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Abstract 

Networks describe a range of social, biological and technical phenomena. An important 

property of a network is its degree correlation or assortativity, describing how nodes in the 

network associate based on their number of connections. Social networks are typically 

thought to be distinct from other networks in being assortative (possessing positive degree 

correlations); well-connected individuals associate with other well-connected individuals, and 

poorly-connected individuals associate with each other. We review the evidence for this in 

the literature and find that, while social networks are more assortative than non-social 

networks, only when they are built using group-based methods do they tend to be positively 

assortative. Non-social networks tend to be disassortative. We go on to show that connecting 

individuals due to shared membership of a group, a commonly used method, biases towards 

assortativity unless a large enough number of censuses of the network are taken. We present a 

number of solutions to overcoming this bias by drawing on advances in sociological and 

biological fields.  Adoption of these methods across all fields can greatly enhance our 

understanding of social networks and networks in general. 
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Introduction 

Network theory is a useful tool that can help us explain a range of social, biological and 

technical phenomena (Pastor-Satorras et al 2001; Girvan and Newman 2002; Krause et al 

2007). For instance, network approaches have been used to investigate diverse topics such as 

the global political and social system (Snyder and Kick 1979; Nemeth and Smith 2010) to the 

formation of coalitions among-individuals (Kapferer 1969; Zachary 1977; Thurman 1979; 

Voelkl and Kasper 2009). Networks can be described using a number of local (related to the 

individual) and global (related to the whole network) measures. One important global 

measure is degree correlation or assortativity (we use the latter term for brevity), which was 

formally defined by Newman (2002), although Pastor-Satorras et al. (2001) had calculated an 

analogous measure previously. The assortativity of a network measures how the probability 

of a connection between two nodes (individuals) in a network depends on the degrees of 

those two nodes (the degree being the number of connections each node possesses). The 

measure quantifies whether those with many connections associate with others with many 

connections (assortative networks or networks with assortativity), or if “hubs” form where 

well connected individuals are connected to many individuals with few other connections 

(disassortative networks or networks with dissassortativity). If the tendency for nodes to be 

connected is independent of each other’s degrees a network has neutral assortativity. 

Assortativity is calculated as the Pearson’s correlation coefficient between the degrees of all 

pairs of connected nodes, and ranges from -1 to 1 (Newman 2002). The Pastor-Satorras 

method involves plotting the degree of each node against the mean degree of its neighbours, 

and judging the network assortatative if the slope is positive and disassortatative if the slope 



is negative (Pastor-Satorras et al 2001). In this article we will focus on the Newman measure, 

as it has been more commonly used by the scientific community, gives a coefficient bounded 

between -1 and 1 rather than a slope, and typically is supported by a statistical test, something 

general absent from the reporting of the Pastor-Satorras method.  

Assortativity is a key property to consider when understanding how networks 

function, especially when considering social networks. A network’s robustness to attacks is 

increased if it is assortative (Jing et al 2007; Hasegawa et al 2012). However, the speed of 

information transfer and ability to act in synchrony is increased in disassortative networks (Di 

Bernado et al 2007; Gallos et al 2008). Thus the assortativity of a social network in which an 

individual is embedded can have a substantial impact on that individual. 

Networks are typically found to be neutrally or negatively assortative (Newman 2002; 

Newman and Park 2003; Whitney and Alderson 2008). When considering all networks 

comprised of eight nodes, Estrada (2011)  observed that only 8% of over 11,000 possible 

networks were assortative. Despite this general trend, social networks are often said to differ 

from other networks by being assortative (Newman 2003; Newman and Park 2003). This has 

led to those finding disassortativity in networks of online interactions (Holme et al 2004), 

mythical stories (Mac Carron and Kenna 2012) or networks of dolphin interactions (Lusseau 

and Newman 2004) to suggest they are different to typical human social networks. While the 

generality of assortativities in social networks has been questioned (Whitney and Alderson 

2008; Hu and Wang 2009), a wide variety of recent research still states that this is a property 

typical of social networks (e.g. (Estrada 2011; Palathingal and Chirayath 2012; Mac Carron 

and Kenna 2013; Litvak and van der Hofstad 2013; Thedchanamoorthy et al 2014; Araújo et 

al 2014; Furtenbacher et al 2014)). With assortativity being a key network property, and 

subject of interest in a range of fields, this topic requires clarification.  



In this paper we review assortativity in the networks literature, with emphasis on 

social networks. We assess the generality of the hypothesis that social networks tend to be 

distinct from other kinds of networks in their assortativities and explore whether the precise 

method of social network construction influences this metric. We go on to show how 

particular methodologies of social network construction could result in falsely assortative 

networks, and present a number of solutions to this by drawing on advances in sociological 

and biological fields.  

 

1. Assortativity in social and other networks 
 

Random networks should be neutrally assortative (Newman 2002). However, simulations by 

Franks et al. (2009) showed that random social networks constructed using group-based 

methods are assortative unless extensive sampling is carried out. Group-based methods are 

where links are formed between individuals not when they directly interact, but when they 

both are found in the same group, or contribute to a joint piece of work e.g. co-author a paper 

or appear in a band together. We hypothesised that the suggestion that social networks 

possess assortativity was due to a preponderance of social networks constructed using group-

based methods in the early literature. We thus conducted a literature search, recording the 

(dis)assortativity of networks, network types (social or non-social) and for the social 

networks, method of construction (direct interactions of group-based). We expect that social 

networks built using group-based methods would be more assortative than the other two 

classes of network, which would be similarly assortative. 

 

1.1 Literature search - Method 

Assortativity has been calculated for a wide range of networks in the last decade. We 

compiled a list of the assortativity of published networks based on the table in Whitney & 



Alderson (Whitney and Alderson 2008), literature searches with the terms “degree 

correlation” and “assortativity”, and examining the articles citing Newman (2002). If it could 

not be determined how the network was constructed, or how large it was, the network was 

excluded. We did not include the average assortativity when reported from a range of similar 

networks when the individual scores were not reported. We also did not include 

assortativities of networks from studies re-analysing existing datasets, to avoid pseudo-

replication. Only undirected networks were considered; see Piraveenan et al. (2012) for a 

review of assortativities in directed networks. We then classified these networks as non-social 

networks, social networks constructed using direct interactions, or social networks 

constructed using group-based methods. We then compared assortativity across network 

classes using a Kruskal-Wallis test as assortativity scores were not normally distributed. If 

this revealed significant differences among network classes, we then compared network 

classes to each other using Wilcoxon rank sum tests and to the a neutral assortativity of zero 

with Wilcoxon signed rank tests. 

 

1.2 Literature search - Results 

In published papers we found assortativities for 88 networks that met our criteria for 

inclusion, see Table 1. 52 of these were social networks, of which 25 were constructed using 

group-based methods. The assortativities for the network classes are shown as boxplots in 

Fig. 1. The Kruskal-Wallis tests indicated that there were differences among groups (Kruskal-

Wallis χ2 = 26.8, d.f. = 2, p < 0.001). All networks types were different from each other, with 

the group-based social networks being more assortative than both other classes of network, 

and the direct social networks being more assortative than the non-social networks (all 

Wilcoxon rank sum tests, group based social networks vs. direct social networks, W = 214, 

n(direct) = 27, n(group-based) = 25, p = 0.024; group based social networks vs. non-social 

networks, W = 783, n(group-based social networks) = 25, n(non-social network) = 36, p < 



0.001; direct social networks vs. non-social network, W = 716, n(direct social networks = 

27), n(non-social network) = 36, p = 0.001). The direct social networks possessed neutral 

assortativities (mean = 0.054, Wilcoxon signed rank test, V = 213, n = 27, p =0.572), while 

the group-based social networks were assortative (mean = 0.157, Wilcoxon signed rank test, 

V = 288, n = 25, p < 0.001) and the non-social networks were disassortative (mean = -0.117, 

Wilcoxon signed rank test, V = 94.5, n = 36, p < 0.001). 

 

Table 1 88 networks of various types and methods of construction. Type indicates the nature 

of the links between nodes, social are networks based on social interactions, technical are 

networks of interacting technology systems, biological are networks of some kind of 

biological process, transport networks are networks of a mode of transport in a particular 

area, mechanical networks are based on connections between parts in a defined object and 

links in commercial networks are formed when an employee moved from one company to 

another. Method of construction for social networks can be either “direct” where one to one 

interactions are used to build the network, or “group” where interactions are inferred based 

on shared use of physical space or contribution to a piece of work. All quoted degree 

correlations are from the Newman (2002) method of calculating assortativity. 

 

Network Size Type Assortativit

y 

Method of 

construction 

Source 

Beowulf (myth) 74 social -0.1 direct (Mac Carron and 

Kenna 2012) 

Cyworld (online) 12048186 social -0.13 direct (Hu and Wang 2009) 

Email address books 16881 social 0.092 direct (Newman 2003) 

Epinions neg (online) 131828 social -0.022 direct (Ciotti et al 2015) 

Epinions pos (online) 131828 social 0.217 direct (Ciotti et al 2015) 



Facebook (online) 721000000 social 0.226 direct (Ugander et al 2011) 

Flickr (online) 1846198 social 0.202 direct (Hu and Wang 2009) 

Gnutella P2P (online) 191679 social -0.109 direct (Hu and Wang 2009) 

Ground squirrels 65 social 0.82 direct (Manno 2008) 

Iliad (myth) 716 social -0.08 direct (Mac Carron and 

Kenna 2012) 

LiveJournal (online) 5284457 social 0.179 direct (Hu and Wang 2009) 

Mixi (online) 360802 social 0.122 direct (Hu and Wang 2009) 

MySpace (online) 100000 social 0.02 direct (Hu and Wang 2009) 

Nioki (online) 20259 social -0.13 direct (Holme et al 2004) 

Orkut (online) 100000 social 0.31 direct (Hu and Wang 2009) 

Pussokram (online) 29341 social -0.048 direct (Holme et al 2004) 

Slashdot neg (online) 82144 social -0.114 direct (Ciotti et al 2015) 

Slashdot pos (online) 82144 social 0.162 direct (Ciotti et al 2015) 

Student relationships 573 social -0.029 direct   (Newman 2003) 

Táin (myth) 404 social -0.33 direct (Mac Carron and 

Kenna 2012) 

Twitter (online) 4317000 social -0.025 direct (Wang et al 2014) 

Whisper (online) 690000 social -0.011 direct (Wang et al 2014) 

Xiaonei (online) 396836 social -0.0036 direct (Hu and Wang 2009) 

YouTube (online) 1157827 social -0.033 direct (Hu and Wang 2009) 

Chinese science 

citations 

81 social -0.036 direct (Shan et al 2014) 

Barbary macaque 

(grooming) 

141 social 0.351 Direct (Sosa 2014) 

GitHub (online) 671751 social -0.0386 direct (Lima et al 2014) 

Australian dolphins 117 social 0.003 group (Wiszniewski et al 

2010) 

Biology co-authors 1520251 social 0.13 group (Newman 2002) 

Birds (mixed species) 93 social 0.29 group (Farine et al 2015) 

Company directors 7673 social 0.28 group (Newman 2002) 



Condensed matter co-

authors 

36458 social 0.18 group (Illenberger and 

Flötteröd 2012) 

Condensed matter co-

authors 1995-9 

16729 social 0.18 group (Kossinets 2006) 

Film actors 449913 social 0.21 group (Newman 2003) 

Killer whales 7 social -0.48 group (Whitehead 2008) 

New Zealand 

dolphins 

64 social -0.044 group (Lusseau and Newman 

2004) 

Maths co-authors 253339 social 0.12 group (Newman 2002) 

Physics co-authors 52909 social 0.36 group (Newman 2002) 

Physics co-author2 16264 social 0.18 group (Newman 2002) 

Scottish dolphins 124 social 0.17 group (Lusseau et al 2006) 

Sticklebacks 94 social 0.66 group (Croft et al 2006) 

TV series actor 

collaboration 

79663 social 0.53 group (Hu and Wang 2009) 

Grant proposals 

(accepted) 

24181 social -0.1018 group (Tsouchnika and 

Argyrakis 2014) 

Grant proposals 

(rejected) 

46567 social -0.1145 group (Tsouchnika and 

Argyrakis 2014) 

Brazilian co-

authorship 

(Humanities) 

74490 social 0.3737 group (Mena-Chalco et al 

2014) 

Brazilian co-

authorship 

(Linguistics, letters & 

arts) 

15375 social 0.3761 group (Mena-Chalco et al 

2014) 

Brazilian co-

authorship 

(Engineering) 

15375 social 0.0273 group (Mena-Chalco et al 

2014) 

Brazilian co-

authorship 

(Agricultural science) 

55695 social 0.0769 group (Mena-Chalco et al 

2014) 

Brazilian co-

authorship 

(Biological science) 

75304 social 0.1404 group (Mena-Chalco et al 

2014) 



Brazilian co-

authorship (Exact and 

earth sciences) 

65221 social 0.1173 group (Mena-Chalco et al 

2014) 

Brazilian co-

authorship (applied 

social sciences) 

48340 social 0.1373 group (Mena-Chalco et al 

2014) 

Brazilian co-

authorship (health 

sciences) 

114169 social 0.1301 group (Mena-Chalco et al 

2014) 

Airports in Pakistan 35 transport -0.47 NA (Mohman et al 2015) 

Berlin U & S Bahn 75 transport 0.096 NA (Whitney and Alderson 

2008) 

Bike 131 mechanical -0.2 NA (Whitney and Alderson 

2008) 

Brain connections 160 biological 0.058 NA (Im et al 2014) 

Brain connections, 

Polymicrogyria 

160 biological 0.044 NA (Im et al 2014) 

Car door 649 mechanical -0.16 NA (Whitney and Alderson 

2008) 

Domain network 

(online) 

11174 technological -0.17 NA (Lee et al 2015) 

Film references 40008 commercial -0.057 NA (Spitz and Horvát 

2014) 

Fresh water food web 92 biological -0.33 NA (Newman 2003) 

Grand piano action 

key 1 

71 mechanical -0.32 NA (Whitney and Alderson 

2008) 

Internet 10697 technical -0.19 NA (Newman 2003) 

Jet engine 60 mechanical -0.13 NA (Whitney and Alderson 

2008) 

London underground 92 transport 0.01 NA (Whitney and Alderson 

2008) 

Marine food web 134 biological -0.26 NA (Newman 2003) 

Metabolic pathways 765 biological -0.24 NA (Newman 2003) 

Moscow subway 51 transport 0.18 NA (Whitney and Alderson 

2008) 



Moscow subway & 

regional rail 

129 transport 0.26 NA (Whitney and Alderson 

2008) 

Neural pathways 307 biological -0.23 NA (Newman 2003) 

Power grid 4941 technical -0.003 NA (Newman 2003) 

Proteins 2115 biological -0.16 NA (Newman 2003) 

Pseudomonas strains 37 biological -0.553 NA (Aguirre-von-Wobeser 

et al 2014) 

Router network 228298 technological -0.01 NA (Lee et al 2015) 

Six speed 

transmission 

143 mechanical -0.18 NA (Whitney and Alderson 

2008) 

Software 3162 technical -0.016 NA (Newman 2003) 

Tokyo regional rail 147 transport -0.09 NA (Whitney and Alderson 

2008) 

Tokyo regional rail & 

subway 

191 transport 0.043 NA (Whitney and Alderson 

2008) 

V8 engine 243 mechanical -0.27 NA (Whitney and Alderson 

2008) 

World Wide Web 269504 technical -0.067 NA (Newman 2003) 

Yeast genes 333 biological -0.15 NA (Lee et al 2015) 

Yeast proteins 1066 biological -0.12 NA (Lee et al 2015) 

Copenhagen streets 1637 transport -0.07 NA (Jiang et al 2014) 

London streets 3010 transport -0.06 NA (Jiang et al 2014) 

Paris streets 4501 transport -0.06 NA (Jiang et al 2014) 

Manhattan streets 1046 transport -0.26 NA (Jiang et al 2014) 

San Francisco streets 3110 transport -0.01 NA (Jiang et al 2014) 

Toronto streets 2599 transport -0.06 NA (Jiang et al 2014) 

 



 

Figure 1 Boxplots of assortativities in each 

class of network. Differences between all 

classes were statistically significant (all 

Wilcoxon rank sum tests, p < 0.025 in all 

cases). Direct social networks did not possess 

assortativities different from zero (mean = 

0.054, p = 0.572), while the group-based social 

networks were assortative (mean = 0.157, p < 

0.001) and the non-social networks were 

dissortative (mean = -0.117, p < 0.001; all 

Wilcoxon signed-rank tests). 

 

 

 

 

 

 

 

1.3 Literature search - Conclusions 

To confirm our hypothesis, that a preponderance of group-based methods makes it appear as 

if social networks typically possess assortativity, we found that group-based social networks 

were more assortative than direct social networks and non-social networks. However, direct 

social networks were still more assortative than non-social networks, which showed 

disassortativity on average.  This therefore indicates that social networks only tend to be 

assortative if they are constructed with group-based methods, and non-social networks are 

typically disassortative. The processes that create dissortative networks with  is a large and 



active research area (e.g. Yang 2014; Mussmann et al. 2014) and so we will not investigate 

this result further here. We also note that many of the direct social networks in our table were 

based on interactions online. This is perhaps problematic if interactions online are 

fundamentally different to human interactions in the real world. Our choice of networks was 

simply based on what was available. Therefore, to confirm whether the assortativities of 

offline and online human social networks made using the same method (i.e. with direct 

interactions) are different, more offline human networks using direct interactions need to be 

constructed and published. 

The bias towards assortativity when using group-based methods has been used has 

previously been noted (Newman 2003; Croft et al 2008), but this appears to have escaped the 

notice of much of the research community, who continue to state that assortativity is a 

characteristic quality of a social network (e.g. (Estrada 2011; Palathingal and Chirayath 2012; 

Mac Carron and Kenna 2013; Litvak and van der Hofstad 2013; Thedchanamoorthy et al 

2014; Araújo et al 2014; Furtenbacher et al 2014) but see (Whitney and Alderson 2008; Hu 

and Wang 2009)). This may be because no clear rationale for this has been presented, nor 

solutions offered to combat it. We now go on to present why we think this assortativity was 

being discovered with group-based methods, if they are erroneous, and how to avoid 

incorrect estimates of assortativity in the future. 

 

2. Methodological pitfalls and false assortativity 

In this section we will discuss the issues that exist when using assortativity to describe the 

structure of social networks. We explore how methodologies used to sample networks could 

influence their assortativities, and whether changing how assortativity is calculated may also 

be important. Understanding the consequences of the method used to sample networks on 

properties such as assortativity could have important implications for our understanding of 



networks in general, as well as contributing to the further development of relevant analytical 

techniques. 

 

2.1 Group-based networks and assortativity 

In situations where it is not possible or feasible to directly observe social interactions, social 

networks are constructed using group-based methods. This approach has been applied both in 

constructing collaboration networks in humans e.g. jazz musicians, scientific co-authorship 

networks and film actors (Watts and Strogatz 1998; Newman 2001; Gleiser and Danon 2003) 

and also in networks based on co-occurrence in a social group in animals e.g. song birds, 

dolphins and sharks (Lusseau 2003; Mourier et al 2012; Aplin et al 2012). Networks built 

using this method assume that every member of the group is associating with every other 

member of the group at each sampling census. This seems perfectly reasonable, hence this 

method for constructing social networks has been used by many studies (Newman 2004; 

Croft et al 2008). The assumption that meaningful social networks can be constructed based 

on this type of co-occurrence data has been termed “Gambit of the group” in the animal 

behaviour literature (Whitehead and Dufault 1999), which hints at the risk involved. This 

broad usage of group-based methods makes it very important that we fully understand the 

implications of using this method on the network and individual-level metrics calculated. 

One study has previously investigated the influence of variation in sampling effort of 

group-based networks on various network-level metrics, including assortativity (Franks et al 

2009). Franks et al. (2009) investigated the impact of different group-based sampling 

regimes, changing both the total number of censuses (the number of times a population is 

sampled using a group-based approach) and the proportions of individuals sampled at each 

census, in random networks. The assortativity of a random network, which should on average 

be zero (Newman 2002), was always positive if an insufficient number of censuses were 

completed before network construction (Franks et al. 2009; our emphasis). Crucially, any 



network not sampled intensively enough could show assortativity, either due to too few 

censuses or by not sampling enough of the population. Therefore, the use of group-based 

methods can produce a sampling bias, and requires further statistical analysis to determine the 

importance of the results obtained. 

 

2.2 Modelling group-based sampling 

We wanted to extend the findings of Franks et al. (2009) to demonstrate how assortativity 

changes as individuals are recorded in increasing numbers of groups. The aim was to show 

that in a system where freely-moving individuals form social groups randomly (as opposed to 

a system based on random social networks), assortativity would decline as the effect of two 

individuals being seen in the same group diminished. We used a simulation-based approach 

where individuals associated randomly to construct networks using a group-based approach 

in a simple population of 100. Individuals were allocated randomly between 20 possible 

groups during each “census” using a symmetric Dirichlet distribution (with a uniform shape 

parameter) to define the size of each group.  This enabled us to generate variation around a 

fixed expected group size, whilst maintaining a fairly consistent number of groups in each 

census (occasionally the size of a group could be zero). Any remaining individuals were 

allocated to a random group, meaning that all individuals were sampled in each census. 

Association data was collected over 20 censuses, with this process repeated for 10 different 

repeats of the simulation. After each census cumulative association data was recorded and the 

networks were dichotomised to create binary networks. In these networks individuals are 

either connected if they were observed in the same group at least once, or not connected if 

never observed together. This is necessary as assortativity is an unweighted measure i.e. only 

the number of different associations an individual had are counted, not the frequency with 

which it associated with them. We discuss issues related to this method later. We then 



calculated assortativity for each set of cumulative association data. Simulations were carried 

out and degree correlations calculated in R 3.0.1 (http://www.R-project.org).  

We plot the results of these simulations in Fig. 2. From this plot it is clear that 

networks possess assortativity at a low number of censuses, and become gradually more 

neutrally assortative as the number of censuses increases (Fig. 2). This pattern emerges 

because of how group-based approaches are used in network construction. At low numbers of 

censuses, individuals that have been found in the same groups will both be connected and 

have similar degree, thus giving the network assortativity (Newman 2003; Newman and Park 

2003).  As the number of censuses increases however, this connection will gradually break 

down. Therefore, our simple simulation model shows that the assortativity found using 

group-based sampling approaches is highly dependent on the number of censuses completed. 

Indeed a low number of censuses can lead to many network measures being distorted (Franks 

et al 2009; Perreault 2010). This is therefore an important consideration when deciding the 

sampling regimes used when constructing social networks using this method. The 

significance of the assortativity can only be established by comparison to appropriate null 

networks that truly highlight what aspects of the real network are interesting. This is achieved 

by randomly resampling observations using the correct group-size distribution (Bejder et al 

1998), a method that will be outlined in more detail in section 3.2. 



 

Figure 2 The relationship between sampling effort (in terms of number of association events 

observed) and assortativity as a result of random social interactions in a simulated population. 

For each census the black point represents the median value, the dark grey box the 

interquartile range and the light grey box the range from 10 runs of the simulation. 

 

2.2 Filtering networks 

Filtering networks involves taking a weighted (or valued) network, which contains 

information about how strong associations are as well as whether they are present or absent, 

and removing edges below a certain weight i.e. infrequent or unimportant associations. This 

results in a binary network, with only edges above a certain weight present. The effect of 

dichotomizing networks to transform them from weighted to binary has been studied for a 

number of network-level metrics (Franks et al 2009). The effect of this on assortativity is 

striking. While there was a limited effect of filtering at a low threshold (and therefore 



removing few edges), filtering at a high threshold (removing relatively many edges) had a 

considerable impact on the assortativity even when a high number of censuses on the 

simulated networks was completed. While for unfiltered, weighted random networks the 

assortativity reduced to zero as expected when a sufficient number of censuses were 

completed, this was not the case for networks filtered with a high threshold. These networks 

typically remained assortative at all levels of sampling (Fig. 3 of Franks et al. 2009), despite 

being based on networks that were originally random and would be expected to neutrally 

assortative. For example, removing all edges with a weight of less than 0.5 (out of 1) meant 

that the assortativity reached 0.4 after 10 censuses, compared to 0.1 after 10 censuses if the 

threshold weight was set at 0.2. Many studies that have used group-based approaches to 

construct social networks have filtered the social networks produced before analysis (Croft et 

al 2008), and it seems likely that the use of this approach may have played an additional role 

in inflating the degree correlation calculated for social networks.   

 

3. Solutions 

There are a number of solutions available to reduce the occurrence of erroneous assortativity 

that address each of the major issues outlined above. These methods have been developed in 

different parts of the social network literature, and if used collectively can greatly improve 

our understanding of the true variation in assortativity in all kinds of social networks.  

 

3.1 Increased sampling 

 When using group-based approaches, increasing the number of censuses above a threshold 

should produce a more accurate measure of the network’s true assortativity (Franks et al 

2009). Thus a suitable minimum number of censuses completed is required whenever using 

group-based approaches. If 80% of the population of interest can be sampled, then 10 

censuses should be sufficient information on social interactions to accurately calculate 



network metrics. If only 40% of the population can be sampled, then 15-20 censuses may be 

required (Franks et al 2009). Collaboration networks, a key example of social networks that 

possess assortativity, typically do not have sampling periods. Instead all papers published 

over an agreed time period are looked at. To allow better comparison with networks and 

techniques that do have sampling periods, collaborations could be examined over particular, 

regular time periods, then each time period used as an “observation” from which to generate 

associations and so networks.  However, if altering the sampling regime is not feasible, 

ensuring erroneous conclusions are not reached requires more rigorous statistical analysis. 

 

3.2 Use of null models 

Socio-biologists typically use resampling procedures to account for group-based sampling 

(and other, random) effects in their animal social networks (Bejder et al 1998; Whitehead and 

Dufault 1999). Resampling the observations used to construct the observed network using the 

original group-size data, and potentially additional biologically meaningful constraints, 

provides a large number of null networks against which to compare the observed network and 

test relevant hypotheses (Bejder et al 1998). This method has been continually revised to take 

into account the non-independence of group sightings (Sundaresan et al 2009) and the risk of 

producing biased group compositions (Krause et al 2009). This approach has been used in a 

number of studies (e.g. Wey et al. 2013; Aplin et al. 2013) and means that assortativity would 

only be considered interesting if the null model does not also display assortativity. We found 

one example of this approach being used in human social networks, in a study performed on a 

network of a board of directors (Newman and Park 2003). However, no statistical tests were 

used for this comparison, and the method does not seem to have been universally adopted by 

the wider social network community. The importance of adopting this method is further 

highlighted the results of Franks et al. (2009) which show that assortativity can be expected 

in networks where individuals randomly interact.  



Random permutations are used by other network analysis techniques such as 

quadratic assignment procedure (QAP) to overcome problems with structural autocorrelation 

(Krackhardt 1988), but the Bejder et al. (1998) method and extensions go further by 

randomly permuting the raw data, rather than the network matrix, to account for the 

distribution of group sizes and any other biases in sampling. Appropriate null models like 

these are the most effective way to make statistical inferences about networks constructed 

using group-based approaches, where controlling for effects such as group-size is of 

considerable importance. There have been some recent examples of appropriate null models 

being used to test various hypotheses in the wider social networks literature (e.g. (Hanhijarvi 

et al 2009; La Fond and Neville 2010)) and we add to their calls for this to be more widely 

embraced.  

 

3.3 Analysing weighted networks 

Weak interactions are potentially important (e.g. Granovetter 1973; Farine 2014), and 

removing them can further increase error in the degree correlations calculated (Kossinets 

2006; Franks et al 2009). If a population is observed for an extended period of time, and a 

large number of censuses are performed, the probability that two individuals are never 

observed to associate approaches zero. In a binary network, this would result in all 

individuals having the same, maximum, degree (which would be the population size -1), and 

therefore the assortativity would increase before becoming undefined. Therefore, it is 

preferable to use weighted, unfiltered networks. For example, if collaboration networks are 

based on some measure of the information contained in an email (Garton et al 2006), or the 

relative roles of those involved (Rowe et al 2007), you could then produce weighted networks 

that would be more informative to study and be less likely to be falsely assortative. The 

analysis of weighted networks is becoming increasingly manageable (e.g. Opsahl et al 2010), 

reducing the need to filter networks and analyse them as binary data. As such, this approach 



should only be used when absolutely required (Noldus and Van Mieghem 2015), preferably 

with filtering using low thresholds (few edges removed). The filtering of some networks in 

unavoidable, for example in brain imaging data which is likely to be very noisy (Iturria-

Medina et al 2007), but we still recommend the lowest amount of filtering possible while 

accounting for edge uncertainty. Additionally, it would also be highly beneficial to continue 

to develop social network analysis in weighted networks to further reduce the requirement for 

binary network data, for example by continuing the development of exponential random 

graph models that can be used in weighted networks (Krivitsky 2012; Krivitsky 2015).  

 

3.4 Using diadic over group-based approaches 

The use of group-based methods is instrumental in creating some of the problems we suggest 

solutions for in previous subsections. If possible, alternative methods to group-based 

approaches should be used when constructing a network. For example, instead of paper co-

authorship being used to define interactions between scientists, direct, diadic interactions 

based on correspondence such as emails could be used (Garton et al 2006; Rowe et al 2007). 

Human social networks based on communication data such as with mobile phones or online 

are also examples of diadic interactions, and are becoming increasingly common (Garton et al 

2006; Hu and Wang 2009; Choudhury and Mason 2010; Peruani and Tabourier 2011; Expert 

et al 2011). In animal networks, this can be achieved by focussing on observation of suitable 

behavioural interactions (Manno 2008; Wey and Blumstein 2010) or using reality mining 

methodologies (Krause et al 2013), which are more fully outlined in section 3.5. Social 

networks constructed using direct interactions on average possess neutral assortativity (see 

above), indicating they are not prone to the same problems with false assortativities that 

networks built using group-based approaches are. 

 



3.5 Modern technology 

Missing associations, and therefore edges in the network, is a problem largely unique to 

social networks. This can be prevented in human social networks, especially collaboration 

networks, by examining information-rich communications data. Information rich 

interpersonal communications such as texts, tweets and emails can be used to construct 

networks on a very large scale with a high degree of accuracy (Choudhury and Mason 2010). 

In animal social networks a solution is to use reality mining (Krause et al 2013), the concept 

of which has been borrowed from the sociology social network literature (Eagle and Pentland 

2005). In these studies, modern technologies such as GPS trackers or proximity loggers are 

used to track animal movements and monitor interactions or accurately infer associations. For 

example, proximity loggers have been used to automatically record associations based on 

spatial and temporal overlap between individuals in animals such as cows, Tasmanian devils, 

crows and badgers (Böhm et al 2009; Hamede et al 2009; Rutz et al 2012), although see 

(Drewe et al 2012; Boyland et al 2013) for discussion of the potential problems associated 

with using these devices.  

These methods substantially reduce the number of missing edges in the network. 

Additionally, even when they don’t allow us to move towards constructing networks using 

direct interactions, they can make it much more feasible to complete a large number of 

censuses if a group-based approach is still required. Furthermore, with careful thought 

technologies such as these could be used to complement the study of human social networks, 

potentially combined with data gathered using other methods. For instance, in the work place, 

are those an employee physically associates with e.g. at the water cooler or on a cigarette 

break, the same as those they communicate with electronically? What about different types of 

electronic communication, e.g. Facebook messages compared to work emails? Such 

application of modern technologies will only enhance the ability of scientists to measure 

social interactions in a wide range of networks. 



 

3.6 Alternatives to the Newman degree correlation measure 

Recent research has suggested that calculating the correlation coefficient proposed by 

Newman (2002) may not be appropriate for large networks, as it tends to mis-estimate the 

assortativity, especially in disassortative networks (Litvak and van der Hofstad 2013).  Litvak 

and van der Hofstad (2013) suggested that using a method that ranks the degree of nodes, 

rather than using their absolute values (like a Spearman’s rank correlation coefficient), may 

produce more valid results. Using this measure, the assortativity was consistent across a wide 

range of network sizes and typically consistently different from those calculated using 

Newman’s assortativity coefficient (Fig. 1 of Litvak and van der Hofstad 2013). It may be 

that changing the way that assortativity is calculated could reduce the differences between 

group-based networks, other social networks, and different network types. This can be 

combined with the Bejder et al. (1998) method to control for both group size variation and 

biases associated with whole network size.  

 Alternatively, several authors have proposed individual-orientated metrics to quantify 

the tendency for well-connected individuals to connect to other individuals. The “Rich-clubs“ 

of Zhou and Mondragon (Zhou and Mondragón 2004; Colizza et al 2006), and the number of 

“differences” in node degree between neighbours of Thedchanamoorthy et al. (2014) may 

both be robust to these pitfalls. Understanding the consequences of using different statistical 

approaches for calculating degree correlations should be the subject of further modelling 

work, in order to determine whether this can have an important influence to the properties 

with which a network is prescribed.  

 

Conclusions 

Assortativity has often been suggested to be a property of social networks that makes them 

different from non-social networks. We show that it is likely that this phenomenon may be 



driven by the data collection methods, resulting in previous studies overestimating the extent 

to which social networks possess assortativity. With alterations to methods or analyses 

however, this problem with erroneous assortativities being described can be mitigated.  

Through the use of methods initially developed in biology and sociology, we suggest 

that careful application of sampling and statistics can afford us increased confidence that 

finding assortativity in social networks is genuine, and not an artefact of the methodology 

used to construct them. It may well be that social networks are unique amongst types of 

network; there are certainly good reasons why they could have developed to be more 

assortative than non-social networks e.g. increased robustness (Jing et al 2007; Hasegawa et 

al 2012). However, given that information transfer and the ability to act in synchrony are 

greater in networks that show disassortativity (Di Bernado et al 2007; Gallos et al 2008), it 

would perhaps be surprising if this property is as universal as has previously been described 

(Newman 2002; Newman and Park 2003).  

Many of the methods discussed have been developed in one part of the social 

networks literature, and would benefit researchers in other fields greatly. Furthermore, 

following the integration of methods used in these different fields, it is likely that new 

insights will become available and further progress made in our ability to make inferences 

about assortativity in networks more generally. 
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