1004–1016

    Article  CAS  PubMed  Google Scholar 

  • Lydon J (1985) The effects of Ultraviolet-B radiation on the growth, physiology and cannabinoid production of Cannabis sativa L. Ph.D. Dissertation, University of Maryland

    Google Scholar 

  • Mansouri H, Asrar Z (2012) Effects of abscisic acid on content and biosynthesis of terpenoids in Cannabis sativa at vegetative stage. Biol Plant 56:153–156

    Article  CAS  Google Scholar 

  • Mansouri H, Asrar Z, Szopa J (2009) Effects of ABA on primary terpenoids and D9-etrahydrocannabinol in Cannabis sativa L. at flowering stage. J Plant Growth Reg 58:269–277

    Article  CAS  Google Scholar 

  • Marti G, Schnee S, Andrey Y, Simoes-Pires C, Carrupt PA, Wolfender JL, Gindro K (2014) Study of leaf metabolome modifications induced by UV-C radiations in representative Vitis, Cissus and Cannabis species by LC-MS based metabolomics and antioxidant assays. Molecules 19(9):14004–14021

    Article  PubMed  CAS  Google Scholar 

  • Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346(6284):561–564

    Article  CAS  PubMed  Google Scholar 

  • Mayer BF, Ali-Benali MA, Demone J, Bertrand A, Charron JB (2015) Cold acclimation induces distinctive changes in the chromatin state and transcript levels of COR genes in Cannabis sativa varieties with contrasting cold acclimation capacities. Physiol Plant 155(3):281–295

    Article  CAS  PubMed  Google Scholar 

  • McPartland JM (1984) Pathogenicity of Phomopsis ganjae on Cannabis sativa and the fungistatic effect of cannabinoids produced by the host. Mycopathologia 87:149–154

    Article  Google Scholar 

  • McPartland JM, Clarke RC, Watson DP (2000) Hemp diseases and pests: management and biological control. CABI Publishing, Wallingford, UK

    Book  Google Scholar 

  • Mechoulam R, Ben-Shabat S (1999) From gan-zi-gun-nu to anandamide and 2-arachidonoylglycerol: the ongoing story of cannabis. Nat Prod Rep 16(2):131–143

    Article  CAS  PubMed  Google Scholar 

  • Mechoulam R (2005) Plant cannabinoids: a neglected pharmacological treasure trove. Br J Pharmacol 146:913–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 263:431–450

    Article  CAS  Google Scholar 

  • Moreno PR, Schlatmann JE, van der Heijden R, van Gulik WM, ten Hoopen HJ, Verpoorte R, Heijnen JJ (1993) Induction of ajmalicine formation and related enzyme activities in Catharanthus roseus cells: effect of inoculum density. Appl Microbiol Biotechnol 39(1):42–47

    Article  CAS  PubMed  Google Scholar 

  • Mosihuzzaman M (2012) Herbal medicine in healthcare–an overview. Nat Prod Commun 7(6):807–812

    CAS  PubMed  Google Scholar 

  • Murari G, Lombardi S, Puccini AM, De Sanctis R (1983) Influence of environmental conditions on tetrahydrocannabinol (delta-9-THC) in different cultivars of Cannabis sativa L. Fitoterapia 54:195–201

    CAS  Google Scholar 

  • Nascimento NC, Fett-Neto AG (2010) Plant secondary metabolism and challenges in modifying its operation: an overview. Methods Mol Biol 643:1–13

    Article  PubMed  CAS  Google Scholar 

  • Nasim SA, Dhir B (2010) Heavy metals alter the potency of medicinal plants. Rev Environ Contam Toxicol 203:139–149

    CAS  PubMed  Google Scholar 

  • Nef-Campa C, Trouslot MF, Trouslet P, Chrestin H (1994) Long-term effect of a Pythium elicitor treatment on the growth and alkaloid production of Catharanthus roseus cell suspensions. Planta Med 60(2):149–152

    Article  CAS  PubMed  Google Scholar 

  • Negrel J, Javelle F (1995) Induction of phenylpropanoid and tyramine metabolism in pectinase-or pronase-elicited cell suspension cultures of tobacco (Nicotiana tabacum). Physiol Plant 95:569–574

    Article  CAS  Google Scholar 

  • Ofek O, Karsak M, Leclerc N, Fogel M, Frenkel B, Wright K, Tam J, Attar-Namdar M, Kram V, Shohami E, Mechoulam R, Zimmer A, Bab I (2006) Peripheral cannabinoid receptor, CB2, regulates bone mass. Proc Natl Acad Sci 103(3):696–701

    Google Scholar 

  • Paris M, Boucher F, Cosson L (1975) The constituents of Cannabis sativa pollen. Econ Bot 29:245–253

    Article  CAS  Google Scholar 

  • Pate DW (1983) Possible role of ultraviolet radiation in evolution of Cannabis chemotypes. Econ Bot 37:396–405

    Article  CAS  Google Scholar 

  • Pauwels L, Inzé D, Goossens A (2009) Jasmonate-inducible gene: What does it mean? Trends Plant Sci 14:87–91

    Article  CAS  PubMed  Google Scholar 

  • Pec J, Flores-Sanchez IJ, Choi YH, Verpoorte R (2010) Metabolic analysis of elicited cell suspension cultures of Cannabis sativa L. by (1)H-NMR spectroscopy. Biotechnol Lett 32(7):935–941

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, van Loon LC (1999) Salicylic acid-independent plant defense pathways. Trends Plant Sci 4:52–58

    Article  CAS  PubMed  Google Scholar 

  • Pitta-Alvarez SI, Spollansky TC, Giulietti AM (2000) The influence of different biotic and abiotic elicitors on the production and profile of tropane alkaloids in hairy root cultures of Brugmansia candida. Enzyme Microb Technol 26(2–4):252–258

    Article  CAS  PubMed  Google Scholar 

  • Potter DJ, Duncombe P (2012) The effect of electrical lighting power and irradiance on indoor-grown cannabis potency and yield. J Forensic Sci 57(3):618–622

    Article  CAS  PubMed  Google Scholar 

  • Poulev A, O’Neal JM, Logendra S, Pouleva RB, Timeva V Garvey AS, Gleba D, Jenkins IS, Halpern BT, Kneer R, Cragg GM, Raskin I (2003) Elicitation, a new window into plant chemodiversity and phytochemical drug discovery. J Med Chem 5(46):2542–2547

    Google Scholar 

  • Radosevic A, Kupinic M, Lj Grlic (1962) Antibiotic activity of various types of Cannabis resin. Nature 195:1007–1009

    Article  CAS  PubMed  Google Scholar 

  • Radwan MM, Elsohly MA, Slade D, Ahmed SA, Khan IA, Ross SA (2009) Biologically active cannabinoids from high-potency Cannabis sativa. J Nat Prod 72(5):906–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Repčák M, Imrich J, Franeková M (2001) Um-belliferone, a stress metabolite of Chamomilla recutita (L.) Rauschert. J Plant Physiol 158:1085–1087

    Article  Google Scholar 

  • Rijhwani SK, Shanks JV (1998) Effect of elicitor dosage and exposure time on biosynthesis of indole alkaloids by Catharanthus roseus hairy root cultures. Biotechnol Prog 14(3):442–449

    Article  CAS  PubMed  Google Scholar 

  • Rothschild M, Rowen MG, Fairbairn JW (1977) Storage of cannabinoids by Arctia caja and Zonocerus elegans fed on chemically distinct strains of Cannabis sativa. Nature 266:650–651

    Article  CAS  PubMed  Google Scholar 

  • Rothschild M, Fairbairn JW (1980) Ovipositing butterfly (Pieris brassicae L.) distinguishes between aqueous extracts of two strains of Cannabis sativa L. and THC and CBD. Nature 286:56–59

    Article  Google Scholar 

  • Rout GR, Das P (2003) Effect of metal toxicity on plant growth and metabolism. I Zinc Agronomie 23:3–11

    Article  Google Scholar 

  • Roy B, Dutta BK (2003) In vitro lethal efficacy of leaf extract of Cannabis sativa on the larvae of Chironomous samoensis Edward: an insect of public health concern. Indian J Exp Biol 41:1338–1341

    PubMed  Google Scholar 

  • Russo EB, Taming THC (2011) Potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br J Pharmacol 163(7):1344–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenke D, Böttcher C, Scheel D (2011) Crosstalk between abiotic ultraviolet-B stress and biotic (flg22) stress signalling in Arabidopsis prevents flavonol accumulation in favor of pathogen defence compound production. Plant, Cell Environ 34(11):1849–1864

    Article  CAS  Google Scholar 

  • Schmelz EA, Engelberth J, Alborn HT, Tumlinson JH III, Teal PE) 2009) Phytohormone-based activity mapping of insect herbivore-produced elicitors. Proc Natl Acad Sci USA 106(2):653–657

    Google Scholar 

  • Schmidt BM, Ribnicky DM, Lipsky PE, Raskin I (2007) Revisiting the ancient concept of botanical therapeutics. Nat Chem Biol 3(7):360–366

    Article  CAS  PubMed  Google Scholar 

  • Schwarzbach A, Schreiner M, Knorr D (2006) Effect of cultivars and deep freeze storage on saponin content of white asparagus spears (Asparagus officinalis L.). Eur Food Res Technol 222:32

    Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Article  CAS  PubMed  Google Scholar 

  • Sharma GK (1975) Altitudinal variation in leaf epidermal patterns of Cannabis sativa. Bulletin Torrey Bot Club 102:199–200

    Article  Google Scholar 

  • Shaw D, Graeme L, Pierre D, Elizabeth W, Kelvin C (2012) Pharmacovigilance of herbal medicine. J Ethnopharmacol 140(3):513–518

    Article  PubMed  Google Scholar 

  • Sheoran I, Singal H, Singh R (1990) Effect of cadmium and nickel on photosynthesis and enzymes of the photosynthetic carbon reduction cycle in the pigeon pea (Cajanus cajan). Photosynth Res 23:345–351

    Article  CAS  PubMed  Google Scholar 

  • Small E, Beckstead HD (1973) Common cannabinoid phenotypes in 350 stocks of Cannabis. Lloydia 36:144–165

    CAS  PubMed  Google Scholar 

  • Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci 14:310–317

    Article  CAS  PubMed  Google Scholar 

  • Trapp S, Croteau R (2001) Defensive resin biosynthesis in conifers. Annu Rev Plant Physiol Plant Mol Biol 52:689–724

    Article  CAS  PubMed  Google Scholar 

  • Turner CE, ElSohly MA, Boeren EG (1980) Constituents of Cannabis sativa L. XVII. A review of the natural constituents. J Nat Prod 43:169–234

    Article  CAS  PubMed  Google Scholar 

  • Van Assche F, Clijsters H (1990) Effect of metals on enzyme activity in plants. Plant, Cell Environ 13:195–206

    Article  Google Scholar 

  • Van Klingeren B, Ten Ham M (1976) Antibacterial activity of delta-9-tetrahydrocannabinol and cannabidiol. Antonie van Leeuwenhoek. J Microbiol Serol 42:9–12

    Google Scholar 

  • Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:13–25

    Article  CAS  Google Scholar 

  • Wanas A, Radwan M, Mehmedic Z, Jacob M, Khan I, Elsohly M (2016) Antifungal activity of the volatiles of high potency Cannabis sativa L. Against Cryptococcus neoformans. Rec Nat Prod. 10(2):214–220

    CAS  Google Scholar 

  • Waterman PG, Mole S (1989) Extrinsic factors influencing production of secondary metabolites in plants. In: Bernays EA (ed) Insect-plant interactions. CRC Press, Boca Raton, FL, pp 107–134

    Google Scholar 

  • Wu J, Wang C, Mei X (2001) Stimulation of taxol production and excretion in Taxus spp cell cultures by rare earth chemical lanthanum. J Biotechnol 85(1):67–73

    Article  CAS  PubMed  Google Scholar 

  • Whiting PF, Wolff RF, Deshpande S, Di Nisio M, Duffy S, Hernandez AV, Keurentjes JC, Lang S, Misso K, Ryder S, Schmidlkofer S, Westwood M, Kleijnen J (2015) Cannabinoids for medical use: a systematic review and meta-analysis. JAMA 313(24):2456–2473

    Article  CAS  PubMed  Google Scholar 

  • Winston ME, Hampton-Marcell J, Zarraonaindia I, Owens SM, Moreau CS, Gilbert JA, Hartsel JA, Kennedy SJ, Gibbons SM (2014) Understanding cultivar-specificity and soil determinants of the cannabis microbiome. PLoS ONE 9(6):e99641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yin H, Fretté XC, Christensen LP, Grevsen K (2012) Chitosan oligosaccharides promote the content of polyphenols in Greek oregano (Origanum vulgare ssp. hirtum). J Agric Food Chem 60(1):136–143

    Google Scholar 

  • Zhao J, Hu Q, Guo YQ, Zhu WH (2001) Effects of stress factors, bioregulators, and synthetic precursors on indole alkaloid production in compact callus clusters cultures of Catharanthus roseus. Appl Microbiol Biotechnol 55(6):693–698

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Liang Z, Han R, Wang X (2009) Impact on fertilization on drought response in the medicinal herb Bupleurum chinense DC: growth and saikosaponin production. Ind Crop Prod 29:629–633

    Article  CAS  Google Scholar 

  • Zobayed SMA, Afreen F, Kozai T (2005) Temperature stress can alter the photosynthetic efficiency and secondary metabolite concentrations in St. John’s wort. Plant Physiol Bioch 43:977–984

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been carried out with support from the Israeli Ministry of Science, Technology, and Space as well as the Israeli Ministry of Agriculture and the Israeli Ministry of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jonathan Gorelick or Nirit Bernstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gorelick, J., Bernstein, N. (2017). Chemical and Physical Elicitation for Enhanced Cannabinoid Production in Cannabis. In: Chandra, S., Lata, H., ElSohly, M. (eds) Cannabis sativa L. - Botany and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-54564-6_21

Download citation

Publish with us

Policies and ethics