Skip to main content

Biomarkers of Response to Asbestos Exposure

  • Chapter
  • First Online:
Asbestos and Mesothelioma

Part of the book series: Current Cancer Research ((CUCR))

  • 972 Accesses

Abstract

Asbestos-related diseases (ARDs) resulting from exposure to asbestos include lung cancer and malignant mesothelioma (MM). This has significant health and economic implications that have been well documented. The 20–40-year latency periods of ARDs and their low incidence rates in the general population make preventative strategies and early treatment extremely challenging. The availability of well-validated diagnostic biomarkers of asbestos exposure would greatly facilitate both prevention and early treatment strategies. In this chapter, we have summarized the state of knowledge on biomarkers of response to asbestos exposure and highlighted recent advances, including the discovery of new specific biomarker based on the posttranslational modifications of the high mobility group box 1 (HMGB1) protein. Asbestos is inhaled and trapped primarily in lung tissue and so can only be detected in bronchoalveolar lavage fluid. This makes direct exposure assessments very difficult. In contrast, biomarkers of response, which reflect a change in biologic function in response to asbestos exposure, have proved to be more useful. MM is the major biological response to asbestos that can be readily monitored, and numerous studies have used this disease as confirmation of a prior asbestos exposure. There is some new evidence that an increase in serum nonacetylated HMGB1 can serve as a biological response biomarker of asbestos exposure; whereas acetylated serum HMGB1 is associated with progression to MM. Finally, we discuss the potential merit of combined use of a multiplexed serum lipid biomarker panel with serum protein biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altomare DA, Menges CW, Xu J et al (2011) Losses of both products of the Cdkn2a/Arf locus contribute to asbestos-induced mesothelioma development and cooperate to accelerate tumorigenesis. PLoS One 6:e18828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antoine DJ, Jenkins RE, Dear JW et al (2012) Molecular forms of HMGB1 and keratin-18 as mechanistic biomarkers for mode of cell death and prognosis during clinical acetaminophen hepatotoxicity. J Hepatol 56:1070–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong AW, Voyles SV, Armstrong EJ et al (2011) Angiogenesis and oxidative stress: common mechanisms linking psoriasis with atherosclerosis. J Dermatol Sci 63:1–9

    Article  CAS  PubMed  Google Scholar 

  • Bang KM, Mazurek JM, Storey E et al (2009) Malignant mesothelioma mortality-United States, 1999–2005. MMWR Morb Mortal Wkly Rep 58:393–396

    Google Scholar 

  • Barnay-Verdier S, Gaillard C, Messmer M et al (2011) PCA-ELISA: a sensitive method to quantify free and masked forms of HMGB1. Cytokine 55:4–7

    Article  CAS  PubMed  Google Scholar 

  • Bayram M, Dongel I, Akbas A et al (2014) Serum biomarkers in patients with mesothelioma and pleural plaques and healthy subjects exposed to naturally occurring asbestos. Lung 192:197–203

    Article  CAS  PubMed  Google Scholar 

  • Becklake MR (1976) Asbestos-related diseases of the lung and other organs: their epidemiology and implications for clinical practice. Am Rev Respir Dis 114:187–227

    CAS  PubMed  Google Scholar 

  • Bergmann C, Strohbuecker L, Lotfi R et al (2016) High mobility group box 1 is increased in the sera of psoriatic patients with disease progression. J Eur Acad Dermatol Venereol 30:435–441

    Article  CAS  PubMed  Google Scholar 

  • Beyer HL, Geschwindt RD, Glover CL et al (2007) MESOMARK: a potential test for malignant pleural mesothelioma. Clin Chem 53:666–672

    Article  CAS  PubMed  Google Scholar 

  • Bianchi AB, Mitsunaga SI, Cheng JQ et al (1995) High frequency of inactivating mutations in the neurofibromatosis type 2 gene (NF2) in primary malignant mesotheliomas. Proc Natl Acad Sci U S A 92:10854–10858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blair IA (2008) DNA adducts with lipid peroxidation products. J Biol Chem 283:15545–15549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonaldi T, Talamo F, Scaffidi P et al (2003) Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J 22:5551–5560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boulanger G, Andujar P, Pairon JC et al (2014) Quantification of short and long asbestos fibers to assess asbestos exposure: a review of fiber size toxicity. Environ Health 13:59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Britton M (2002) The epidemiology of mesothelioma. Semin Oncol 29:18–25

    Article  PubMed  Google Scholar 

  • Carbone M, Flores EG, Emi M et al (2015) Combined genetic and genealogic studies uncover a large BAP1 cancer syndrome kindred tracing back nine generations to a common ancestor from the 1700s. PLoS Genet 11:e1005633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carbone M, Ly BH, Dodson RF et al (2012) Malignant mesothelioma: facts, myths, and hypotheses. J Cell Physiol 227:44–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carbone M, Yang H, Pass HI et al (2013) BAP1 and cancer. Nat Rev Cancer 13:153–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceresoli GL, Bonomi M, Sauta MG (2016) Immune checkpoint inhibitors in malignant pleural mesothelioma: promises and challenges. Expert Rev Anticancer Ther 16:673–675

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Li J, Qiang X et al (2005) Suppression of HMGB1 release by stearoyl lysophosphatidylcholine: an additional mechanism for its therapeutic effects in experimental sepsis. J Lipid Res 46:623–627

    Article  CAS  PubMed  Google Scholar 

  • Cheng JQ, Jhanwar SC, Klein WM et al (1994) p16 alterations and deletion mapping of 9p21-p22 in malignant mesothelioma. Cancer Res 54:5547–5551

    CAS  PubMed  Google Scholar 

  • Cheresh P, Morales-Nebreda L, Kim SJ et al (2015) Asbestos-induced pulmonary fibrosis is augmented in 8-oxoguanine DNA glycosylase knockout mice. Am J Respir Cell Mol Biol 52:25–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheung M, Talarchek J, Schindeler K et al (2013) Further evidence for germline BAP1 mutations predisposing to melanoma and malignant mesothelioma. Cancer Genet 206:206–210

    Article  CAS  PubMed  Google Scholar 

  • Chew SH, Toyokuni S (2015) Malignant mesothelioma as an oxidative stress-induced cancer: an update. Free Radic Biol Med 86:166–178

    Article  CAS  PubMed  Google Scholar 

  • Corradi M, Goldoni M, Alinovi R et al (2013) YKL-40 and mesothelin in the blood of patients with malignant mesothelioma, lung cancer and asbestosis. Anticancer Res 33:5517–5524

    CAS  PubMed  Google Scholar 

  • Creaney J, Dick IM, Robinson BW (2015) Comparison of mesothelin and fibulin-3 in pleural fluid and serum as markers in malignant mesothelioma. Curr Opin Pulm Med 21:352–356

    Article  CAS  PubMed  Google Scholar 

  • Creaney J, Musk AW, Robinson BW (2010a) Sensitivity of urinary mesothelin in patients with malignant mesothelioma. J Thorac Oncol 5:1461–1466

    Article  PubMed  Google Scholar 

  • Creaney J, Olsen NJ, Brims F et al (2010b) Serum mesothelin for early detection of asbestos-induced cancer malignant mesothelioma. Cancer Epidemiol Biomark Prev 19:2238–2246

    Article  CAS  Google Scholar 

  • Cui A, Jin XG, Zhai K et al (2014) Diagnostic values of soluble mesothelin-related peptides for malignant pleural mesothelioma: updated meta-analysis. BMJ Open 4:e004145

    Article  PubMed  PubMed Central  Google Scholar 

  • de Assis LV, Locatelli J, Isoldi MC (2014) The role of key genes and pathways involved in the tumorigenesis of malignant mesothelioma. Biochim Biophys Acta 1845:232–247

    PubMed  Google Scholar 

  • Demir M, Kaya H, Taylan M et al (2016) Evaluation of new biomarkers in the prediction of malignant mesothelioma in subjects with environmental asbestos exposure. Lung 194:409–417

    Article  CAS  PubMed  Google Scholar 

  • Denhardt DT, Chambers AF (1994) Overcoming obstacles to metastasis--defenses against host defenses: osteopontin (OPN) as a shield against attack by cytotoxic host cells. J Cell Biochem 56:48–51

    Article  CAS  PubMed  Google Scholar 

  • Ellegaard PK, Poulsen HE (2016) Tobacco smoking and oxidative stress to DNA: a meta-analysis of studies using chromatographic and immunological methods. Scand J Clin Lab Invest 76:151–158

    Article  CAS  PubMed  Google Scholar 

  • Felten MK, Khatab K, Knoll L et al (2014) Changes of mesothelin and osteopontin levels over time in formerly asbestos-exposed power industry workers. Int Arch Occup Environ Health 87:195–204

    Article  CAS  PubMed  Google Scholar 

  • Frank AL, Joshi TK (2014) The global spread of asbestos. Ann Glob Health 80:257–262

    Article  PubMed  Google Scholar 

  • Fung H, Kow YW, Van HB et al (1997) Patterns of 8-hydroxydeoxyguanosine formation in DNA and indications of oxidative stress in rat and human pleural mesothelial cells after exposure to crocidolite asbestos. Carcinogenesis 18:825–832

    Article  CAS  PubMed  Google Scholar 

  • Ge X, Antoine DJ, Lu Y et al (2014) High Mobility Group Box-1 (HMGB1) participates in the pathogenesis of alcoholic liver disease (ALD). J Biol Chem 289:22672–22691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grigoriu BD, Scherpereel A, Devos P et al (2007) Utility of osteopontin and serum mesothelin in malignant pleural mesothelioma diagnosis and prognosis assessment. Clin Cancer Res 13:2928–2935

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Chirieac LR, Bueno R et al (2014) Tsc1-Tp53 loss induces mesothelioma in mice, and evidence for this mechanism in human mesothelioma. Oncogene 33:3151–3160

    Article  CAS  PubMed  Google Scholar 

  • Hanaoka T, Tsugane S, Yamano Y et al (1993) Quantitative analysis of 8-hydroxyguanine in peripheral blood cells: an application for asbestosis patients. Int Arch Occup Environ Health 65:S215–S217

    Article  CAS  PubMed  Google Scholar 

  • Hillegass JM, Miller JM, Macpherson MB et al (2013) Asbestos and erionite prime and activate the NLRP3 inflammasome that stimulates autocrine cytokine release in human mesothelial cells. Part Fibre Toxicol 10:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillegass JM, Shukla A, Lathrop SA et al (2010) Inflammation precedes the development of human malignant mesotheliomas in a SCID mouse xenograft model. Ann N Y Acad Sci 1203:7–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu ZD, Liu XF, Liu XC et al (2014) Diagnostic accuracy of osteopontin for malignant pleural mesothelioma: a systematic review and meta-analysis. Clin Chim Acta 433:44–48

    Article  CAS  PubMed  Google Scholar 

  • Jakubec P, Pelclova D, Smolkova P et al (2015) Significance of serum mesothelin in an asbestos-exposed population in the Czech Republic. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 159:472–479

    PubMed  Google Scholar 

  • Jube S, Rivera ZS, Bianchi ME et al (2012) Cancer cell secretion of the DAMP protein HMGB1 supports progression in malignant mesothelioma. Cancer Res 72:3290–3301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadiiska MB, Gladen BC, Baird DD et al (2005) Biomarkers of oxidative stress study II: are oxidation products of lipids, proteins, and DNA markers of CCl4 poisoning? Free Radic Biol Med 38:698–710

    Article  CAS  PubMed  Google Scholar 

  • Kalra N, Zhang J, Thomas A et al (2015) Mesothelioma patient derived tumor xenografts with defined BAP1 mutations that mimic the molecular characteristics of human malignant mesothelioma. BMC Cancer 15:376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kirschner MB, Pulford E, Hoda MA et al (2015) Fibulin-3 levels in malignant pleural mesothelioma are associated with prognosis but not diagnosis. Br J Cancer 113:963–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovac V, Dodic-Fikfak M, Arneric N et al (2015) Fibulin-3 as a biomarker of response to treatment in malignant mesothelioma. Radiol Oncol 49:279–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang-Lazdunski L (2014) Surgery for malignant pleural mesothelioma: why, when and what? Lung Cancer 84:103–109

    Article  PubMed  Google Scholar 

  • Lemen RA, Dement JM, Wagoner JK (1980) Epidemiology of asbestos-related diseases. Environ Health Perspect 34:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lievense LA, Hegmans JP, Aerts JG (2014) Biomarkers for immune checkpoint inhibitors. Lancet Oncol 15:e1

    Article  PubMed  Google Scholar 

  • Linton A, Vardy J, Clarke S et al (2012) The ticking time-bomb of asbestos: its insidious role in the development of malignant mesothelioma. Crit Rev Oncol Hematol 84:200–212

    Article  PubMed  Google Scholar 

  • Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5:331–342

    Article  CAS  PubMed  Google Scholar 

  • Marczynski B, Kraus T, Rozynek P et al (2000a) Association between 8-hydroxy-2′-deoxyguanosine levels in DNA of workers highly exposed to asbestos and their clinical data, occupational and non-occupational confounding factors, and cancer. Mutat Res 468:203–212

    Article  CAS  PubMed  Google Scholar 

  • Marczynski B, Rozynek P, Kraus T et al (2000b) Levels of 8-hydroxy-2′-deoxyguanosine in DNA of white blood cells from workers highly exposed to asbestos in Germany. Mutat Res 468:195–202

    Article  CAS  PubMed  Google Scholar 

  • Marini V, Michelazzi L, Cioe A et al (2011) Exposure to asbestos: correlation between blood levels of mesothelin and frequency of micronuclei in peripheral blood lymphocytes. Mutat Res 721:114–117

    Article  CAS  PubMed  Google Scholar 

  • Mesaros C, Arora JS, Wholer A et al (2012) 8-Oxo-2′-deoxyguanosine as a biomarker of tobacco-smoking-induced oxidative stress. Free Radic Biol Med 53:610–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesaros C, Blair IA (2016) Mass spectrometry-based approaches to targeted quantitative proteomics in cardiovascular disease. Clin Proteomics 13:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Mesaros C, Worth AJ, Snyder NW et al (2015) Bioanalytical techniques for detecting biomarkers of response to human asbestos exposure. Bioanalysis 7:1157–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milne GL, Musiek ES, Morrow JD (2005) F2-Isoprostanes as markers of oxidative stress in vivo: an overview. Biomarkers 10(Suppl 1):S10–S23

    Article  CAS  PubMed  Google Scholar 

  • Montjoy C, Parker J, Petsonk L et al (2009) Mesothelioma review. W V Med J 105:13–16

    PubMed  Google Scholar 

  • Mossman BT, Shukla A, Heintz NH et al (2013) New insights into understanding the mechanisms, pathogenesis, and management of malignant mesotheliomas. Am J Pathol 182:1065–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Napolitano A, Antoine DJ, Pellegrini L et al (2016) HMGB1 and its hyperacetylated isoform are sensitive and specific serum biomarkers to detect asbestos exposure and to identify mesothelioma patients. Clin Cancer Res 22(12):3087–3096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro-Compan V, Melguizo-Madrid E, Hernandez-Cruz B et al (2013) Interaction between oxidative stress and smoking is associated with an increased risk of rheumatoid arthritis: a case-control study. Rheumatology (Oxford) 52:487–493

    Article  CAS  Google Scholar 

  • Ohar JA, Cheung M, Talarchek J et al (2016) Germline BAP1 mutational landscape of asbestos-exposed malignant mesothelioma patients with family history of cancer. Cancer Res 76:206–215

    Article  CAS  PubMed  Google Scholar 

  • Ostroff RM, Mehan MR, Stewart A et al (2012) Early detection of malignant pleural mesothelioma in asbestos-exposed individuals with a noninvasive proteomics-based surveillance tool. PLoS One 7:e46091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park EK, Thomas PS, Creaney J et al (2010) Factors affecting soluble mesothelin related protein levels in an asbestos-exposed population. Clin Chem Lab Med 48:869–874

    CAS  PubMed  Google Scholar 

  • Park EK, Yates DH, Creaney J et al (2012) Association of biomarker levels with severity of asbestos-related diseases. Saf Health Work 3:17–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pass HI, Levin SM, Harbut MR et al (2012) Fibulin-3 as a blood and effusion biomarker for pleural mesothelioma. N Engl J Med 367:1417–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pass HI, Lott D, Lonardo F et al (2005) Asbestos exposure, pleural mesothelioma, and serum osteopontin levels. N Engl J Med 353:1564–1573

    Article  CAS  PubMed  Google Scholar 

  • Pass HI, Wali A, Tang N et al (2008) Soluble mesothelin-related peptide level elevation in mesothelioma serum and pleural effusions. Ann Thorac Surg 85:265–272

    Article  PubMed  Google Scholar 

  • Peipins LA, Lewin M, Campolucci S et al (2003) Radiographic abnormalities and exposure to asbestos-contaminated vermiculite in the community of Libby, Montana, USA. Environ Health Perspect 111:1753–1759

    Article  PubMed  PubMed Central  Google Scholar 

  • Pelclova D, Fenclova Z, Kacer P et al (2008) Increased 8-isoprostane, a marker of oxidative stress in exhaled breath condensate in subjects with asbestos exposure. Ind Health 46:484–489

    Article  CAS  PubMed  Google Scholar 

  • Peluso I, Morabito G, Urban L et al (2012) Oxidative stress in atherosclerosis development: the central role of LDL and oxidative burst. Endocr Metab Immune Disord Drug Targets 12:351–360

    Article  CAS  PubMed  Google Scholar 

  • Pilger A, Rudiger HW (2006) 8-Hydroxy-2′-deoxyguanosine as a marker of oxidative DNA damage related to occupational and environmental exposures. Int Arch Occup Environ Health 80:1–15

    Article  CAS  PubMed  Google Scholar 

  • Pooley FD (1972) Electron microscope characteristics of inhaled chrysotile asbestos fibre. Br J Ind Med 29:146–153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prazakova S, Thomas PS, Sandrini A et al (2014) Asbestos and the lung in the 21st Century: an update. Clin Respir J 8:1–10

    Article  PubMed  Google Scholar 

  • Qi F, Okimoto G, Jube S et al (2013) Continuous exposure to chrysotile asbestos can cause transformation of human mesothelial cells via HMGB1 and TNF-alpha signaling. Am J Pathol 183:1654–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos-Nino ME, Testa JR, Altomare DA et al (2006) Cellular and molecular parameters of mesothelioma. J Cell Biochem 98:723–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid A, de Klerk NH, Magnani C et al (2014) Mesothelioma risk after 40 years since first exposure to asbestos: a pooled analysis. Thorax 69:843–850

    Article  CAS  PubMed  Google Scholar 

  • Robinson BW, Creaney J, Lake R et al (2003) Mesothelin-family proteins and diagnosis of mesothelioma. Lancet 362:1612–1616

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez Portal JA, Rodriguez BE, Rodriguez RD et al (2009) Serum levels of soluble mesothelin-related peptides in malignant and nonmalignant asbestos-related pleural disease: relation with past asbestos exposure. Cancer Epidemiol Biomark Prev 18:646–650

    Article  CAS  Google Scholar 

  • Sandhu H, Dehnen W, Roller M et al (2000) MRNA Expression patterns in different stages of asbestos-induced carcinogenesis in rats. Carcinogenesis 21:1023–1029

    Article  CAS  PubMed  Google Scholar 

  • Sartorelli P, Romeo R, Scancarello G et al (2007) Measurement of asbestos fibre concentrations in fluid of repeated bronchoalveolar lavages of exposed workers. Ann Occup Hyg 51:495–500

    CAS  PubMed  Google Scholar 

  • Schulze PC, Lee RT (2005) Oxidative stress and atherosclerosis. Curr Atheroscler Rep 7:242–248

    Article  CAS  PubMed  Google Scholar 

  • Schurkes C, Brock W, Abel J et al (2004) Induction of 8-hydroxydeoxyguanosine by man made vitreous fibres and crocidolite asbestos administered intraperitoneally in rats. Mutat Res 553:59–65

    Article  CAS  PubMed  Google Scholar 

  • Sekido Y (2013) Molecular pathogenesis of malignant mesothelioma. Carcinogenesis 34:1413–1419

    Article  CAS  PubMed  Google Scholar 

  • Selikoff IJ, Hammond EC, Seidman H (1980) Latency of asbestos disease among insulation workers in the United States and Canada. Cancer 46:2736–2740

    Article  CAS  PubMed  Google Scholar 

  • Serban C, Dragan S (2014) The relationship between inflammatory and oxidative stress biomarkers, atherosclerosis and rheumatic diseases. Curr Pharm Des 20:585–600

    Article  CAS  PubMed  Google Scholar 

  • Snyder NW, Mesaros C, Blair IA (2015) Translational metabolomics in cancer research. Biomark Med 9:821–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stayner L, Welch LS, Lemen R (2013) The worldwide pandemic of asbestos-related diseases. Annu Rev Public Health 34:205–216

    Article  PubMed  Google Scholar 

  • Sterman DH, Albelda SM (2005) Advances in the diagnosis, evaluation, and management of malignant pleural mesothelioma. Respirology 10:266–283

    Article  PubMed  Google Scholar 

  • Swain WA, O'Byrne KJ, Faux SP (2004) Activation of p38 MAP kinase by asbestos in rat mesothelial cells is mediated by oxidative stress. Am J Phys Lung Cell Mol Phys 286:L859–L865

    CAS  Google Scholar 

  • Tabata C, Kanemura S, Tabata R et al (2013a) Serum HMGB1 as a diagnostic marker for malignant peritoneal mesothelioma. J Clin Gastroenterol 47:684–688

    Article  CAS  PubMed  Google Scholar 

  • Tabata C, Shibata E, Tabata R et al (2013b) Serum HMGB1 as a prognostic marker for malignant pleural mesothelioma. BMC Cancer 13:205–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Testa JR, Cheung M, Pei J et al (2011) Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet 43:1022–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valavanidis A, Vlachogianni T, Fiotakis C (2009) 8-Hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27:120–139

    Article  CAS  PubMed  Google Scholar 

  • Vaught JD, Bock C, Carter J et al (2010) Expanding the chemistry of DNA for in vitro selection. J Am Chem Soc 132:4141–4151

    Article  CAS  PubMed  Google Scholar 

  • Victor VM, Rocha M, Sola E et al (2009) Oxidative stress, endothelial dysfunction and atherosclerosis. Curr Pharm Des 15:2988–3002

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Yang H, Tracey KJ (2004) Extracellular role of HMGB1 in inflammation and sepsis. J Intern Med 255:320–331

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Zhang S, Guo L et al (2015) Serum apolipoprotein A-1 quantification by LC-MS with a SILAC internal standard reveals reduced levels in smokers. Bioanalysis 7:2895–2911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Ortiz C, Xu Y et al (2015) In situ liquid cell observations of asbestos fiber diffusion in water. Environ Sci Technol 49:13340–13349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Li D, Liu L et al (2014) Serum soluble mesothelin-related peptide (SMRP): a potential diagnostic and monitoring marker for epithelial ovarian cancer. Arch Gynecol Obstet 289:1309–1314

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Kadariya Y, Cheung M et al (2014) Germline mutation of Bap1 accelerates development of asbestos-induced malignant mesothelioma. Cancer Res 74:4388–4397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada S, Inoue K, Yakabe K et al (2003) High mobility group protein 1 (HMGB1) quantified by ELISA with a monoclonal antibody that does not cross-react with HMGB2. Clin Chem 49:1535–1537

    Article  CAS  PubMed  Google Scholar 

  • Yamada S, Tabata C, Tabata R et al (2011) Clinical significance of pleural effusion mesothelin in malignant pleural mesothelioma. Clin Chem Lab Med 49:1721–1726

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Rivera Z, Jube S et al (2010) Programmed necrosis induced by asbestos in human mesothelial cells causes high-mobility group box 1 protein release and resultant inflammation. Proc Natl Acad Sci U S A 107:12611–12616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida R, Ogawa Y, Shioji I et al (2001) Urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine and biopyrrins levels among construction workers with asbestos exposure history. Ind Health 39:186–188

    Article  CAS  PubMed  Google Scholar 

  • Zangar RC, Daly DS, White AM (2006) ELISA microarray technology as a high-throughput system for cancer biomarker validation. Expert Rev Proteomics 3:37–44

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Zhu Z, Hu X et al (2016) HMGB1: A critical mediator for oxidized-low density lipoproteins induced atherosclerosis. Int J Cardiol 202:956–957

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants P42ES023720, P30ES013508, and T32ES019851. The authors have no competing financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian A. Blair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mesaros, C., Weng, L., Blair, I.A. (2017). Biomarkers of Response to Asbestos Exposure. In: Testa, J. (eds) Asbestos and Mesothelioma. Current Cancer Research. Springer, Cham. https://doi.org/10.1007/978-3-319-53560-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53560-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53558-6

  • Online ISBN: 978-3-319-53560-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics