Skip to main content

Cell Signaling and Epigenetic Mechanisms in Mesothelioma

  • Chapter
  • First Online:
Asbestos and Mesothelioma

Part of the book series: Current Cancer Research ((CUCR))

Abstract

Malignant mesotheliomas are a histologically diverse, polyclonal group of tumors arising most commonly in the pleura and to a lesser extent in the peritoneum, pericardium, and tunica vaginalis testis. They are primarily associated with exposures to naturally occurring mineral fibers including asbestos, erionite, and fluoro-edenite, although radiation- and chronic inflammation-associated as well as idiopathic mesotheliomas occur. Integrated analyses of pleural mesotheliomas have shown heterogeneous mutations in tumor suppressor genes, stimulation of multiple signaling cascades and transcription factors, and, most recently, epigenetic alterations that are defined as heritable and/or reversible changes in gene expression without changes in the DNA sequence. This review focuses on the epigenetic mechanisms reported in studies on mesotheliomas and mesothelial cells, emphasizing research that has linked these changes to critical survival and proliferative pathways in the development of mesotheliomas. This information is critical to understanding how key epigenetic effects modulate the carcinogenic process and will allow new strategies to prevent and treat mesotheliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alakus H, Yost SE, Woo B et al (2015) BAP1 mutation is a frequent somatic event in peritoneal malignant mesothelioma. J Transl Med 13:122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Altomare DA, You H, Xiao GH et al (2005) Human and mouse mesotheliomas exhibit elevated AKT/PKB activity, which can be targeted pharmacologically to inhibit tumor cell growth. Oncogene 24(40):6080–6089

    Article  CAS  PubMed  Google Scholar 

  • Altomare DA, Menges CW, Xu J et al (2011) Losses of both products of the Cdkn2a/Arf locus contribute to asbestos-induced mesothelioma development and cooperate to accelerate tumorigenesis. PLoS One 6:e18828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amatori S, Papalini F, Lazzarini R et al (2009) Decitabine, differently from DNMT1 silencing, exerts its antiproliferative activity through p21 upregulation in malignant pleural mesothelioma (MPM) cells. Lung Cancer 66:184–190

    Article  CAS  PubMed  Google Scholar 

  • Ault JG, Cole RW, Jensen CG et al (1995) Behavior of crocidolite asbestos during mitosis in living vertebrate lung epithelial cells. Cancer Res 55:792–798

    CAS  PubMed  Google Scholar 

  • Berken A, Abel J, Unfried K (2003) B1-integrin mediates asbestos-induced phosphorylation of AKT and ERK1/2 in a rat pleural mesothelial cell line. Oncogene 22:8524–8528

    CAS  PubMed  Google Scholar 

  • Bianchi AB, Mitsunaga SI, Cheng JQ et al (1995) High frequency of inactivating mutations in the neurofibromatosis type 2 gene (NF2) in primary malignant mesotheliomas. Proc Natl Acad Sci U S A 92:10854–10858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bintu L, Yong J, Antebi YE et al (2016) Dynamics of epigenetic regulation at the single-cell level. Science 351:720–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowman RV, Wright CM, Davidson MR et al (2009) Epigenomic targets for the treatment of respiratory disease. Expert Opin Ther Targets 13:625–640

    Article  CAS  PubMed  Google Scholar 

  • Bueno R, Stawiski EW, Goldstein LD et al (2016) Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat Genet 48:407–416

    Article  CAS  PubMed  Google Scholar 

  • Chen MW, Hua KT, Kao HJ et al (2010) H3K9 histone methyltransferase G9a promotes lung cancer invasion and metastasis by silencing the cell adhesion molecule Ep-CAM. Cancer Res 70:7830–7840

    Article  CAS  PubMed  Google Scholar 

  • Chirac P, Maillet D, Lepretre F et al (2016) Genomic copy number alterations in 33 malignant peritoneal mesothelioma analyzed by comparative genomic hybridization array. Hum Pathol 55:72–82

    Article  CAS  PubMed  Google Scholar 

  • Christensen BC, Godleski JJ, Marsit CJ et al (2008) Asbestos exposure predicts cell cycle control gene promoter methylation in pleural mesothelioma. Carcinogenesis 29:1555–1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen BC, Houseman EA, Godleski JJ et al (2009a) Epigenetic profiles distinguish pleural mesothelioma from normal pleura and predict lung asbestos burden and clinical outcome. Cancer Res 69:227–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen BC, Marsit CJ, Houseman EA et al (2009b) Differentiation of lung adenocarcinoma, pleural mesothelioma, and nonmalignant pulmonary tissues using DNA methylation profiles. Cancer Res 69:6315–6321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen BC, Houseman EA, Poage GM et al (2010) Integrated profiling reveals a global correlation between epigenetic and genetic alterations in mesothelioma. Cancer Res 70:5686–5694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cigognetti M, Lonardi S, Fisogni S et al (2015) BAP1 (BRCA1-associated protein 1) is a highly specific marker for differentiating mesothelioma from reactive mesothelial proliferations. Mod Pathol 28:1043–1057

    Article  CAS  PubMed  Google Scholar 

  • Cole RW, Ault JG, Hayden JH et al (1991) Crocidolite asbestos fibers undergo size-dependent microtubule-mediated transport after endocytosis in vertebrate lung epithelial cells. Cancer Res 51:4942–4947

    CAS  PubMed  Google Scholar 

  • Cress WD, Seto E (2000) Histone deacetylases, transcriptional control, and cancer. J Cell Physiol 184:1–16

    Article  CAS  PubMed  Google Scholar 

  • Curto M, McClatchey AI (2008) Nf2/Merlin: a coordinator of receptor signalling and intercellular contact. Br J Cancer 98:256–262

    Article  CAS  PubMed  Google Scholar 

  • Donaldson K, Murphy FA, Duffin R et al (2010) Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong C, Wu Y, Yao J et al (2012) G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer. J Clin Invest 122:1469–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dostert C, Petrilli V, Van Bruggen R et al (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eastman A, Mossman BT, Bresnick E (1983) Influence of asbestos on the uptake of benzo(a)pyrene and DNA alkylation in hamster tracheal epithelial cells. Cancer Res 43:1251–1255

    CAS  PubMed  Google Scholar 

  • Eden A, Gaudet F, Waghmare A et al (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300:455

    Article  CAS  PubMed  Google Scholar 

  • Felsenfeld G (2014) A brief history of epigenetics. Cold Spring Harb Perspect Biol 6:a018200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fischer JR, Ohnmacht U, Rieger N et al (2006) Promoter methylation of RASSF1A, RARbeta and DAPK predict poor prognosis of patients with malignant mesothelioma. Lung Cancer 54:109–116

    Article  PubMed  Google Scholar 

  • Fox SA, Richards AK, Kusumah I et al (2013) Expression profile and function of Wnt signaling mechanisms in malignant mesothelioma cells. Biochem Biophys Res Commun 440:82–87

    Article  CAS  PubMed  Google Scholar 

  • Gao Q, Steine EJ, Barrasa MI et al (2011) Deletion of the de novo DNA methyltransferase Dnmt3a promotes lung tumor progression. Proc Natl Acad Sci U S A 108:18061–18066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaudet F, Hodgson JG, Eden A et al (2003) Induction of tumors in mice by genomic hypomethylation. Science 300:489–492

    Article  CAS  PubMed  Google Scholar 

  • Goldberg JL, Zanella CL, Janssen YM et al (1997) Novel cell imaging techniques show induction of apoptosis and proliferation in mesothelial cells by asbestos. Am J Respir Cell Mol Biol 17:265–271

    Article  CAS  PubMed  Google Scholar 

  • Gordon GJ, Rockwell GN, Jensen RV et al (2005) Identification of novel candidate oncogenes and tumor suppressors in malignant pleural mesothelioma using large-scale transcriptional profiling. Am J Pathol 166:1827–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goto Y, Shinjo K, Kondo Y et al (2009) Epigenetic profiles distinguish malignant pleural mesothelioma from lung adenocarcinoma. Cancer Res 69:9073–9082

    Article  CAS  PubMed  Google Scholar 

  • Guo G, Chmielecki J, Goparaju C et al (2015) Whole-exome sequencing reveals frequent genetic alterations in BAP1, NF2, CDKN2A, and CUL1 in malignant pleural mesothelioma. Cancer Res 75:264–269

    Article  CAS  PubMed  Google Scholar 

  • Hamaidia M, Staumont B, Duysinx B et al (2016) Improvement of malignant pleural mesothelioma immunotherapy by epigenetic modulators. Curr Top Med Chem 16:777–787

    Article  CAS  PubMed  Google Scholar 

  • He B, Lee AY, Dadfarmay S et al (2005) Secreted frizzled-related protein 4 is silenced by hypermethylation and induces apoptosis in beta-catenin-deficient human mesothelioma cells. Cancer Res 65:743–748

    CAS  PubMed  Google Scholar 

  • Hei TK, Piao CQ, He ZY et al (1992) Chrysotile fiber is a strong mutagen in mammalian cells. Cancer Res 52:6305–6309

    CAS  PubMed  Google Scholar 

  • Heintz NH, Janssen-Heininger YM, Mossman BT (2010) Asbestos, lung cancers, and mesotheliomas: from molecular approaches to targeting tumor survival pathways. Am J Respir Cell Mol Biol 42:133–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillegass JM, Miller JM, MacPherson MB et al (2013) Asbestos and erionite prime and activate the NLRP3 inflammasome that stimulates autocrine cytokine release in human mesothelial cells. Part Fibre Toxicol 10:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homminga I, Pieters R, Meijerink JP (2012) NKL homeobox genes in leukemia. Leukemia 26(4):572–581

    Article  CAS  PubMed  Google Scholar 

  • Horsburgh S, Robson-Ansley P, Adams R et al (2015) Exercise and inflammation-related epigenetic modifications: focus on DNA methylation. Exerc Immunol Rev 21:26–41

    PubMed  Google Scholar 

  • Husain AN, Colby T, Ordonez N et al (2013) Guidelines for pathologic diagnosis of malignant mesothelioma: 2012 update of the consensus statement from the International Mesothelioma Interest Group. Arch Pathol Lab Med 137:647–667

    Article  PubMed  Google Scholar 

  • IARC (2012). 501 pp Arsenic Metals, fibres and dusts: a review of human carcinogens. In: IARC working group on the evaluation of carcinogenic risks to humans. International Agency for Research on Cancer, Lyon

    Google Scholar 

  • Janssen YM, Heintz NH, Mossman BT (1995) Induction of c-fos and c-jun proto-oncogene expression by asbestos is ameliorated by N-acetyl-L-cysteine in mesothelial cells. Cancer Res 55:2085–2089

    CAS  PubMed  Google Scholar 

  • Jaurand MC, Jean D (2016) Biomolecular pathways and malignant pleural mesothelioma. In: Mineo TC (ed) Malignant pleural mesothelioma: present status and future directions. Bentham Science Publishers, Sharjah, pp 173–196

    Google Scholar 

  • Jensen CG, Watson M (1999) Inhibition of cytokinesis by asbestos and synthetic fibres. Cell Biol Int 23:829–840

    Article  CAS  PubMed  Google Scholar 

  • Jensen CG, Jensen LC, Rieder CL et al (1996) Long crocidolite asbestos fibers cause polyploidy by sterically blocking cytokinesis. Carcinogenesis 17:2013–2021

    Article  CAS  PubMed  Google Scholar 

  • Jones J, Wang H, Karanam B et al (2014) Nuclear localization of Kaiso promotes the poorly differentiated phenotype and EMT in infiltrating ductal carcinomas. Clin Exp Metastasis 31:497–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joseph NM, Chen YY, Nasr A et al (2016) Genomic profiling of malignant peritoneal mesothelioma reveals recurrent alterations in epigenetic regulatory genes BAP1, SETD2, and DDX3X. Mod Pathol. doi:10.1038/modpathol.2016.188. [Epub ahead of print]

    Google Scholar 

  • Kadariya Y, Menges CW, Talarchek J et al (2016) Inflammation-related IL1beta/IL1R signaling promotes the development of asbestos-induced malignant mesothelioma. Cancer Prev Res 9:406–414

    Article  CAS  Google Scholar 

  • Kanteti R, Riehm JJ, Dhanasingh I et al (2016) PI3 kinase pathway and MET inhibition is efficacious in malignant pleural mesothelioma. Sci Rep 6:32992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kassis ES, Zhao M, Hong JA et al (2006) Depletion of DNA methyltransferase 1 and/or DNA methyltransferase 3b mediates growth arrest and apoptosis in lung and esophageal cancer and malignant pleural mesothelioma cells. J Thorac Cardiovasc Surg 131:298–306

    Article  CAS  PubMed  Google Scholar 

  • Keung AJ, Khalil AS (2016) Molecular biology. A unifying model of epigenetic regulation. Science 351:661–662

    Article  CAS  PubMed  Google Scholar 

  • Kim MC, Kim NY, Seo YR et al (2016) An integrated analysis of the genome-wide profiles of DNA methylation and mRNA expression defining the side population of a human malignant mesothelioma cell line. J Cancer 7:1668–1679

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimura K, Toyooka S, Tsukuda K et al (2008) The aberrant promoter methylation of BMP3b and BMP6 in malignant pleural mesotheliomas. Oncol Rep 20(5):1265–1268

    CAS  PubMed  Google Scholar 

  • Kobayashi N, Toyooka S, Yanai H et al (2008) Frequent p16 inactivation by homozygous deletion or methylation is associated with a poor prognosis in Japanese patients with pleural mesothelioma. Lung Cancer 62:120–125

    Article  PubMed  Google Scholar 

  • Kohno H, Amatya VJ, Takeshima Y et al (2010) Aberrant promoter methylation of WIF-1 and SFRP1, 2, 4 genes in mesothelioma. Oncol Rep 24:423–431

    CAS  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  • Krismann M, Muller KM, Jaworska M et al (2002) Molecular cytogenetic differences between histological subtypes of malignant mesotheliomas: DNA cytometry and comparative genomic hybridization of 90 cases. J Pathol 197:363–371

    Article  CAS  PubMed  Google Scholar 

  • Kristensen LS, Nielsen HM, Hansen LL (2009) Epigenetics and cancer treatment. Eur J Pharmacol 625:131–142

    Article  PubMed  CAS  Google Scholar 

  • Krug LM, Kindler HL, Calvert H et al (2015) Vorinostat in patients with advanced malignant pleural mesothelioma who have progressed on previous chemotherapy (VANTAGE-014): a phase 3, double-blind, randomised, placebo-controlled trial. Lancet Oncol 16:447–456

    Article  CAS  PubMed  Google Scholar 

  • Krumm A, Barckhausen C, Kucuk P et al (2016) Enhanced histone deacetylase activity in malignant melanoma provokes RAD51 and FANCD2-triggered drug resistance. Cancer Res 76:3067–3077

    Article  CAS  PubMed  Google Scholar 

  • Kubo T, Toyooka S, Tsukuda K et al (2011) Epigenetic silencing of microRNA-34b/c plays an important role in the pathogenesis of malignant pleural mesothelioma. Clin Cancer Res 17:4965–4974

    Article  CAS  PubMed  Google Scholar 

  • LaFave LM, Beguelin W, Koche R et al (2015) Loss of BAP1 function leads to EZH2-dependent transformation. Nat Med 21(11):1344–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laszlo V, Hoda MA, Garay T et al (2015) Epigenetic down-regulation of integrin alpha7 increases migratory potential and confers poor prognosis in malignant pleural mesothelioma. J Pathol 237:203–214

    Article  CAS  PubMed  Google Scholar 

  • Lee AY, He B, You L et al (2004) Expression of the secreted frizzled-related protein gene family is downregulated in human mesothelioma. Oncogene 23:6672–6676

    Article  CAS  PubMed  Google Scholar 

  • Lippmann M (2014) Toxicological and epidemiological studies on effects of airborne fibers: coherence and public [corrected] health implications. Crit Rev Toxicol 44:643–695

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Ye D, Guo W et al (2015) G9a is essential for EMT-mediated metastasis and maintenance of cancer stem cell-like characters in head and neck squamous cell carcinoma. Oncotarget 6:6887–6901

    Article  PubMed  PubMed Central  Google Scholar 

  • Lund EK, Belshaw NJ, Elliott GO et al (2011) Recent advances in understanding the role of diet and obesity in the development of colorectal cancer. Proc Nutr Soc 70:194–204

    Article  CAS  PubMed  Google Scholar 

  • Manente AG, Valenti D, Pinton G et al (2013) Estrogen receptor beta activation impairs mitochondrial oxidative metabolism and affects malignant mesothelioma cell growth in vitro and in vivo. Oncogenesis 2:e72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manente AG, Pinton G, Zonca S et al (2015) Intracellular lactate-mediated induction of estrogen receptor beta (ERbeta) in biphasic malignant pleural mesothelioma cells. Oncotarget 6:25121–25134

    Article  PubMed  PubMed Central  Google Scholar 

  • Manente AG, Pinton G, Zonca S et al (2016) KDM6B histone demethylase is an epigenetic regulator of estrogen receptor beta expression in human pleural mesothelioma. Epigenomics 8:1227–1238

    Article  CAS  PubMed  Google Scholar 

  • Margueron R, Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469:343–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6:838–849

    Article  CAS  PubMed  Google Scholar 

  • Menges CW, Chen Y, Mossman BT et al (2010) A phosphotyrosine proteomic screen identifies multiple tyrosine kinase signaling pathways aberrantly activated in malignant mesothelioma. Genes Cancer 1:493–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menges CW, Kadariya Y, Altomare D et al (2014) Tumor suppressor alterations cooperate to drive aggressive mesotheliomas with enriched cancer stem cells via a p53-miR-34a-c-Met axis. Cancer Res 74:1261–1271

    Article  CAS  PubMed  Google Scholar 

  • Miller JM, Thompson JK, MacPherson MB et al (2014) Curcumin: a double hit on malignant mesothelioma. Cancer Prev Res 7:330–340

    Article  CAS  Google Scholar 

  • Mizuguchi Y, Specht S, Lunz JG 3rd et al (2012) Cooperation of p300 and PCAF in the control of microRNA 200c/141 transcription and epithelial characteristics. PLoS One 7:e32449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mossman BT, Eastman A, Landesman JM et al (1983) Effects of crocidolite and chrysotile asbestos on cellular uptake and metabolism of benzo(a)pyrene in hamster tracheal epithelial cells. Environ Health Perspect 51:331–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mossman BT, Shukla A, Heintz NH et al (2013) New insights into understanding the mechanisms, pathogenesis, and management of malignant mesotheliomas. Am J Pathol 182:1065–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murthy SS, Testa JR (1999) Asbestos, chromosomal deletions, and tumor suppressor gene alterations in human malignant mesothelioma. J Cell Physiol 180:150–157

    Article  CAS  PubMed  Google Scholar 

  • Murthy SS, Shen T, De Rienzo A et al (2000) Expression of GPC3, an X-linked recessive overgrowth gene, is silenced in malignant mesothelioma. Oncogene 19:410–416

    Article  CAS  PubMed  Google Scholar 

  • Nelson HH, Almquist LM, LaRocca JL et al (2011) The relationship between tumor MSLN methylation and serum mesothelin (SMRP) in mesothelioma. Epigenetics 6:1029–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newick K, Cunniff B, Preston K et al (2012) Peroxiredoxin 3 is a redox-dependent target of thiostrepton in malignant mesothelioma cells. PLoS One 7:e39404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okano M, Bell DW, Haber DA et al (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  CAS  PubMed  Google Scholar 

  • Opitz I, Soltermann A, Abaecherli M et al (2008) PTEN expression is a strong predictor of survival in mesothelioma patients. Eur J Cardiothorac Surg 33:502–506

    Article  PubMed  Google Scholar 

  • Pache JC, Janssen YM, Walsh ES et al (1998) Increased epidermal growth factor-receptor protein in a human mesothelial cell line in response to long asbestos fibers. Am J Pathol 152:333–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peden DB (2011) The role of oxidative stress and innate immunity in O(3) and endotoxin-induced human allergic airway disease. Immunol Rev 242:91–105

    Article  CAS  PubMed  Google Scholar 

  • Pinato DJ, Mauri FA, Ramakrishnan R et al (2012) Inflammation-based prognostic indices in malignant pleural mesothelioma. J Thorac Oncol 7:587–594

    Article  CAS  PubMed  Google Scholar 

  • Pinton G, Brunelli E, Murer B et al (2009) Estrogen receptor-beta affects the prognosis of human malignant mesothelioma. Cancer Res 69:4598–4604

    Article  CAS  PubMed  Google Scholar 

  • Ramos-Nino ME, Timblin CR, Mossman BT (2002) Mesothelial cell transformation requires increased AP-1 binding activity and ERK-dependent Fra-1 expression. Cancer Res 62:6065–6069

    CAS  PubMed  Google Scholar 

  • Ramos-Nino ME, Vianale G, Sabo-Attwood T et al (2005) Human mesothelioma cells exhibit tumor cell-specific differences in phosphatidylinositol 3-kinase/AKT activity that predict the efficacy of Onconase. Mol Cancer Ther 4:835–842

    Article  CAS  PubMed  Google Scholar 

  • Reid G (2015) MicroRNAs in mesothelioma: from tumour suppressors and biomarkers to therapeutic targets. J Thorac Dis 7:1031–1040

    PubMed  PubMed Central  Google Scholar 

  • Reid G, Kao SC, Pavlakis N et al (2016) Clinical development of TargomiRs, a miRNA mimic-based treatment for patients with recurrent thoracic cancer. Epigenomics 8:1079–1085

    Article  CAS  PubMed  Google Scholar 

  • Roggli VL (2015) The so-called short-fiber controversy: literature review and critical analysis. Arch Pathol Lab Med 139:1052–1057

    Article  PubMed  Google Scholar 

  • Sacco JJ, Kenyani J, Butt Z et al (2015) Loss of the deubiquitylase BAP1 alters class I histone deacetylase expression and sensitivity of mesothelioma cells to HDAC inhibitors. Oncotarget 6:13757–13771

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandoval J, Esteller M (2012) Cancer epigenomics: beyond genomics. Curr Opin Genet Dev 22:50–55

    Article  CAS  PubMed  Google Scholar 

  • Sansom OJ, Maddison K, Clarke AR (2007) Mechanisms of disease: methyl-binding domain proteins as potential therapeutic targets in cancer. Nat Clin Pract Oncol 4:305–315

    Article  CAS  PubMed  Google Scholar 

  • Sayan M, Mossman BT (2016) The NLRP3 inflammasome in pathogenic particle and fibre-associated lung inflammation and diseases. Part Fibre Toxicol 13:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmitz SU, Grote P, Herrmann BG (2016) Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci 73:2491–2509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekido Y (2010) Genomic abnormalities and signal transduction dysregulation in malignant mesothelioma cells. Cancer Sci 101:1–6

    Article  CAS  PubMed  Google Scholar 

  • Shah P, Gau Y, Sabnis G (2014) Histone deacetylase inhibitor entinostat reverses epithelial to mesenchymal transition of breast cancer cells by reversing the repression of E-cadherin. Breast Cancer Res Treat 143:99–111

    Article  CAS  PubMed  Google Scholar 

  • Shelby MD (1988) The genetic toxicity of human carcinogens and its implications. Mutat Res 204:3–15

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Whetstine JR (2007) Dynamic regulation of histone lysine methylation by demethylases. Mol Cell 25:1–14

    Article  CAS  PubMed  Google Scholar 

  • Shukla A, Jung M, Stern M et al (2003a) Asbestos induces mitochondrial DNA damage and dysfunction linked to the development of apoptosis. Am J Physiol Lung Cell Mol Physiol 285:L1018–L1025

    Article  CAS  PubMed  Google Scholar 

  • Shukla A, Gulumian M, Hei TK et al (2003b) Multiple roles of oxidants in the pathogenesis of asbestos-induced diseases. Free Radic Biol Med 34:1117–1129

    Article  CAS  PubMed  Google Scholar 

  • Shukla A, Hillegass JM, MacPherson MB et al (2010) Blocking of ERK1 and ERK2 sensitizes human mesothelioma cells to doxorubicin. Mol Cancer 9:314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla A, Hillegass JM, MacPherson MB et al (2011) ERK2 is essential for the growth of human epithelioid malignant mesotheliomas. Int J Cancer 129:1075–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava RK, Kurzrock R, Shankar S (2010) MS-275 sensitizes TRAIL-resistant breast cancer cells, inhibits angiogenesis and metastasis, and reverses epithelial-mesenchymal transition in vivo. Mol Cancer Ther 9:3254–3266

    Article  CAS  PubMed  Google Scholar 

  • Stapelberg M, Gellert N, Swettenham E et al (2005) Alpha-tocopheryl succinate inhibits malignant mesothelioma by disrupting the fibroblast growth factor autocrine loop: mechanism and the role of oxidative stress. J Biol Chem 280:25369–25376

    Article  CAS  PubMed  Google Scholar 

  • Sterner DE, Berger SL (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64:435–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugarbaker DJ, Richards WG, Gordon GJ et al (2008) Transcriptome sequencing of malignant pleural mesothelioma tumors. Proc Natl Acad Sci U S A 105:3521–3526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Fang J (2016) Epigenetic regulation of epithelial-mesenchymal transition. Cell Mol Life Sci 73:4493–4515

    Article  CAS  PubMed  Google Scholar 

  • Tabata C, Terada T, Tabata R et al (2013) Serum thioredoxin-1 as a diagnostic marker for malignant peritoneal mesothelioma. J Clin Gastroenterol 47:e7–e11

    Article  CAS  PubMed  Google Scholar 

  • Takai N, Desmond JC, Kumagai T et al (2004) Histone deacetylase inhibitors have a profound antigrowth activity in endometrial cancer cells. Clin Cancer Res 10:1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Tam WL, Weinberg RA (2013) The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med 19:1438–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taniguchi T, Karnan S, Fukui T et al (2007) Genomic profiling of malignant pleural mesothelioma with array-based comparative genomic hybridization shows frequent non-random chromosomal alteration regions including JUN amplification on 1p32. Cancer Sci 98:438–446

    Article  CAS  PubMed  Google Scholar 

  • Testa JR, Cheung M, Pei J et al (2011) Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet 43:1022–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toyooka S, Pass HI, Shivapurkar N et al (2001) Aberrant methylation and simian virus 40 tag sequences in malignant mesothelioma. Cancer Res 61:5727–5730

    CAS  PubMed  Google Scholar 

  • Tsou JA, Shen LY, Siegmund KD et al (2005) Distinct DNA methylation profiles in malignant mesothelioma, lung adenocarcinoma, and non-tumor lung. Lung Cancer 47:193–204

    Article  PubMed  Google Scholar 

  • Tsou JA, Galler JS, Wali A et al (2007) DNA methylation profile of 28 potential marker loci in malignant mesothelioma. Lung Cancer 58:220–230

    Article  PubMed  PubMed Central  Google Scholar 

  • Vandermeers F, Neelature Sriramareddy S, Costa C et al (2013) The role of epigenetics in malignant pleural mesothelioma. Lung Cancer 81:311–318

    Article  PubMed  Google Scholar 

  • Varesano S, Salvi S, Boccardo S et al (2016) MET gene status in malignant mesothelioma using fluorescent in situ hybridization. J Thorac Oncol 11:e28–e30

    Article  PubMed  Google Scholar 

  • Vento-Tormo R, Alvarez-Errico D, Garcia-Gomez A et al (2017) DNA demethylation of inflammasome-associated genes is enhanced in patients with cryopyrin-associated periodic syndromes. J Allergy Clin Immunol 139(1):202–211.e6

    Article  CAS  PubMed  Google Scholar 

  • Vrba L, Jensen TJ, Garbe JC et al (2010) Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PLoS One 5:e8697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang H, Gillis A, Zhao C et al (2011) Crocidolite asbestos-induced signal pathway dysregulation in mesothelial cells. Mutat Res 723:171–176

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Liu W, Black S et al (2016) Kaiso, a transcriptional repressor, promotes cell migration and invasion of prostate cancer cells through regulation of miR-31 expression. Oncotarget 7:5677–5689

    PubMed  Google Scholar 

  • West AC, Johnstone RW (2014) New and emerging HDAC inhibitors for cancer treatment. J Clin Invest 124:30–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams GM (1979) Review of in vitro test systems using DNA damage and repair for screening of chemical carcinogens. J Assoc Off Anal Chem 62:857–863

    CAS  PubMed  Google Scholar 

  • Wilson SM, Barbone D, Yang TM et al (2008) mTOR mediates survival signals in malignant mesothelioma grown as tumor fragment spheroids. Am J Respir Cell Mol Biol 39:576–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Antony S, Meitzler JL et al (2014) Molecular mechanisms underlying chronic inflammation-associated cancers. Cancer Lett 345:164–173

    Article  CAS  PubMed  Google Scholar 

  • Xiao GH, Gallagher R, Shetler J et al (2005) The NF2 tumor suppressor gene product, merlin, inhibits cell proliferation and cell cycle progression by repressing cyclin D1 expression. Mol Cell Biol 25:2384–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye Y, Xiao Y, Wang W et al (2010) ERalpha signaling through slug regulates E-cadherin and EMT. Oncogene 29:1451–1462

    Article  CAS  PubMed  Google Scholar 

  • Yegles M, Saint-Etienne L, Renier A et al (1993) Induction of metaphase and anaphase/telophase abnormalities by asbestos fibers in rat pleural mesothelial cells in vitro. Am J Respir Cell Mol Biol 9:186–191

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Simons DL, Segall I et al (2012) PRC2/EED-EZH2 complex is up-regulated in breast cancer lymph node metastasis compared to primary tumor and correlates with tumor proliferation in situ. PLoS One 7:e51239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Z, Taatjes DJ, Mossman BT et al (2004) The duration of nuclear extracellular signal-regulated kinase 1 and 2 signaling during cell cycle reentry distinguishes proliferation from apoptosis in response to asbestos. Cancer Res 64:6530–6536

    Article  CAS  PubMed  Google Scholar 

  • Zanella CL, Posada J, Tritton TR et al (1996) Asbestos causes stimulation of the extracellular signal-regulated kinase 1 mitogen-activated protein kinase cascade after phosphorylation of the epidermal growth factor receptor. Cancer Res 56:5334–5338

    CAS  PubMed  Google Scholar 

  • Zhang W, Dahlberg JE, Tam W (2007) MicroRNAs in tumorigenesis: a primer. Am J Pathol 171:728–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Tang N, Rishi AK et al (2015) Methylation profile landscape in mesothelioma: possible implications in early detection, disease progression, and therapeutic options. Methods Mol Biol 1238:235–247

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Research on cell signaling in the Mossman laboratory has been supported by grants from NHLBI (P01 HL67004), NCI (P01 CA11407, M. Carbone, PI), and NIEHS (T32 ES00712). Jennifer Díaz (UVM) provided secretarial support for this chapter, and Maximilian MacPherson (UVM) assisted with figure preparation.

Dedication

This chapter is dedicated to all patients with malignant mesotheliomas with the hope that new information here will be translated to the design of novel treatments.

Declaration of Interests

The author has consulted with both plaintiff and defense lawyers and has been an expert witness in cosmetic talc litigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brooke T. Mossman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mossman, B.T. (2017). Cell Signaling and Epigenetic Mechanisms in Mesothelioma. In: Testa, J. (eds) Asbestos and Mesothelioma. Current Cancer Research. Springer, Cham. https://doi.org/10.1007/978-3-319-53560-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53560-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53558-6

  • Online ISBN: 978-3-319-53560-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics