Skip to main content

Micromechanics of Bone Modeled as a Composite Material

  • Chapter
  • First Online:
Micromechanics and Nanomechanics of Composite Solids

Abstract

In this chapter, we present an overview of modeling of bone as a composite material. First, we describe bone’s complex hierarchical structure spanning from the nanoscale to macroscale and summarize bone’s mechanical properties and biological characteristics which include self-healing, adaptation, and regeneration. Then, we summarize nanomechanics and micromechanics modeling of bone. Effective medium theories such as Mori–Tanaka, self-consistent, and generalized self-consistent methods are used to model the elastic response of bone, while a finite element method is used to more precisely account for bone architecture and to simulate inelastic effects. Challenges in bone modeling include bone’s composite and hierarchical structure, lack of scale separations, scale and size effects, interfaces, porosity spanning across structural scales, and complex constitutive laws (anisotropic, nonlinear, Cosserat, time dependent, piezoelectric, poroelastic). Variability in bone properties due to the anatomic location, species, age, gender, and method of storage makes validation of theoretical models challenging. Finally, lessons learned from nature on bone structure–property relations can be applied to design stiff, strong, tough, and lightweight bioinspired materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bar-On, B., Wagner, H.D.: Structural motifs and elastic properties of hierarchical biological tissues–a review. J. Struct. Biol. 183(2), 149–164 (2013)

    Article  Google Scholar 

  • Baumann, A.P., Shi, X., Roeder, R.K., Niebur, G.L.: The sensitivity of nonlinear computational models of trabecular bone to tissue level constitutive model. Comput. Methods Biomech. Biomed. Engin. 19(5), 465–473 (2016)

    Article  Google Scholar 

  • Benezra Rosen, V., Hobbs, L.W., Spector, M.: The ultrastructure of anorganic bovine bone and selected synthetic hydroxyapatites used as bone graft substitute materials. Biomaterials. 23(3), 921–928 (2002)

    Article  Google Scholar 

  • Benveniste, Y.: A new approach to the application of Mori-Tanaka theory in composite materials. Mech. Mater. 6(2), 147–157 (1987)

    Article  MathSciNet  Google Scholar 

  • BeVill, G., Easley, S.K., Keaveny, T.M.: Side-artifact errors in yield strength and elastic modulus for human trabecular bone and their dependence on bone volume fraction and anatomic site. J. Biomech. 40(15), 3381–3388 (2007)

    Article  Google Scholar 

  • Budiansky, B.: On elastic moduli of some heterogeneous materials. J. Mech. Phys. Solids. 13(4), 223–227 (1965)

    Article  Google Scholar 

  • Buechner, P.M., Lakes, R.S.: Size effects in the elasticity and viscoelasticity of bone. Biomech. Model. Mechanobiol. 1(4), 295–301 (2003)

    Article  Google Scholar 

  • Burr, D.B., Schaffler, M.B., Frederickson, R.G.: Composition of the cement line and its possible mechanical role as a local interface in human compact bone. J. Biomech. 21, 939–945 (1988)

    Article  Google Scholar 

  • Charlebois, M., Pretterklieber, M., Zysset, P.K.: The role of fabric in the large strain compressive behavior of human trabecular bone. J. Biomech. Eng.: Trans. ASME. 132(12), 121006 (2010)

    Article  Google Scholar 

  • Chen, P.Y., Lin, A.Y.M., Lin, Y.S., Seki, Y., Stokes, A.G., Peyras, J., Olevsky, E.A., Meyers, M.A., McKittrick, J.: Structure and mechanical properties of selected biological materials. J. Mech. Behav. Biomed. Mater. 1(3), 208–226 (2008)

    Article  Google Scholar 

  • Chen, P.-Y., Toroian, D., Price, P.A., McKittrick, J.: Minerals form a continuum phase in mature cancellous bone. Calcif. Tissue Int. 88(5), 351–361 (2011)

    Article  Google Scholar 

  • Cheng, L., Wang, L., Karlsson, A.M.: Image analyses of two crustacean exoskeletons and implications of the exoskeletal microstructure on the mechanical behavior. J. Mater. Res. 23, 2854–2872 (2008)

    Article  Google Scholar 

  • Chevalier, Y., Pahr, D., Allmer, H., Charlebois, M., Zysset, P.: Validation of a voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation. J. Biomech. 40(15), 3333–3340 (2007)

    Article  Google Scholar 

  • Christensen, R.M., Lo, K.H.: Solutions for effective shear properties in three phases sphere and cylinder models. J. Mech. Phys. Solids. 27, 315–330 (1979)

    Article  MATH  Google Scholar 

  • Cowin, S.C.: The relationship between the elasticity tensor and the fabric tensor. Mech. Mater. 4(2), 137–147 (1985)

    Article  Google Scholar 

  • Cowin, S.C.: Bone Mechanics Handbook. CRC Press, Boca Raton (2001)

    Google Scholar 

  • Cui, F.-Z., Li, Y., Ge, J.: Self-assembly of mineralized collagen composites. Mater. Sci. Eng. R. 57(1-6), 1–27 (2007)

    Article  Google Scholar 

  • Currey, J.D.: Relationship between stiffness and mineral content of bone. J. Biomech. 2(4), 477–480 (1969)

    Article  Google Scholar 

  • Doblare, M., Garcia, J.M., Gracia, L.: An anisotropic bone remodelling model based on continuum damage mechanics (2001)

    Google Scholar 

  • Dong, X.N., Guo, X.E.: Prediction of cortical bone elastic constants by a two-level micromechanical model using a generalized self-consistent method. J. Biomech. Eng. 128, 309–316 (2006)

    Article  Google Scholar 

  • Eberhardsteiner, L., Hellmich, C., Scheiner, S.: Layered water in crystal interfaces as source for bone viscoelasticity: arguments from a multiscale approach. Comput. Methods Biomech. Biomed. Engin. 17(1), 48–63 (2014)

    Article  Google Scholar 

  • Eshelby, J.D.: The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. London A. 252, 561–569 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  • Fatemi, J., Van Keulen, F., Onck, P.R.: Generalized continuum theories: application to stress analysis in bone. Meccanica. 37(4–5), 385–396 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Fatemi, J., Onck, P.R., Poort, G., Van Keulen, F.: Cosserat moduli of anisotropic cancellous bone: a micromechanical analysis. J. Phys. IV. 105, 273–280 (2003)

    Google Scholar 

  • Fratzl, P., Weinkamer, R.: Nature’s hierarchical materials. Prog. Mater. Sci. 52(8), 1263–1334 (2007)

    Article  Google Scholar 

  • Fratzl, P., Schreiber, S., Boyde, A.: Characterization of bone mineral crystals in horse radius by small-angle X-ray scattering. Calcif. Tissue Int. 58(5), 341–346 (1996)

    Article  Google Scholar 

  • Fratzl, P., Gupta, H.S., Paschalis, E.P., Roschger, P.: Structure and mechanical quality of the collagen-mineral nano-composite in bone. J. Mater. Chem. 14(14), 2115–2123 (2004)

    Article  Google Scholar 

  • Fritsch, A., Hellmich, C.: ‘Universal’ microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity. J. Theor. Biol. 244(4), 597–620 (2007)

    Article  Google Scholar 

  • Fritsch, A., Dormieux, L., Hellmich, C.: Porous polycrystals built up by uniformly and axisymmetrically oriented needles: homogenization of elastic properties. C R Mec. 334, 151–157 (2006)

    Article  MATH  Google Scholar 

  • Fritsch, A., Hellmich, C., Dormieux, L.: Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: experimentally supported micromechanical explanation of bone strength. J. Theor. Biol. 260, 230–252 (2009)

    Article  Google Scholar 

  • Gao, H.: Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials. Int. J. Fract. 138(1–4), 101–137 (2006)

    Article  MATH  Google Scholar 

  • Garcia, D., Zysset, P.K., Charlebois, M., Curnier, A.: A three-dimensional elastic plastic damage constitutive law for bone tissue. Biomech. Model. Mechanobiol. 8(2), 149–165 (2009)

    Article  MATH  Google Scholar 

  • Garner, E., Lakes, R., Lee, T., Swan, C., Brand, R.: Viscoelastic dissipation in compact bone: implications for stress-induced fluid flow in bone. J. Biomech. Eng.: Trans. ASME. 122(2), 166–172 (2000)

    Article  Google Scholar 

  • Gavazzi, A.C., Lagoudas, D.C.: On the numerical evaluation of Eshelby's tensor and its application to elastoplastic fibrous composites. Comput. Mech. 7(1), 13–19 (1990)

    Article  Google Scholar 

  • Giambini, H., Qin, X., Dragomir-Daescu, D., An, K.-N., Nassr, A.: Specimen-specific vertebral fracture modeling: a feasibility study using the extended finite element method. Med. Biol. Eng. Comput. 54(4), 583–593 (2016)

    Article  Google Scholar 

  • Gibson, L.J.: The mechanical behavior of cancellous bone. J. Biomech. 18(5), 317–328 (1985)

    Article  Google Scholar 

  • Gilmore, R.S., Katz, J.L.: Elastic properties of apatites. J. Mater. Sci. 17(4), 1131–1141 (1982)

    Article  Google Scholar 

  • Gong, H., Wang, L., Fan, Y., Zhang, M., Qin, L.: Apparent- and tissue-level yield behaviors of L4 vertebral trabecular bone and their associations with microarchitectures. Ann. Biomed. Eng. 44(4), 1204–1223 (2016)

    Article  Google Scholar 

  • Gross, T., Pahr, D.H., Peyrin, F., Zysset, P.K.: Mineral heterogeneity has a minor influence on the apparent elastic properties of human cancellous bone: a SR mu CT-based finite element study. Comput. Methods Biomech. Biomed. Engin. 15(11), 1137–1144 (2012)

    Article  Google Scholar 

  • Guo, X.E., Liang, L.C., Goldstein, S.A.: Micromechanics of osteonal cortical bone fracture. J. Biomech. Eng. 120, 112–117 (1998)

    Article  Google Scholar 

  • Gupta, H.S., Zioupos, P.: Fracture of bone tissue: the ‘hows’ and the ‘whys’. Med. Eng. Phys. 30(10), 1209–1226 (2008)

    Article  Google Scholar 

  • Hall, R.H.: Variations with pH of the tensile properties of collagen fibres. J. Soc. Leather Trades Chem. 35, 195–210 (1951)

    Google Scholar 

  • Hambli, R.: Micro-CT finite element model and experimental validation of trabecular bone damage and fracture. Bone. 56(2), 363–374 (2013)

    Article  Google Scholar 

  • Hamed, E., Jasiuk, I.: Elastic modeling of bone at nanostructural level. Mater. Sci. Eng. R. 73(3–4), 27–49 (2012)

    Article  Google Scholar 

  • Hamed, E., Jasiuk, I.: Multiscale damage and strength of lamellar bone modeled by cohesive finite elements. J. Mech. Behav. Biomed. Mater. 28, 94–110 (2013)

    Article  Google Scholar 

  • Hamed, E., Lee, Y., Jasiuk, I.: Multiscale modeling of elastic properties of cortical bone. Acta Mech. 213(1–2), 131–154 (2010)

    Article  MATH  Google Scholar 

  • Hamed, E., Jasiuk, I., Yoo, A., Lee, Y., Liszka, T.: Multi-scale modelling of elastic moduli of trabecular bone. J. R. Soc. Interface. 9(72), 1654–1673 (2012a)

    Article  Google Scholar 

  • Hamed, E., Novitskaya, E., Li, J., Chen, P.Y., Jasiuk, I., McKittrick, J.: Elastic moduli of untreated, demineralized and deproteinized cortical bone: validation of a theoretical model of bone as an interpenetrating composite material. Acta Biomater. 8(3), 1080–1092 (2012b)

    Article  Google Scholar 

  • Hamed, E., Novitskaya, E., Li, J., Jasiuk, I., McKittrick, J.: Experimentally-based multiscale model of the elastic moduli of bovine trabecular bone and its constituents. Mater. Sci. Eng. C. 54, 207–216 (2015)

    Article  Google Scholar 

  • Hang, F., Barber, A.H.: Nano-mechanical properties of individual mineralized collagen fibrils from bone tissue. J. R. Soc. Interface. 8, 500–505 (2011)

    Article  Google Scholar 

  • Hellmich, C., Ulm, F.J.: Micromechanical model for ultrastructural stiffness of mineralized tissues. J. Eng. Mech. 128, 898–908 (2002)

    Article  Google Scholar 

  • Hellmich, C., Barthelemy, J.F., Dormieux, L.: Mineral-collagen interactions in elasticity of bone ultrastructure—a continuum micromechanics approach. Eur. J. Mech. A. 23(5), 783–810 (2004)

    Article  MATH  Google Scholar 

  • Hill, R.: Elastic properties of reinforced solids- Some theoretical principles. J. Mech. Phys. Solids. 11(5), 357–372 (1963)

    Article  MATH  Google Scholar 

  • Homminga, J., McCreadie, B.R., Weinans, H., Huiskes, R.: The dependence of the elastic properties of osteoporotic cancellous bone on volume fraction and fabric. J. Biomech. 36(10), 1461–1467 (2003)

    Article  Google Scholar 

  • Huber, A.T., Gibson, L.J.: Anisotropy of foams. J. Mater. Sci. 23, 3031–3040 (1988)

    Article  Google Scholar 

  • Huet, C.: Application of variational concepts to size effects in elastic heterogeneous bodies. J. Mech. Phys. Solids. 38, 813–841 (1990)

    Article  MathSciNet  Google Scholar 

  • Jasiuk, I., Ostoja-Starzewski, M.: Modeling of bone at a single lamella level. Biomech. Model. Mechanobiol. 3(2), 67–74 (2004)

    Article  Google Scholar 

  • Kabel, J., van Rietbergen, B., Odgaard, A., Huiskes, R.: Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture. Bone. 25(4), 481–486 (1999)

    Article  Google Scholar 

  • Katz, E.P., Li, S.: Structure and function of bone collagen fibrils. J. Mol. Biol. 80(1), 1–15 (1973)

    Article  Google Scholar 

  • Katz, J.L., Ukraincik, K.: On the anisotropic elastic properties of hydroxyapatite. J. Biomech. 4(3), 221–227 (1971)

    Article  Google Scholar 

  • Katz, J.L., Misra, A., Spencer, P., Wang, Y., Bumrerraj, S., Nomura, T., Eppell, S.J., Tabib-Azar, M.: Multiscale mechanics of hierarchical structure/property relationships in calcified tissues and tissue/material interfaces. Mater. Sci. Eng. C. 27(3), 450–468 (2007)

    Article  Google Scholar 

  • Lakes, R.S.: Dynamical study of couple stress effects in human compact bone. J. Biomech. Eng.: Trans. ASME. 104(1), 6–11 (1982)

    Article  Google Scholar 

  • Lakes, R.: Materials with structural hierarchy. Nature. 361(6412), 511–515 (1993)

    Article  Google Scholar 

  • Lakes, R.S., Katz, J.L.: Interrelationship among viscoelastic functions for anisotropic solids–applications to calcified tissues and related systems. J. Biomech. 7(3), 259–270 (1974a)

    Article  Google Scholar 

  • Lakes, R.S., Katz, J.L.: Transformation of the viscoelastic functions of calcified tissues and interfacial bio materials into a common representation. J. Biol. Phys. 2(4), 193–204 (1974b)

    Article  Google Scholar 

  • Lakes, R.S., Katz, J.L., Sternstein, S.S.: Viscoelastic properties of wet cortical bone: 1. Torsional and biaxial studies. J. Biomech. 12(9), 657 (1979)

    Article  Google Scholar 

  • Lakes, R.S., Nakamura, S., Behiri, J.C., Bonfield, W.: Fracture mechanics of bone with short cracks. J. Biomech. 23(10), 967–975 (1990)

    Article  Google Scholar 

  • Launey, M.E., Buehler, M.J., Ritchie, R.O.: On the mechanistic origins of toughness in bone. Annu. Rev. Mater. Res. 40, 25–53 (2010)

    Article  Google Scholar 

  • Lees, S., Prostak, K.S., Ingle, V.K., Kjoller, K.: The loci of mineral in turkey leg tendon as seen by atomic-force microscope and electron microscopy. Calcif. Tissue Int. 55(3), 180–189 (1994)

    Article  Google Scholar 

  • Libonati, F., Colombo, C., Vergani, L.: Design and characterization of a biomimetic composite inspired to human bone. Fatigue Fract. Eng. Mater. Struct. 37(7), 772–781 (2014)

    Article  Google Scholar 

  • Maquer, G., Musy, S.N., Wandel, J., Gross, T., Zysset, P.K.: Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables. J. Bone Miner. Res. 30(6), 1000–1008 (2015)

    Article  Google Scholar 

  • Meyers, M.A., Chen, P.-Y., Lin, A.Y.-M., Seki, Y.: Biological materials: structure and mechanical properties. Prog. Mater. Sci. 53(1), 1–206 (2008)

    Article  Google Scholar 

  • Meyers, M.A., Chen, P.-Y., Lopez, M.I., Seki, Y., Lin, A.Y.M.: Biological materials: a materials science approach. J. Mech. Behav. Biomed. Mater. 4(5), 626–657 (2011)

    Article  Google Scholar 

  • Meyers, M.A., McKittrick, J., Chen, P.-Y.: Structural biological materials: critical mechanics-materials connections. Science. 339(6121), 773–779 (2013)

    Article  Google Scholar 

  • Mirkhalaf, M., Zhu, D., Barthelat, F.: Biomimetic hard materials. Engineered Biomimicry, Elsevier, pp. 59–79 (2013)

    Google Scholar 

  • Moreno, R., Smedby, O., Pahr, D.H.: Prediction of apparent trabecular bone stiffness through fourth-order fabric tensors. Biomech. Model. Mechanobiol. 15(4), 831–844 (2016)

    Article  Google Scholar 

  • Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21(5), 571–574 (1973)

    Article  Google Scholar 

  • Munch, E., Launey, M.E., Alsem, D.H., Saiz, E., Tomsia, A.P., Ritchie, R.O.: Tough, bio-inspired hybrid materials. Science. 322(5907), 1516–1520 (2008)

    Article  Google Scholar 

  • Nakamura, S., Lakes, R.S.: Finite element analysis of stress concentration around a blunt crack in a Cosserat elastic solid. Comput. Methods Appl. Mech. Eng. 66(3), 257–266 (1988)

    Article  MATH  Google Scholar 

  • Naleway, S.E., Porter, M.M., McKittrick, J., Meyers, M.A.: Structural design elements in biological materials: application to bioinspiration. Adv. Mater. 27(37), 5455–5476 (2015)

    Article  Google Scholar 

  • Nikolov, S., Raabe, D.: Hierarchical modeling of the elastic properties of bone at submicron scales: the role of extrafibrillar mineralization. Biophys. J. 94(11), 4220–4232 (2008)

    Article  Google Scholar 

  • Novitskaya, E.E., Chen, P.-Y., Hamed, E., Li, J., Lubarda, V., Jasiuk, I., McKittrick, J.: Recent advances on the measurement and calculation of the elastic moduli of cortical and trabecular bone: a review. Theor. Appl. Mech. J. 38(3), 209–303 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Odgaard, A., Kabel, J., vanRietbergen, B., Dalstra, M., Huiskes, R.: Fabric and elastic principal directions of cancellous bone are closely related. J. Biomech. 30(5), 487–495 (1997)

    Article  Google Scholar 

  • Ojanen, X., Isaksson, H., Toyras, J., Turunen, M.J., Malo, M.K.H., Halvari, A., Jurvelin, J.S.: Relationships between tissue composition and viscoelastic properties in human trabecular bone. J. Biomech. 48(2), 269–275 (2015)

    Article  Google Scholar 

  • Olszta, M.J., Cheng, X.G., Jee, S.S., Kumar, R., Kim, Y.Y., Kaufman, M.J., Douglas, E.P., Gower, L.B.: Bone structure and formation: a new perspective. Mater. Sci. Eng. R. 58(3–5), 77–116 (2007)

    Article  Google Scholar 

  • Onck, P.R.: Cosserat modeling of cellular solids. C. R. Mec. 330(11), 717–722 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Panyasantisuk, J., Pahr, D.H., Gross, T., Zysset, P.K.: Comparison of mixed and kinematic uniform boundary conditions in homogenized elasticity of femoral trabecular bone using microfinite element analyses. J. Biomech. Eng. 137(1), 011002 (2015)

    Article  Google Scholar 

  • Park, H.C., Lakes, R.S.: Cosserat micromechanics of human bone–strain redistribution by a hydration sensitive constituent. J. Biomech. 19(5), 385–397 (1986)

    Article  Google Scholar 

  • Park, S., Chae, S.-W., Park, J., Han, S.-H., Hong, J., Kim, Y.E.: Finite element modeling to estimate the apparent material properties of trabecular bone. Int. J. Precis. Eng. Manuf. 14(8), 1479–1485 (2013)

    Article  Google Scholar 

  • Pietruszczak, S., Inglis, D., Pande, G.N.: A fabric-dependent fracture criterion for bone. J. Biomech. 32(10), 1071–1079 (1999)

    Article  Google Scholar 

  • Prostak, K.S., Lees, S.: Visualization of crystal-matrix structure. In situ demineralization of mineralized turkey leg tendon and bone. Calcif. Tissue Int. 59(6), 474–479 (1996)

    Article  Google Scholar 

  • Remaggi, F., Cane, V., Palumbo, C., Ferretti, M.: Histomorphometric study on the osteocyte lacuno-canalicular network in animals of different species. I. Woven-fibered and parallel fibered bones. Ital. J. Anat. Embryol. 103, 145–155 (1998)

    Google Scholar 

  • Rho, J.-Y., Kuhn-Spearing, L., Zioupos, P.: Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20(2), 92–102 (1998)

    Article  Google Scholar 

  • Ritchie, R.O., Kinney, J.H., Kruzic, J.J., Nalla, R.K.: A fracture mechanics and mechanistic approach to the failure of cortical bone. Fatigue Fract. Eng. Mater. Struct. 28(4), 345–371 (2005)

    Article  Google Scholar 

  • Ritchie, R.O., Nalla, R.K., Kruzic, J.J., Ager III, J.W., Balooch, G., Kinney, J.H.: Fracture and ageing in bone: toughness and structural characterization. Strain. 42(4), 225–232 (2006)

    Article  Google Scholar 

  • Robinson, R.: An electron microscopic study of the crystalline inorganic component of bone and its relationship to the organic matrix. J. Bone Joint Surg. 344, 389–435 (1952)

    Article  Google Scholar 

  • Rossman, T., Kushvaha, V., Dragomir-Daescu, D.: QCT/FEA predictions of femoral stiffness are strongly affected by boundary condition modeling. Comput. Methods Biomech. Biomed. Engin. 19(2), 208–216 (2016)

    Article  Google Scholar 

  • Sabet, F.A., Najafi, A.R., Hamed, E., Jasiuk, I.: Modelling of bone fracture and strength at different length scales: a review. Interface Focus. 6(1), 20150055 (2016)

    Article  Google Scholar 

  • Sandino, C., McErlain, D.D., Schipilow, J., Boyd, S.K.: The poro-viscoelastic properties of trabecular bone: a micro computed tomography-based finite element study. J. Mech. Behav. Biomed. Mater. 44, 1–9 (2015)

    Article  Google Scholar 

  • Sasaki, N., Sudoh, Y.: X-ray pole figure analysis of apatite crystals and collagen molecules in bone. Calcif. Tissue Int. 60(4), 361–367 (1997)

    Article  Google Scholar 

  • Sasaki, N., Tagami, A., Goto, T., Taniguchi, M., Nakata, M., Hikichi, K.: Atomic force microscopic studies on the structure of bovine femoral cortical bone at the collagen fibril-mineral level. J. Mater. Sci. Mater. Med. 13(3), 333–337 (2002)

    Article  Google Scholar 

  • Schwiedrzik, J., Gross, T., Bina, M., Pretterklieber, M., Zysset, P., Pahr, D.: Experimental validation of a nonlinear FE model based on cohesive-frictional plasticity for trabecular bone. Int. J. Numer. Methods Biomed. Eng. 32(4), e02739 (2016)

    Article  Google Scholar 

  • Shahidi, M., Pichler, B., Hellmich, C.: Viscous interfaces as source for material creep: a continuum micromechanics approach. Eur. J. Mech. A: Solids. 45, 41–58 (2014)

    Article  MathSciNet  Google Scholar 

  • Snyders, R., Music, D., Sigumonrong, D., Schelnberger, B., Jensen, J., Schneider, J.M.: Experimental and ab initio study of the mechanical properties of hydroxyapatite. Appl. Phys. Lett. 90(19), 193902 (2007)

    Article  Google Scholar 

  • Studart, A.R.: Towards High-Performance Bioinspired Composites. Adv. Mater. 24(37), 5024–5044 (2012)

    Article  Google Scholar 

  • Sun, C.T., Li, S.: Three-dimensional effective elastic constants for thick laminates. J. Compos. Mater. 22, 629–639 (1988)

    Article  Google Scholar 

  • Taya, M., Chou, T.W.: On two kinds of ellipsoidal inhomogeneities in an infinite elastic body: an application to a hybrid composite. Int. J. Solids Struct. 17, 553–563 (1981)

    Article  MATH  Google Scholar 

  • Tekoglu, C., Onck, P.R.: Size effects in two-dimensional Voronoi foams: a comparison between generalized continua and discrete models. J. Mech. Phys. Solids. 56(12), 3541–3564 (2008)

    Article  MATH  Google Scholar 

  • Ural, A., Vashishth, D.: Hierarchical perspective of bone toughness–from molecules to fracture. Int. Mater. Rev. 59(5), 245–263 (2014)

    Article  Google Scholar 

  • VanRietbergen, B., Odgaard, A., Kabel, J., Huiskes, R.: Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture. J. Biomech. 29(12), 1653–1657 (1996)

    Article  Google Scholar 

  • Wang, C., Feng, L., Jasiuk, I.: Scale and boundary conditions effects on the apparent elastic moduli of trabecular bone modeled as a periodic cellular solid. J. Biomech. Eng.: Trans. ASME. 131(12), 121008 (2009)

    Article  Google Scholar 

  • Weiner, S., Traub, W.: Bone structure–from angstroms to microns. FASEB J. 6(3), 879–885 (1992)

    Google Scholar 

  • Weiner, S., Wagner, H.D.: The material bone: structure mechanical function relations. Annu. Rev. Mater. Sci. 28, 271–298 (1998)

    Article  Google Scholar 

  • Weinkamer, R., Fratzl, P.: Mechanical adaptation of biological materials–the examples of bone and wood. Mater. Sci. Eng. C. 31(6), 1164–1173 (2011)

    Article  Google Scholar 

  • Yang, J.F.C., Lakes, R.S.: Experimental study of micropolar and couple stress elasticity in compact bone in bending. J. Biomech. 15(2), 91–98 (1982)

    Article  Google Scholar 

  • Yeni, Y.N., Fyhrie, D.P.: Finite element calculated uniaxial apparent stiffness is a consistent predictor of uniaxial apparent strength in human vertebral cancellous bone tested with different boundary conditions. J. Biomech. 34(12), 1649–1654 (2001)

    Article  Google Scholar 

  • Yoo, A., Jasiuk, I.: Couple-stress moduli of a trabecular bone idealized as a 3D periodic cellular network. J. Biomech. 39(12), 2241–2252 (2006)

    Article  Google Scholar 

  • Yoon, Y.J., Cowin, S.C.: The estimated elastic constants for a single bone osteonal lamella. Biomech. Model. Mechanobiol. 7(1), 1–11 (2008)

    Article  Google Scholar 

  • Zimmermann, E.A., Ritchie, R.O.: Bone as a structural material. Adv. Healthcare Mater. 4(9), 1287–1304 (2015)

    Article  Google Scholar 

  • Zimmermann, E.A., Busse, B., Ritchie, R.O.: The fracture mechanics of human bone: influence of disease and treatment. BonekEy Rep. 4, 743 (2015)

    Article  Google Scholar 

  • Zysset, P.K., Goulet, R.W., Hollister, S.J.: A global relationship between trabecular bone morphology and homogenized elastic properties. J. Biomech. Eng.: Trans. ASME. 120(5), 640–646 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges the support from the National Science Foundation (NSF), the CMMI Program Grant 09-27909, and the DMR Program Grant 15-07169. The findings, conclusions, and recommendations expressed in this manuscript are those of the authors and do not necessarily reflect the views of the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iwona Jasiuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Jasiuk, I. (2018). Micromechanics of Bone Modeled as a Composite Material. In: Meguid, S., Weng, G. (eds) Micromechanics and Nanomechanics of Composite Solids. Springer, Cham. https://doi.org/10.1007/978-3-319-52794-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52794-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52793-2

  • Online ISBN: 978-3-319-52794-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics