Skip to main content

Biomechanics of Vertebral Fracture

  • Chapter
  • First Online:
Vertebral Lesions

Abstract

This chapter presents our current understanding of the biomechanical behaviour of vertebrae, bone quality, and experimental and computational image-based approaches that have been employed to quantify structural integrity in preclinical models with translation to clinical data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bernhardt M, White AA, Panjabi MM, et al. Biomechanical considerations of spinal stability. In: Rothman RH, Simeone FA, editors. The Spine. 3rd ed. Philadelphia: WB Saunders; 1992. p. 1167–95.

    Google Scholar 

  2. Kowalski RJ, Ferrara LA, Benzel EC. Biomechanics of the Spine. Neurosurg. Q. 2005;15(1):42–59.

    Article  Google Scholar 

  3. Hippocrates. The Genuine Works of Hippocrates. [translated from the Greek by F. Adams]. Baltimore: Williams & Wilkins; 1993:231–241.

    Google Scholar 

  4. Hansson T, Roos B, Nachemson A. The bone mineral content and ultimate compressive strength of lumbar vertebrae. Spine. 1980;5:46–55.

    Article  CAS  PubMed  Google Scholar 

  5. McBroom RJ, Hayes WC, et al. Prediction of vertebral body compressive fracture using quantitative computed tomography. J. Bone Joint Surg. 1985;67-A:1206–14.

    Article  Google Scholar 

  6. Mosekilde L, Mosekilde L. Normal vertebral body size and compressive strength: relations to age and to vertebral and iliac trabecular bone compressive strength. Bone. 1986;7:107–11.

    Article  Google Scholar 

  7. Yoganandan N, Myklebust JB, et al. Functional biomechanics of the thoracolumbar vertebral cortex. Clin. Biomech. 1988;3:11–8.

    Article  CAS  Google Scholar 

  8. Cody DD, Goldstein SA, Flynn MJ, Brown EB. Correlations between vertebral regional bone mineral density (rBMD) and whole bone fracture load. Spine. 1991;16:146–54.

    Article  CAS  PubMed  Google Scholar 

  9. Keller TS, Hansson TH, et al. Regional variations in the compressive properties of lumbar vertebral trabeculae: effects of disc degeneration. Spine. 1989;14:1012–9.

    Article  CAS  PubMed  Google Scholar 

  10. Brinckmann P, Biggemann M, Hilweg D. Prediction of the compressive strength of human lumbar vertebrae. Spine. 1989;14:606–10.

    Article  CAS  PubMed  Google Scholar 

  11. Edmondston SJ, Singer KP, et al. Ex vivo estimation of thoracolumbar vertebral body compressive strength: the relative contributions of bone densitometry and vertebral morphometry. Osteoporos. Int. 1997;7:142–8.

    Article  CAS  PubMed  Google Scholar 

  12. Edwards WT, Zheng YG, Ferrara LA, Yuan HA. Structural features and thickness of the vertebral cortex in the thoracolumbar spine. Spine. 2001;26:218–25.

    Article  CAS  PubMed  Google Scholar 

  13. Silva MJ, Keaveny TM, Hayes WC. Direct and computed tomography thickness measurements of the human lumbar vertebral shell and endplate. Bone. 1994;15:409–14.

    Article  CAS  PubMed  Google Scholar 

  14. Keaveny TM, Buckley JM. Biomechanics of vertebral bone. In: Kurtz SM, Edidin AA, editors. Spine technology handbook. New York: Academic Press; 2006.

    Google Scholar 

  15. Reilly DT, Burstein AH. The elastic and ultimate properties of compact bone tissue. J. Biomech. 1975;8:393–405.

    Article  CAS  PubMed  Google Scholar 

  16. Turner CH. Yield behavior of bovine cancellous bone. J. Biomech. Eng. 1989;111:256–60.

    Article  CAS  PubMed  Google Scholar 

  17. Mosekilde L. Vertebral structure and strength in vivo and in vitro. Calcif. Tissue Int. 1993;53:S121–6.

    Article  PubMed  Google Scholar 

  18. Roy ME, Rho JY, et al. Mechanical and morphological variation of the human lumbar vertebral cortical and trabecular bone. J. Biomed. Mater. Res. 1999;44:191–7.

    Article  CAS  PubMed  Google Scholar 

  19. Rockoff SD, Sweet E, Bleustein J. The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif. Tissue Res. 1969;3:163–75.

    Article  CAS  PubMed  Google Scholar 

  20. Silva MJ, Keaveny TM, Hayes WC. Load sharing between the shell and centrum in the lumbar vertebral body. Spine. 1997;22:140–50.

    Article  CAS  PubMed  Google Scholar 

  21. Eswaran SK, Gupta A, Adams MF, Keaveny TM. Cortical and trabecular load sharing in the human vertebral body. J. Bone Miner. Res. 2006;21:307–14.

    Article  PubMed  Google Scholar 

  22. Homminga J, Weinans H, et al. Osteoporosis changes the amount of vertebral trabecular bone at risk of fracture but not the vertebral load distribution. Spine. 2001;26:1555–61.

    Article  CAS  PubMed  Google Scholar 

  23. Nachemson A, Lewin T, Maroudas A, et al. In vitro diffusion of dye through the end-plates and the annulus fibrosus of human lumbar inter-vertebral discs. Acta Orthop. Scand. 1970;41(6):589–607.

    Article  CAS  PubMed  Google Scholar 

  24. Bernick S, Cailliet R. Vertebral end-plate changes with aging of human vertebrae. Spine. 1982;7(2):97–102.

    Article  CAS  PubMed  Google Scholar 

  25. Rodriguez AG, Rodriguez-Soto AE, Burghardt AJ, Berven S, Majumdar S, Lotz JC. Morphology of the human vertebral endplate. J. Orthop. Res. 2012 Feb;30(2):280–7.

    Article  PubMed  Google Scholar 

  26. Grant JP, Oxland TR, Dvorak MF, et al. The effects of bone density and disc degeneration on the structural property distributions in the lower lumbar vertebral endplates. J. Orthop. Res. 2002;20(5):1115–20.

    Article  CAS  PubMed  Google Scholar 

  27. Keller TS, Ziv I, Moeljanto E, et al. Interdependence of lumbar disc and subdiscal bone properties: a report of the normal and degenerated spine. J. Spinal Disord. 1993;6(2):106–13.

    Article  CAS  PubMed  Google Scholar 

  28. Fields AJ, Sahli F, Rodriguez AG, Lotz JC. Seeing double: a comparison of microstructure, biomechanical function, and adjacent disc health between double- and single-layer vertebral endplates. Spine (Phila Pa 1976). 2012 Oct 1;37(21):E1310–7.

    Article  Google Scholar 

  29. Adams MA, Hutton WC. The mechanical function of the lumbar apophyseal joints. Spine. 1983;8:327–30.

    Article  CAS  PubMed  Google Scholar 

  30. Pollintine P, Dolan P, Tobias JH, Adams MA. Intervertebral disc degeneration can lead to 'stress-shielding' of the anterior vertebral body: a cause of osteoporotic vertebral fracture? Spine. 2004;29:774–82.

    Article  PubMed  Google Scholar 

  31. Eastell R, Mosekilde L, Hodgson SF, Riggs BL. Proportion of human vertebral body bone that is cancellous. J. Bone Miner. Res. 1990 Dec;5(12):1237–41.

    Article  CAS  PubMed  Google Scholar 

  32. Choi K, Goldstein SA. A comparison of the fatigue behavior of human trabecular and cortical bone tissue. J. Biomech. 1992;25:1371–81.

    Article  CAS  PubMed  Google Scholar 

  33. Rice JC, Cowin SC, Bowman JA. On the dependence of the elasticity and strength of cancellous bone on apparent density. J. Biomech. 1988;21(2):155–68.

    Article  CAS  PubMed  Google Scholar 

  34. Keaveny TM, Hayes WC. A 20-year perspective on the mechanical properties of trabecular bone. J. Biomech. Eng. 1993;115:534–42.

    Article  CAS  PubMed  Google Scholar 

  35. Gibson L. The mechanical behaviour of cancellous bone. J. Biomech. 1985;18:317–28.

    Article  CAS  PubMed  Google Scholar 

  36. Yeh OC, Keaveny TM. Biomechanical effects of intraspecimen variations in trabecular architecture: A three-dimensional finite element study. Bone. 1999;25(2):223–8.

    Article  CAS  PubMed  Google Scholar 

  37. Kothari M, Keaveny TM, Lin JC, Newitt DC, Majumdar S. Measurement of intraspecimen variations in vertebral cancellous bone architecture. Bone. 1999;25(2):245–50.

    Article  CAS  PubMed  Google Scholar 

  38. Wang X, Li X, Bank RA, Agrawal CM. Effects of collagen unwinding and cleavage on the mechanical integrity of the collagen network in bone. Calcif. Tissue Int. 2002;71(2):186–92.

    Article  CAS  PubMed  Google Scholar 

  39. Yan J, Daga A, Kumar R, Mecholsky JJ. Fracture toughness and work of fracture of hydrated, dehydrated, and ashed bovine bone. J. Biomech. 2008;41(9):1929–36.

    Article  PubMed  Google Scholar 

  40. Wynnyckyj C, Willett T. Changes in bone fatigue resistance due to collagen degradation. J. Orthop. Res. 2011;29(2):197–203.

    Article  PubMed  Google Scholar 

  41. Barth HD, Launey ME, Macdowell AA, Ager JW, Ritchie RO. On the effect of X-ray irradiation on the deformation and fracture behavior of human cortical bone. Bone. 2010;46(6):1475–85.

    Article  PubMed  Google Scholar 

  42. Wang X, Bank RA, TeKoppele JM, Agrawal CM. The role of collagen in determining bone mechanical properties. J. Orthop. Res. 2001;19(6):1021–6.

    Article  CAS  PubMed  Google Scholar 

  43. Mosekilde L, Mosekilde L, Danielsen CC. Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. Bone. 1987;8(2):79–85.

    Article  CAS  PubMed  Google Scholar 

  44. Kopperdahl DL, Keaveny TM. Yield strain behavior of trabecular bone. J. Biomech. 1998;31:601–8.

    Article  CAS  PubMed  Google Scholar 

  45. Hayes WC, Bouxsein ML. Biomechanis of cortical and trabecular bone: implications for assessment of fracture risk. In: Mow VC, Hayes WC, editors. Basic orthopaedic biomechanics. 2nd ed. Philadelphia: Lippincott-Raven Publishers; 1997.

    Google Scholar 

  46. Keaveny TM, Morgan EF, Niebur GL, Yeh OC. Biomechanics of trabecular bone. Annu. Rev. Biomed. Eng. 2001;3:307–33.

    Article  CAS  PubMed  Google Scholar 

  47. Nalla RK, Kinney JH, Ritchie RO. Mechanistic fracture criteria for the failure of human cortical bone. Nat. Mater. 2003;2(3):164–8.

    Article  CAS  PubMed  Google Scholar 

  48. Peterlik H, Roschger P, Klaushofer K, Fratzl P. From brittle to ductile fracture of bone. Nat. Mater. 2006;5(1):52–5.

    Article  CAS  PubMed  Google Scholar 

  49. Burr DB. The contribution of the organic matrix to bone’s material properties. Bone. 2002;31(1):8–11.

    Article  CAS  PubMed  Google Scholar 

  50. Burstein AH, Zika JM, Heiple KG, Klein L. Contribution of collagen and mineral to the elastic-plastic properties of bone. J. Bone Joint Surg. 1975;57-A:956–61.

    Article  Google Scholar 

  51. Currey JD. The mechanical consequences of variation in the mineral content of bone. J. Biomech. 1969;2:1–11.

    Article  CAS  PubMed  Google Scholar 

  52. Currey JD. The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J. Biomech. 1988;21:131–9.

    Article  CAS  PubMed  Google Scholar 

  53. Currey JD, Brear K, Zioupos P. The effects of aging and changes in mineral content in degrading the toughness of human femora. J. Biomech. 1996;29:257–60.

    Article  CAS  PubMed  Google Scholar 

  54. Bailey AJ, Knott L. Molecular changes in bone collagen in osteoporosis and osteoarthritis in the elderly. Exp. Gerontol. 1999;34:337–51.

    Article  CAS  PubMed  Google Scholar 

  55. Burr DB, Forwood MR, et al. Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J. Bone Miner. Res. 1997;12:6–15.

    Article  CAS  PubMed  Google Scholar 

  56. Kopperdahl DL, Pearlman JL, Keaveny TM. Biomechanical consequences of an isolated overload on the human vertebral body. J. Orthop. Res. 2000;18:685–90.

    Article  CAS  PubMed  Google Scholar 

  57. White AA, Panjabi MM. Clinical biomechanics of the spine. Philadelphia: Lippincott; 1990.

    Google Scholar 

  58. Liu YK, Njus G, Buckwalter J, Wakano K. Fatigue response of lumbar intervertebral joints under axial cyclic loading. Spine. 1983;8:857–65.

    Article  CAS  PubMed  Google Scholar 

  59. Brinckmann P, Biggemann M, Hilweg D. Fatigue fracture of human lumbar vertebrae. Clin. Biomech. 1988;3(Suppl 1):S1–S23.

    Google Scholar 

  60. Hansson TH, Keller TS, Spengler DM. Mechanical behaviour of the human lumbar spine. II. Fatigue strength during dynamic compressive loading. J. Orthop. Res. 1987;5(4):479–87. (published erratum appears in J Orthop Res 1988;6(3):465).

    Article  CAS  PubMed  Google Scholar 

  61. Adams MA, Dolan P. Biomechanics of vertebral compression fractures and clinical application. Arch. Orthop. Trauma Surg. 2011;131:1703–10.

    Article  PubMed  Google Scholar 

  62. Vernon-Roberts B, Pirie CJ. Healing trabecular microfractures in the bodies of lumbar vertebrae. Ann. Rheum. Dis. 1973;32(5):406–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cheng XG, Nicholson PHF, et al. Prediction of vertebral strength in vitro by spinal bone densitometry and calcaneal ultrasound. J. Bone Miner. Res. 1997;12:1721–8.

    Article  CAS  PubMed  Google Scholar 

  64. Ebbesen EN, Thomsen JS, et al. Lumbar vertebral body compressive strength evaluated by dual-energy X-ray absorptiometry, quantitative computed tomography, and ashing. Bone. 1999;25:713–24.

    Article  CAS  PubMed  Google Scholar 

  65. Eriksson SA, Isberg BO, Lindgren JU. Prediction of vertebral strength by dual photon absorptiometry and quantitative computed tomography. Calcif. Tissue Int. 1989;44:243–50.

    Article  CAS  PubMed  Google Scholar 

  66. Moro M, Hecker AT, Bouxsein ML, Myers ER. Failure load of thoracic vertebrae correlates with lumbar bone mineral density measured by DXA. Calcif. Tissue Int. 1995;56:206–9.

    Article  CAS  PubMed  Google Scholar 

  67. Mosekilde L, Mosekilde L. Sex differences in age-related changes in vertebral body size, density and biomechanical competence in normal individuals. Bone. 1990;11:67–73.

    Article  CAS  PubMed  Google Scholar 

  68. Singer K, Edmondston S, et al. Prediction of thoracic and lumbar vertebral body compressive strength: correlations with bone mineral density and vertebral region. Bone. 1995;17:167–74.

    Article  CAS  PubMed  Google Scholar 

  69. Edmondston SJ, Singer KP, et al. The relationship between bone mineral density, vertebral body shape and spinal curvature in the elderly thoracolumbar spine: an in vitro study. Br. J. Radiol. 1994;67:969–75.

    Article  CAS  PubMed  Google Scholar 

  70. Silva M, Gibson L. Modeling the mechanical behavior of vertebral bone: effects of age-related changes in microstructure. Bone. 1997;21:191–9.

    Article  CAS  PubMed  Google Scholar 

  71. Bouxsein M. Biomechanics of age related fractures. In: Marcus R, Feldman D, Kelsey J, editors. Osteoporosis, vol. 1. 2nd ed. San Diego, CA: Academic Press; 2001.

    Google Scholar 

  72. Aaron Joseph Fields. Trabecular microarchitecture, endplate failure, and the biomechanics of human vertebral fractures. UC Berkeley thesis, 2010.

    Google Scholar 

  73. Antonacci MD, Hanson DS, Leblanc A, Heggeness MH. Regional variation in vertebral bone density and trabecular architecture are influenced by osteoarthritic change and osteoporosis. Spine. 1997;22:2393–401. discussion 2392–2401.

    Article  CAS  PubMed  Google Scholar 

  74. Vernon-Roberts B, Pirie CJ. Degenerative changes in the intervertebral discs of the lumbar spine and their sequelae. Rheumatol. Rehabil. 1977;16:13–21.

    Article  CAS  PubMed  Google Scholar 

  75. Keaveny TM, Wachtel EF, Kopperdahl DL. Mechanical behavior of human trabecular bone after overloading. J. Orthop. Res. 1999;17:346–53.

    Article  CAS  PubMed  Google Scholar 

  76. Ferguson SJ, Steffen T. Biomechanics of the aging spine. Eur. Spine J. 2003;12(S2):S97–S103.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Pollintine P, Luo J, Offa-Jones B, Dolan P, Adams MA. Bone creep can cause progressive vertebral deformity. Bone. 2009;45(3):466–72.

    Article  PubMed  Google Scholar 

  78. Currey JD. Anelasticity in bone and echinoderm skeletons. J. Exp. Biol. 1965;43:279–92.

    Google Scholar 

  79. Mercer C, He MY, Wang R, Evans AG. Mechanisms governing the inelastic deformation of cortical bone and application to trabecular bone. Acta Biomater. 2006;2(1):59–68.

    Article  CAS  PubMed  Google Scholar 

  80. Yamamoto E, Paul Crawford R, Chan DD, Keaveny TM. Development of residual strains in human vertebral trabecular bone after prolonged static and cyclic loading at low load levels. J. Biomech. 2006;39(10):1812–8.

    Article  PubMed  Google Scholar 

  81. Iatridis JC, Setton LA, Weidenbaum M, Mow VC. Alterations in the mechanical behavior of the human lumbar nucleus pulposus with degeneration and aging. J. Orthop. Res. 1997;15:318–22.

    Article  CAS  PubMed  Google Scholar 

  82. Kurowski P, Kubo A. The relationship of degeneration of the intervertebral disc to mechanical loading conditions on lumbar vertebrae. Spine. 1986;11:726–31.

    Article  CAS  PubMed  Google Scholar 

  83. Horst M, Brinckmann P. 1980 Volvo award in biomechanics: measurement of the distribution of axial stress on the end-plate of the vertebral body. Spine. 1981;6:217–32.

    Article  CAS  PubMed  Google Scholar 

  84. Hansson T, Roos B. The relation between bone-mineral content, experimental compression fractures, and disk degeneration in lumbar vertebrae. Spine. 1981;6:147–53.

    Article  CAS  PubMed  Google Scholar 

  85. Holdsworth FW. Fractures, dislocations, and fracture-dislocations of the spine. J. Bone Joint Surg. 1963;45B:6–20.

    Google Scholar 

  86. Kelly RP, Whitesides TE. Treatment of lumbodorsal fracture-dislocations. Ann. Surg. 1968;167:705–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Louis R. Spinal stability as defined by the three-column spine concept. Anat. Clin. 1985;7:33–42.

    Article  CAS  PubMed  Google Scholar 

  88. Denis F. The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine. 1983;8:817–31.

    Article  CAS  PubMed  Google Scholar 

  89. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin. Orthop. Relat. Res. 1984 Oct;189:65–76.

    Google Scholar 

  90. Roger EP, Jone GA, Benzel EC. Biomechanics of spinal column failure. In: Amar AP, editor. Surgical management of spinal cord injury: controversies and consensus. Hoboken, NJ: Blackwell Publishing; 2007.

    Google Scholar 

  91. Reeves NP, Narendra KS, Cholewicki J. Spine stability: the six blind men and the elephant. Clin. Biomech. (Bristol, Avon). 2007;22(3):266–74. Review.

    Article  Google Scholar 

  92. Allen BL, Ferguson RL, Lehmann TR, O’Brien RP. A mechanistic classification of closed, indirect fractures and dislocations of the lower cervical spine. Spine. 1982;7:1–27.

    Article  PubMed  Google Scholar 

  93. Dvorak MF, Fisher CG, Aarabi B, Harris MB, et al. Clinical outcomes of 90 isolated unilateral facet fractures, subluxations, and dislocations treated surgically and nonoperatively. Spine. 2007;32:3007–13.

    Article  PubMed  Google Scholar 

  94. Vaccaro AR, Hulbert RJ, Patel AA, Fisher C, et al. The subaxial cervical spine injury classification system: a novel approach to recognize the importance of morphology, neurology, and integrity of the disco-ligamentous complex. Spine. 2007;32:2365–74.

    Article  PubMed  Google Scholar 

  95. McLachlin SD. 2013. An Investigation of subaxial cervical spine trauma and surgical treatment through biomechanical simulation and kinematic analysis. Thesis, University of Western Ontario.

    Google Scholar 

  96. Kwon BK, Vaccaro AR, Grauer JN, Fisher CG, Dvorak MF. Subaxial cervical spine trauma. J. Am. Acad. Orthop. Surg. 2006;14:78–89.

    Article  PubMed  Google Scholar 

  97. Lowery DW, Wald MM, Browne BJ, Tigges S, et al. Epidemiology of cervical spine injury victims. Ann. Emerg. Med. 2001;38:12–6.

    Article  CAS  PubMed  Google Scholar 

  98. Nakashima H, Yukawa Y, Ito K, Machino M, Kato F. Mechanical patterns of cervical injury influence postoperative neurological outcome: a verification of the allen system. Spine. 2011;36:E441–6.

    Article  PubMed  Google Scholar 

  99. Vaccaro AR, Koerner JD, Radcliff KE, Oner FC, Reinhold M, Schnake KJ, Kandziora F, Fehlings MG, Dvorak MF, Aarabi B, Rajasekaran S. AO spine subaxial cervical spine injury classification system. Eur. Spine J. 2015:1–12.

    Google Scholar 

  100. Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S. A comprehensive classification of thoracic and lumbar injuries. Eur. Spine J. 1994;3(4):184–201.

    Article  CAS  PubMed  Google Scholar 

  101. McAfee PC, Yuan HA, Fredrickson BE, Lubicky JP. The value of computed tomography in thoracolumbar fractures: an analysis of one hundred consecutive cases and a new classification. J. Bone Joint Surg. Am. 1983;65:461–73.

    Article  CAS  PubMed  Google Scholar 

  102. Vaccaro AR, Lehman RA Jr, Hurlbert RJ, Anderson PA, Harris M, Hedlund R, Harrop J, Dvorak M, Wood K, Fehlings MG, Fisher C. A new classification of thoracolumbar injuries: the importance of injury morphology, the integrity of the posterior ligamentous complex, and neurologic status. Spine. 2005;30(20):2325–33.

    Article  PubMed  Google Scholar 

  103. Vaccaro AR, Zeiller SC, Hulbert RJ, Anderson PA, Harris M, Hedlund R, Harrop J, Dvorak M, Wood K, Fehlings MG, Fisher C. The thoracolumbar injury severity score: a proposed treatment algorithm. J. Spinal Disord. Tech. 2005;18(3):209–15.

    PubMed  Google Scholar 

  104. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J. Bone Miner. Res. 2007 Mar;22(3):465–75.

    Article  PubMed  Google Scholar 

  105. Klotzbuecher CM, Ross PD, Landsman PB, et al. Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J. Bone Miner. Res. 2000;15:721–39.

    Article  CAS  PubMed  Google Scholar 

  106. Cooper C, O'Neill T, Silman A. The epidemiology of vertebral fractures. European Vertebral Osteoporosis Study Group. Bone. 1993;14(Suppl 1):S89–97. Review.

    Article  PubMed  Google Scholar 

  107. Cauley JA, Hochberg MC, Lui LY, Palermo L, Ensrud KE, Hillier TA, Nevitt MC, Cummings SR. Long-term risk of incident vertebral fractures. J. Am. Med. Assoc. 2007 Dec 19;298(23):2761–7.

    Article  CAS  Google Scholar 

  108. Christiansen BA, Bouxsein ML. Biomechanics of vertebral fractures and the vertebral fracture cascade. Curr. Osteoporos. Rep. 2010 Dec;8(4):198–204.

    Article  PubMed  Google Scholar 

  109. Cooper C, Atkinson EJ, O'Fallon WM, Melton LJ 3rd. Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985–1989. J. Bone Miner. Res. 1992;7:221–7.

    Article  CAS  PubMed  Google Scholar 

  110. Freitas SS, Barrett-Connor E, Ensrud KE, et al. Rate and circumstances of clinical vertebral fractures in older men. Osteoporos. Int. 2008;19:615–23.

    Article  CAS  PubMed  Google Scholar 

  111. Wong DA, Fornasier VL, McNab I. Spinal metastases: the obvious, the occult, and the imposters. Spine. 1990;15(1):1–3.

    Article  CAS  PubMed  Google Scholar 

  112. Toma S, Venturino A, Sogno G, et al. Metastatic bone tumors. Nonsurgical treatment. Outcome and survival. Clin. Orthop. Relat. Res. 1993;295:246–51.

    Google Scholar 

  113. Gainford MC, Dranitsaris G, Clemons M. Recent developments in bisphosphonates for patients with metastatic breast cancer. BMJ (Clin. Res. Ed.). 2005;330(7494):769–73.

    Article  CAS  Google Scholar 

  114. Guise TA. Molecular mechanisms of action of osteolytic bone metastases. Cancer. 2000;88:2892–8.

    Article  CAS  PubMed  Google Scholar 

  115. Whyne CM. Biomechanics of metastatic disease in the vertebral column. Neurol. Res. 2014;36(6):493–501.

    Article  PubMed  Google Scholar 

  116. Skrinskas T, Clemons M, Freedman O, Weller I, Whyne CM. Automated CT-based analysis to detect changes in the prevalence of lytic bone metastases from breast cancer. Clin. Exp. Metastasis. 2009;26:97–103.

    Article  CAS  PubMed  Google Scholar 

  117. Du Y, Cullum I, Illidge TM, Ell PJ. Fusion of metabolic function and morphology: sequential [18F] fluorodeoxyglucose positron-emission tomography/computed tomography studies yield new insights into the natural history of bone metastases in breast cancer. J. Clin. Oncol. 2007;25(23):3440–7.

    Article  PubMed  Google Scholar 

  118. Vassiliou V, Kalogeropoulou C, Petsas T, Leotsinidis M, Kardamakis D. Clinical and radiological evaluation of patients with lytic, mixed and sclerotic bone metastases from solid tumors: is there a correlation between clinical status of patients and type of bone metastases? Clin. Exp. Metastasis. 2007;24(1):49–56.

    Article  PubMed  Google Scholar 

  119. Perey O. Fracture of the vertebral endplate. A biomechanical investigation. Acta Orthop. Scand. 1957;28(Supp 25):1–107.

    Article  Google Scholar 

  120. Hutton WC, Adams MA. Can the lumbar spine be crushed in heavy lifting? Spine. 1982;7(6):586–90.

    Article  CAS  PubMed  Google Scholar 

  121. Yoganandan N, Larson SJ, Gallagher M, Pintar FA, Reinartz J, Droese K. Correlation of microtrauma in the lumbar spine with intraosseous pressures. Spine. 1994;19(4):435–40.

    Article  CAS  PubMed  Google Scholar 

  122. Jiang G, Luo J, Pollintine P, Dolan P, Adams MA, Eastell R. Vertebral fractures in the elderly may not always be “osteoporotic”. Bone. 2010;47(1):111–6.

    Article  CAS  PubMed  Google Scholar 

  123. Adams MA, Pollintine P, Tobias JH, Wakley GK, Dolan P. Intervertebral disc degeneration can predispose to anterior vertebral fractures in the thoracolumbar spine. J. Bone Miner. Res. 2006;21(9):1409–16.

    Article  PubMed  Google Scholar 

  124. Turner CH, Takano Y, Owan I. Aging changes mechanical loading thresholds for bone formation in rats. J. Bone Miner. Res. 1995;10(10):1544–9.

    Article  CAS  PubMed  Google Scholar 

  125. Bassey EJ, Rothwell MC, Littlewood JJ, Pye DW. Pre- and postmenopausal women have diVerent bone mineral density responses to the same high-impact exercise. J. Bone Miner. Res. 1998;13(12):1805–13.

    Article  CAS  PubMed  Google Scholar 

  126. Twomey L, Taylor J. Age changes in lumbar intervertebral discs. Acta Orthop. Scand. 1985;56(6):496–9.

    Article  CAS  PubMed  Google Scholar 

  127. Mok FP, Samartzis D, Karppinen J, Luk KD, Fong DY, Cheung KM. ISSLS prize winner: prevalence, determinants, and association of Schmorl nodes of the lumbar spine with disc degeneration: a population-based study of 2449 individuals. Spine (Phila Pa 1976). 2010;35(21):1944–52.

    Article  Google Scholar 

  128. Adams MA, McNally DS, Dolan P. ‘Stress’ distributions inside intervertebral discs. The eVects of age and degeneration. J. Bone Joint Surg. Br. Vol. (London). 1996;78(6):965–72.

    Article  CAS  Google Scholar 

  129. Holmes AD, Hukins DW, Freemont AJ. End-plate displacement during compression of lumbar vertebra-disc-vertebra segments and the mechanism of failure. Spine. 1993;18(1):128–35.

    Article  CAS  PubMed  Google Scholar 

  130. Adams MA, Freeman BJ, Morrison HP, Nelson IW, Dolan P. Mechanical initiation of intervertebral disc degeneration. Spine. 2000;25(13):1625–36.

    Article  CAS  PubMed  Google Scholar 

  131. Adams MA, May S, Freeman BJ, Morrison HP, Dolan P. Effects of backward bending on lumbar intervertebral discs. Relevance to physical therapy treatments for low back pain. Spine. 2000;25(4):431–7. discussion 438.

    Article  CAS  PubMed  Google Scholar 

  132. Whyne CM, Hu SS, Lotz JC. Parametric finite element analysis of vertebral bodies affected by tumors. J. Biomech. 2001 Oct;34(10):1317–24.

    Article  CAS  PubMed  Google Scholar 

  133. Rasoulinejad P, McLachlin SD, Bailey SI, Gurr KR, Bailey CS, Dunning CE. The importance of the posterior osteoligamentous complex to subaxial cervical spine stability in relation to a unilateral facet injury. Spine J. 2012;12(7):590–5.

    Article  PubMed  Google Scholar 

  134. Nadeau M, McLachlin SD, Bailey SI, Gurr KR, Dunning CE, Bailey CS. A biomechanical assessment of soft-tissue damage in the cervical spine following a unilateral facet injury. J. Bone Joint Surg. 2012;94(21):e156.

    Article  PubMed  Google Scholar 

  135. Vaccaro AR, Schroeder GD, Kepler CK, Cumhur Oner F, Vialle LR, Kandziora F, Koerner JD, Kurd MF, Reinhold M, Schnake KJ, Chapman J, Aarabi B, Fehlings MG, Dvorak MF. The surgical algorithm for the AOSpine thoracolumbar spine injury classification system. Eur. Spine J. 2016 Apr;25(4):1087–94.

    Article  PubMed  Google Scholar 

  136. Chapman J, Bransford R. Geriatric spine fractures: an emerging healthcare crisis. J. Trauma Acute Care Surg. 2007;62(6):S61–2.

    Article  Google Scholar 

  137. Malik SA, Murphy M, Connolly P, O’Byrne J. Evaluation of morbidity, mortality and outcome following cervical spine injuries in elderly patients. Eur. Spine J. 2008;17(4):585–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. McCabe CMJ, McLachlin SD, Bailey SI, Gurr KR, Bailey CS, Dunning CE. The effect of soft-tissue restraints after type II odontoid fractures in the elderly: a biomechanical study. Spine. 2012;37(12):1030–5.

    Article  PubMed  Google Scholar 

  139. Kanis JA, et al. A new approach to the development of assessment guidelines for osteoporosis. Osteoporos. Int. 2002;13:527–36.

    Article  CAS  PubMed  Google Scholar 

  140. http://www.shef.ac.uk/FRAX/

  141. Hillier TA, Cauley JA, Rizzo JH, Pedula KL, Ensrud KE, Bauer DC, Lui LY, Vesco KK, Black DM, Donaldson MG, Leblanc ES, Cummings SR. WHO absolute fracture risk models (FRAX): do clinical risk factors improve fracture prediction in older women without osteoporosis? J. Bone Miner. Res. 2011 Aug;26(8):1774–82.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Trémollieres FA, Pouillès JM, Drewniak N, Laparra J, Ribot CA, Dargent-Molina P. Fracture risk prediction using BMD and clinical risk factors in early postmenopausal women: sensitivity of the WHO FRAX tool. J. Bone Miner. Res. 2010 May;25(5):1002–9.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Cummings SR, Bates D, Black DM. Clinical use of bone densitometry: scientific review. JAMA. 2002 Oct 16;288(15):1889–97. Review. Erratum in: JAMA 2002 Dec 11;288(22):2825.

    Google Scholar 

  144. Villa-Camacho JC, Iyoha-Bello O, Behrouzi S, Snyder BD, Nazarian A. Computed tomography-based rigidity analysis: a review of the approach in preclinical and clinical studies. Bonekey Rep. 2014 Nov 5;3:587. doi:10.1038/bonekey.2014.82. eCollection 2014. Review.

  145. Whealan KM, Kwak SD, Tedrow JR, Inoue K, Snyder BD. Noninvasive imaging predicts failure load of the spine with simulated osteolytic defects. J. Bone Joint Surg. Am. 2000;82(9):1240–51.

    Article  CAS  PubMed  Google Scholar 

  146. Hojjat SP, Beek M, Akens MK, Whyne CM. Can micro-imaging based analysis methods quantify structural integrity of rat vertebrae with and without metastatic involvement? J. Biomech. 2012 Sep 21;45(14):2342–8.

    Article  PubMed  Google Scholar 

  147. Snyder BD, Cordio MA, Nazarian A, Kwak SD, Chang DJ, Entezari V, et al. Noninvasive prediction of fracture risk in patients with metastatic cancer to the spine. Clin. Cancer Res. 2009;15:7676–83.

    Article  CAS  PubMed  Google Scholar 

  148. Huiskes R, Hollister SJ. From structure to process, from organ to cell: recent developments of FE-analysis in orthopaedic biomechanics. J. Biomech. Eng. 1993;115(4B):520–7.

    Article  CAS  PubMed  Google Scholar 

  149. Lotz JC, Cheal EJ, Hayes WC. Fracture prediction for the proximal femur using finite element models: part II – nonlinear analysis. J. Biomech. Eng. 1991;113(4):361–5.

    Article  CAS  PubMed  Google Scholar 

  150. Whyne CM, Hu SS, Lotz JC. Biomechanically derived guideline equations for burst fracture risk prediction in the metastatically involved spine. J. Spinal Disord. Tech. 2003;16(2):180–5.

    Article  PubMed  Google Scholar 

  151. Zysset PK, Dall'ara E, Varga P, Pahr DH. Finite element analysis for prediction of bone strength. Bonekey Rep. 2013 Aug;7(2):386.

    Google Scholar 

  152. Bozic KJ, Keyak JH, Skinner HB, Bueff HU, Bradford DS. Three-dimensional finite element modeling of a cervical vertebra: an investigation of burst fracture mechanism. J. Spinal Disord. 1994 Apr;7(2):102–10.

    Article  CAS  PubMed  Google Scholar 

  153. Crawford RP, Cann CE, Keaveny TM. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone. 2003;33:744–50.

    Article  PubMed  Google Scholar 

  154. Buckley JM, Loo K, Motherway J. Comparison of quantitative computed tomography based measures in predicting vertebral compressive strength. Bone. 2007;40:767–74.

    Article  PubMed  Google Scholar 

  155. Dall'Ara E, Pahr D, Varga P, Kainberger F, Zysset P. QCT-based finite element models predict human vertebral strength in vitro significantly better than simulated DEXA. Osteoporos. Int. 2012 Feb;23(2):563–72.

    Article  PubMed  Google Scholar 

  156. Imai K, Ohnishi I, Bessho M, Nakamura K. Nonlinear finite element model predicts vertebral bone strength and fracture site. Spine (Phila Pa 1976). 2006 Jul 15;31(16):1789–94.

    Article  Google Scholar 

  157. Wang X, Sanyal A, Cawthon PM, Palermo L, Jekir M, Christensen J, Ensrud KE, Cummings SR, Orwoll E, Black DM. Osteoporotic fractures in men (MrOS) Research Group, Keaveny TM. Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans. J. Bone Miner. Res. 2012 Apr;27(4):808–16.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Kopperdahl DL, Aspelund T, Hoffmann PF, Sigurdsson S, Siggeirsdottir K, Harris TB, Gudnason V, Keaveny TM. Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. J. Bone Miner. Res. 2014 Mar;29(3):570–80.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Faulkner KG, Cann CE, Hasegawa BH. Effect of bone distribution on vertebral strength: assessment with patient-specific nonlinear finite element analysis. Radiology. 1991;179:669–74.

    Article  CAS  PubMed  Google Scholar 

  160. Buckley JM, Cheng L, Loo K, Slyfield C, Xu Z. Quantitative computed tomography-based predictions of vertebral strength in anterior bending. Spine (Phila Pa 1976). 2007 Apr 20;32(9):1019–27.

    Article  Google Scholar 

  161. Dall'Ara E, Schmidt R, Pahr D, Varga P, Chevalier Y, Patsch J, Kainberger F, Zysset P. A nonlinear finite element model validation study based on a novel experimental technique for inducing anterior wedge-shape fractures in human vertebral bodies in vitro. J. Biomech. 2010 Aug 26;43(12):2374–80.

    Article  PubMed  Google Scholar 

  162. Jackman TM, Alex M, DelMonaco AM, Morgan EF. Accuracy of finite element analyses of CT scans in predictions of vertebral failure patterns under axial compression and anterior flexion. J. Biomech. 2016;49:267–75.

    Article  PubMed  Google Scholar 

  163. Adams MA, Roughley PJ. What is intervertebral disc degeneration, and what causes it? Spine (Phila Pa 1976). 2006 Aug 15;31(18):2151–61. Review.

    Google Scholar 

  164. Clouthier AL, Hosseini HS, Maquer G, Zysset PK. Finite element analysis predicts experimental failure patterns in vertebral bodies loaded via intervertebral discs up to large deformation. Med. Eng. Phys. 2015 Jun;37(6):599–604.

    Article  PubMed  Google Scholar 

  165. Hussein AI, Mason ZD, Morgan EF. Presence of intervertebral discs alters observed stiffness and failure mechanisms in the vertebra. J. Biomech. 2013 Jun 21;46(10):1683–8.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Jones AC, Wilcox RK. Finite element analysis of the spine: towards a framework of verification, validation and sensitivity analysis. Med. Eng. Phys. 2008 Dec;30(10):1287–304.

    Article  PubMed  Google Scholar 

  167. Maquer G, Schwiedrzik J, Huber G, Morlock MM, Zysset PK. Compressive strength of elderly vertebrae is reduced by disc degeneration and additional flexion. J. Mech. Behav. Biomed. Mater. 2015 Feb;42:54–66.

    Article  PubMed  Google Scholar 

  168. Launey ME, Chen PY, McKittrick J, Ritchie RO. Mechanistic aspects of the fracture toughness of elk antler bone. Acta Biomater. 2010 Apr;6(4):1505–14.

    Article  CAS  PubMed  Google Scholar 

  169. Wachtel EF, Keaveny TM. Dependence of trabecular damage on mechanical strain. J. Orthop. Res. 1997 Sep;15(5):781–7.

    Article  CAS  PubMed  Google Scholar 

  170. Fyhrie DP, Schaffler MB. Failure mechanisms in human vertebral cancellous bone. Bone. 1994 Jan–Feb;15(1):105–9.

    Article  CAS  PubMed  Google Scholar 

  171. Yeh OC, Keaveny TM. Relative roles of microdamage and microfracture in the mechanical behavior of trabecular bone. J. Orthop. Res. 2001 Nov;19(6):1001–7.

    Article  CAS  PubMed  Google Scholar 

  172. Saito M, Marumo K. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos. Int. 2010;21(2):195–214. [Review].

    Article  CAS  PubMed  Google Scholar 

  173. Beniash E. Biominerals – hierarchical nanocomposites: the example of bone. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2011;3(1):47–69. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Thompson JB, Kindt JH, Drake B, Hansma HG, Morse DE, Hansma PK. Bone indentation recovery time correlates with bond reforming time. Nature. 2001;414(6865):773–6.

    Article  CAS  PubMed  Google Scholar 

  175. Walsh WR, Guzelsu N. Compressive properties of cortical bone: mineral-organic interfacial bonding. Biomaterials. 1994;15(2):137–45.

    Article  CAS  PubMed  Google Scholar 

  176. Bailey AJ, Sims TJ, Ebbesen EN, Mansell JP, Thomsen JS, Mosekilde L. Age-related changes in the biochemical properties of human cancellous bone collagen: relationship to bone strength. Calcif. Tissue Int. 1999;65:203–10.

    Article  CAS  PubMed  Google Scholar 

  177. Langdahl BL, Ralston SH, Grant SFA, Eriksen RF. An Sp1 binding site polymorphism in the COL1A1 gene predicts osteoporotic fractures in both men and women. J. Bone Miner. Res. 1998;13:1384–9.

    Article  CAS  PubMed  Google Scholar 

  178. Mann V, Hobson EE, Li B, Stewart TL, Grant SFA, Robins SP, et al. A COL1A1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J. Clin. Invest. 2001;197:899–907.

    Article  Google Scholar 

  179. Oxlund H, Mosekilde L, Ortoft G. Reduced concentration of collagen reducible cross links in human trabecular bone with respect to age and osteoporosis. Bone. 1996;19:479–84.

    Article  CAS  PubMed  Google Scholar 

  180. Viguet-Carrin S, Garnero P, Delmas PD. The role of collagen in bone strength. Osteoporos. Int. 2006;17(3):319–36. [Review].

    Article  CAS  PubMed  Google Scholar 

  181. Zioupos P, Currey JD, Hamer AJ. The role of collagen in the declining mechanical properties of aging human cortical bone. J. Biomed. Mater. Res. 1999;45:108–16.

    Article  CAS  PubMed  Google Scholar 

  182. Marotti G, Muglia MA, Palumbo C. Structure and function of lamellar bone. Clin. Rheumatol. 1994;13(Suppl 1):63–8. 109.

    PubMed  Google Scholar 

  183. Bird TA, Levene CI. Lysyl oxidase: evidence that pyridoxal phosphate is a cofactor. Biochem. Biophys. Res. Commun. 1982 Oct 15;108(3):1172–80.

    Article  CAS  PubMed  Google Scholar 

  184. Oxlund H, Mosekilde L, Ortoft G. Reduced concentration of collagen reducible crosslinks in human trabecular bone with respect to age and osteoporosis. Bone. 1996;19:479–84.

    Article  CAS  PubMed  Google Scholar 

  185. Zimmermann EA, Schaible E, Bale H, Barth HD, Tang SY, Reichert P, et al. Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales. Proc. Natl. Acad. Sci. U. S. A. 2011;108(35):14416–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Tang SY, Vashishth D. Non-enzymatic glycation alters microdamage formation in human cancellous bone. Bone. 2010;46(1):148–54.

    Article  CAS  PubMed  Google Scholar 

  187. Tang SY, Vashishth D. A non-invasive in vitro technique for the three-dimensional quantification of microdamage in trabecular bone. Bone. 2007;40(5):1259–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Vashishth D, Gibson GJ, Khoury JI, Schaffler MB, Kimura J, Fyhrie DP. Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone. 2001;28(2):195–201.

    Article  CAS  PubMed  Google Scholar 

  189. Bradke, B. S., Tang, S., & Vashid, D. (2009). An Agent Cleaving Sugar-derived Collagen Cross-links Decreases Bone Fragility. In Orthopaedic Research Society Meeting (p. Poster 695). Las Vegas: ORS.

    Google Scholar 

  190. Hernandez CJ, Tang SY, Baumbach BM, Hwu PB, Sakkee AN, van der Ham F, et al. Trabecular microfracture and the influence of pyridinium and non-enzymatic glycation-mediated collagen cross-links. Bone. 2005;37(6):825–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Odetti P, Rossi S, Monacelli F, Poggi A, Cirnigliaro M, Federici M, Federici A. Advanced glycation end products and bone loss during aging. Ann. N. Y. Acad. Sci. 2005 Jun;1043:710–7.

    Article  CAS  PubMed  Google Scholar 

  192. Burke M, Atkins A, Akens M, Willett T, Whyne C. Osteolytic and mixed cancer metastasis modulates collagen and mineral parameters within rat vertebral bone matrix. J. Orthop. Res. 2016;34(12):2126–36.

    Article  CAS  PubMed  Google Scholar 

  193. Myers ER, Wilson SE. Biomechanics of osteoporosis and vertebral fracture. Spine (Phila Pa 1976). 1997 Dec 15;22(24 Suppl):25S–31S. Review.

    Google Scholar 

  194. Whyne CM, Hu SS, Lotz JC. Burst fracture in the metastatically involved spine: Development, validation, and parametric analysis of a three-dimensional poroelastic finite-element model. Spine. 2003;28(7):652–60.

    PubMed  Google Scholar 

  195. Constans JP, de Divitiis E, Donzelli R, Spaziante R, Meder JF, Haye C. Spinal metastases with neurological manifestations. Review of 600 cases. J. Neurosurg. 1983;59(1):111–8.

    Article  CAS  PubMed  Google Scholar 

  196. Dimar JR 2nd, Voor MJ, Zhang YM, Glassman SD. A human cadaver model for determination of pathologic fracture threshold resulting from tumorous destruction of the vertebral body. Spine. 1998;23(11):1209–14.

    Article  PubMed  Google Scholar 

  197. Ebihara H, Ito M, Abumi K, Taneichi H, Kotani Y, Minami A, et al. A biomechanical analysis of metastatic vertebral collapse of the thoracic spine: A sheep model study. Spine. 2004;29(9):994–9.

    Article  PubMed  Google Scholar 

  198. Hong J, Cabe GD, Tedrow JR, Hipp JA, Snyder BD. Failure of trabecular bone with simulated lytic defects can be predicted non-invasively by structural analysis. J. Orthop. Res. 2004;22(3):479–86.

    Article  PubMed  Google Scholar 

  199. McGowan DP, Hipp JA, Takeuchi T, White AA 3rd, Hayes WC. Strength reductions from trabecular destruction within thoracic vertebrae. J. Spinal Disord. 1993;6(2):130–6.

    Article  CAS  PubMed  Google Scholar 

  200. Silva MJ, Hipp JA, McGowan DP, Takenchi T, Hayes WC. Strength reductions of thoracic vertebrae in the presence of transcortical osseous defects: Effects of defect location, pedicle disruption, and defect size. Eur. Spine J. 1993;2(3):118–25.

    Article  CAS  PubMed  Google Scholar 

  201. Windhagen HJ, Hipp JA, Silva MJ, Lipson SJ, Hayes WC. Predicting failure of thoracic vertebrae with simulated and actual metastatic defects. Clin. Orthop. Relat. Res. 1997;344:313–9.

    Article  Google Scholar 

  202. Windhagen H, Hipp JA, Hayes WC. Postfracture instability of vertebrae with simulated defects can be predicted from computed tomography data. Spine. 2000;25(14):1775–81.

    Article  CAS  PubMed  Google Scholar 

  203. Taneichi H, Kaneda K, Takeda N, Abumi K, Satoh S. Risk factors and probability of vertebral body collapse in metastases of the thoracic and lumbar spine. Spine. 1997;22(3):239–45.

    Article  CAS  PubMed  Google Scholar 

  204. Hardisty MR, Whyne CM. Whole bone strain quantification by image registration: a validation study. J. Biomech. Eng. 2009;131(6):064502.

    Article  PubMed  Google Scholar 

  205. Mizrahi J, Silva MJ, Hayes WC. Finite element stress analysis of simulated metastatic lesions in the lumbar vertebral body. J. Biomed. Eng. 1992;14(6):467–75.

    Article  CAS  PubMed  Google Scholar 

  206. Tschirhart CE, Nagpurkar A, Whyne CM. Effects of tumor location, shape and surface serration on burst fracture risk in the metastatic spine. J. Biomech. 2004;37(5):653–60.

    Article  PubMed  Google Scholar 

  207. Tschirhart CE, Finkelstein JA, Whyne CM. Metastatic burst fracture risk assessment based on complex loading of the thoracic spine. Ann. Biomed. Eng. 2006;34(3):494–505.

    Article  PubMed  Google Scholar 

  208. Tschirhart CE, Finkelstein JA, Whyne CM. Biomechanics of vertebral level, geometry, and transcortical tumors in the metastatic spine. J. Biomech. 2007;40(1):46–54.

    Article  PubMed  Google Scholar 

  209. Whyne CM, Hu SS, Workman KL, Lotz JC. Biphasic material properties of lytic bone metastases. Ann. Biomed. Eng. 2000;28(9):1154–8.

    Article  CAS  PubMed  Google Scholar 

  210. Roth SE, Mousavi P, Finkelstein J, Chow E, Kreder H, Whyne CM. Metastatic burst fracture risk prediction using biomechanically based equations. Clin. Orthop. Relat. Res. 2004;419:83–90.

    Article  Google Scholar 

  211. Choudhari C, Chan K, Akens MK, Whyne CM. μFE models can represent microdamaged regions of healthy and metastatically involved whole vertebrae identified through histology and contrast enhanced μCT imaging. J. Biomech. 2016 May 3;49(7):1103–10.

    Article  PubMed  Google Scholar 

  212. Sone T, Tamada T, Jo Y, Miyoshi H, Fukunaga M. Analysis of three-dimensional microarchitecture and degree of mineralization in bone metastases from prostate cancer using synchrotron microcomputed tomography. Bone. 2004;35(2):432–8.

    Article  PubMed  Google Scholar 

  213. Nazarian A, von Stechow D, Zurakowski D, Muller R, Snyder BD. Bone volume fraction explains the variation in strength and stiffness of cancellous bone affected by metastatic cancer and osteoporosis. Calcif. Tissue Int. 2008;83(6):368–79.

    Article  CAS  PubMed  Google Scholar 

  214. Bates DW, Black DM, Cummings SR. Clinical use of bone densitometry: clinical applications. J. Am. Med. Assoc. 2002 Oct 16;288(15):1898–900.

    Article  Google Scholar 

  215. Delmas PD, Seeman E. Changes in bone mineral density explain little of the reduction in vertebral or nonvertebral fracture risk with anti-resorptive therapy. Bone. 2004 Apr;34(4):599–604.

    Article  CAS  PubMed  Google Scholar 

  216. Acito AJ, Kasra M, Lee JM, Grynpas MD. Effects of intermittent administration of pamidronate on the mechanical properties of canine cortical and trabecular bone. J. Orthop. Res. 1994;12:742–6.

    Article  CAS  PubMed  Google Scholar 

  217. Mashiba T, Turner CH, Hirano T, Forwood MR, Johnston CC, Burr DB. Effects of suppressed bone turnover by bisphosphonates on microdamage accumulation and biomechanical properties inclinically relevant skeletal sites in beagles. Bone. 2001;28:524–31.

    Article  CAS  PubMed  Google Scholar 

  218. Hu JH, Ding M, Soballe K, Bechtold JE, Danielsen CC, Day JS, Hvid I. Effects of short-term alendronate treatment on the three-dimensional microstructural, physical, and mechanical properties of dog trabecular bone. Bone. 2002;31:591–7.

    Article  CAS  PubMed  Google Scholar 

  219. Borah B, Dufresne TE, Chmielewski PA, Gross GJ, Prenger MC, Phipps RJ. Risedronate preserves trabecular architecture and increases bone strength in vertebra of ovariectomized minipigs as measured by three-dimensional microcomputed tomography. J. Bone Miner. Res. 2002;17:1139–47.

    Article  CAS  PubMed  Google Scholar 

  220. Komatsubara S, Mori S, Mashiba T, Ito M, Li J, Kaji Y, Akiyama T, Miyamoto K, Cao Y, Kawanishi J, Norimatsu H. Long-term treatment of incadronate disodium accumulates microdamage but improves the trabecular bone microarchitecture in dog vertebra. J. Bone Miner. Res. 2003;18:512–20.

    Article  CAS  PubMed  Google Scholar 

  221. Ding M, Day JS, Burr DB, Mashiba T, Hirano T, Weinans H, Sumner DR, Hvid I. Canine cancellous bone microarchitecture after one year of high-dose bisphosphonates. Calcif. Tissue Int. 2003;72:737–44.

    Article  CAS  PubMed  Google Scholar 

  222. Day JS, Ding M, Bednarz P, van der Linden JC, Mashiba T, Hirano T, Johnston CC, Burr DB, Hvid I, Sumner DR, Weinans H. Bisphosphonate treatment affects trabecular bone apparent modulus through micro-architecture rather than matrix properties. J. Orthop. Res. 2004;22:465–71.

    Article  CAS  PubMed  Google Scholar 

  223. Muller R, Hannan M, Smith SY, Bauss F. Intermittent ibandronate preserves bone quality and bone strength in the lumbar spine after 16 months of treatment in the ovariectomized cynomolgus monkey. J. Bone Miner. Res. 2004;19:1787–96.

    Article  CAS  PubMed  Google Scholar 

  224. Lafage MH, Balena R, Battle MA, Shea M, Seedor JG, Klein H, Hayes WC, Rodan GA. Comparison of alendronate and sodium fluoride effects on cancellous and cortical bone in minipigs. A one-year study. J. Clin. Invest. 1995;95:2127–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Balena R, Toolan BC, Shea M, Markatos A, Myers ER, Lee SC, Opas EE, Seedor JG, Klein H, Frankenfield D, et al. The effects of 2-year treatment with the aminobisphosphonate alendronate on bone metabolism, bone histomorphometry, and bone strength in ovariectomized nonhuman primates. J. Clin. Invest. 1993;92:2577–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Eswaran SK, Allen MR, Burr DB, Keaveny TM. A computational assessment of the independent contribution of changes in canine trabecular bone volume fraction and microarchitecture to increased bone strength with suppression of bone turnover. J. Biomech. 2007;40(15):3424–31.

    Article  PubMed  PubMed Central  Google Scholar 

  227. Cunha MV, Al-Omair A, Atenafu EG, et al. Vertebral compression fracture (VCF) after spine stereotactic body radiation therapy (SBRT) analysis of predictive factors. Int. J. Radiat. Oncol. Biol. Phys. 2012;84:e343–9.

    Article  PubMed  Google Scholar 

  228. Rose PS, Laufer I, Boland PJ, et al. Risk of fracture after single fraction image-guided intensity-modulated radiation therapy to spinal metastases. J. Clin. Oncol. 2009;27:5075–9.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Boehling NS, Grosshans DR, Allen PK, et al. Vertebral compression fracture risk after stereotactic body radiotherapy for spinal metastases. J. Neurosurg. Spine. 2012;16:379–86.

    Article  PubMed  Google Scholar 

  230. Chow E, Harris K, Fan G, Tsao M, Sze WM. Palliative radiotherapy trials for bone metastases: a systematic review. J. Clin. Oncol. 2007;25:1423–36.

    Article  PubMed  Google Scholar 

  231. Sahgal A, Whyne CM, Ma L, Larson DA, Fehlings MG. Vertebral compression fracture after stereotactic body radiotherapy for spinal metastases. Lancet Oncol. 2013 Jul;14(8):e310–20.

    Article  PubMed  Google Scholar 

  232. Barth HD, Zimmermann EA, Schaible E, Tang SY, Alliston T, Ritchie RO. Characterization of the effects of X-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone. Biomaterials. 2011;32:8892–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Currey JD, Foreman J, Laketic I, Mitchell J, Pegg DE, Reilly GC. Effects of ionizing radiation on the mechanical properties of human bone. J. Orthop. Res. 1997;15:111–7.

    Article  CAS  PubMed  Google Scholar 

  234. Burton B, Gaspar A, Josey D, Tupy J, Grynpas MD, Willett TL. Bone embrittlement and collagen modifications due to high-dose gamma-irradiation sterilization. Bone. 2014 Apr;61:71–81.

    Article  CAS  PubMed  Google Scholar 

  235. Zioupos P, Currey JD, Hamer AJ. The role of collagen in the declining mechanical properties of aging human cortical bone. J. Biomed. Mater. Res. 1999;45:108–16.

    Article  CAS  PubMed  Google Scholar 

  236. Zioupos P. Accumulation of in-vivo fatigue microdamage and its relation to biomechanical properties in ageing human cortical bone. J. Microsc. 2001;201:270–8.

    Article  CAS  Google Scholar 

  237. Moussazadeh N, Laufer I, Yamada Y, Bilsky MH. Separation surgery for spinal metastases: effect of spinal radiosurgery on surgical treatment goals. Cancer Control. 2014 Apr;21(2):168–74. Review.

    Google Scholar 

  238. Baroud G, Bohner M. Biomechanical impact of vertebroplasty. Postoperative biomechanics of vertebroplasty. Joint, Bone, Spine. 2006 Mar;73(2):144–50.

    Article  PubMed  Google Scholar 

  239. Wilcox RK. The biomechanics of vertebroplasty: a review. Proc. Inst. Mech. Eng. Part H. 2004;218(1):1–10.

    Article  CAS  Google Scholar 

  240. Luo J, Daines L, Charalambous A, Adams MA, Annesley-Williams DJ, Dolan P. Vertebroplasty: only small cement volumes are required to normalize stress distributions on the vertebral bodies. Spine (Phila Pa 1976). 2009;34(26):2865–73.

    Article  Google Scholar 

  241. Ahn H, Mousavi P, Roth S, Reidy D, Finkelstein J, Whyne C. Stability of the metastatic spine pre and post vertebroplasty. J. Spinal Disord. Tech. 2006 May;19(3):178–82.

    Article  PubMed  Google Scholar 

  242. Tschirhart CE, Roth SE, Whyne CM. Biomechanical assessment of stability in the metastatic spine following percutaneous vertebroplasty: effects of cement distribution patterns and volume. J. Biomech. 2005 Aug;38(8):1582–90.

    Article  PubMed  Google Scholar 

  243. Baroud G, Vant C, Wilcox R. Long-term effects of vertebroplasty: adjacent vertebral fractures. J. Long-Term Eff. Med. Implants. 2006;16(4):265–80.

    Article  PubMed  Google Scholar 

  244. Song D, Meng B, Gan M, Niu J, Li S, Chen H, Yuan C, Yang H. The incidence of secondary vertebral fracture of vertebral augmentation techniques versus conservative treatment for painful osteoporotic vertebral fractures: a systematic review and meta-analysis. Acta Radiol. 2015 Aug;56(8):970–9.

    Article  PubMed  Google Scholar 

  245. Sisodia GB. Methods of predicting vertebral body fractures of the lumbar spine. World J. Orthop. 2013 October 18;4(4):241–7.

    Article  PubMed  PubMed Central  Google Scholar 

  246. Buchbinder R, Golmohammadi K, Johnston RV, Owen RJ, Homik J, Jones A, Dhillon SS, Kallmes DF, Lambert RG. Percutaneous vertebroplasty for osteoporotic vertebral compression fracture. Cochrane Database Syst. Rev. 2015 Apr 30;4:CD006349.

    Google Scholar 

  247. Dalbayrak OMR. Yilmaz M, Naderi S. Clinical and radiographic results of balloon kyphoplasty for treatment of vertebral body metastases and multiple myelomas. J. Clin. Neurosci. 2010 Feb;17(2):219–24.

    Article  PubMed  Google Scholar 

  248. Ahn H, Mousavi P, Chin L, Roth S, Finkelstein J, Vitken A, Whyne C. The effect of pre-vertebroplasty tumor ablation using laser-induced thermotherapy on biomechanical stability and cement fill in the metastatic spine. Eur. Spine J. 2007 Aug;16(8):1171–8.

    Article  PubMed  PubMed Central  Google Scholar 

  249. Pezeshki PS, Davidson S, Murphy K, McCann C, Slodkowska E, Sherar M, Yee AJ, Whyne CM. Comparison of the effect of two different bone-targeted radiofrequency ablation (RFA) systems alone and in combination with percutaneous vertebroplasty (PVP) on the biomechanical stability of the metastatic spine. Eur. Spine J. 2016;25(12):3990–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cari M. Whyne Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Whyne, C.M., McLachlin, S., Burke, M., Hardisty, M. (2017). Biomechanics of Vertebral Fracture. In: Manfrè, L. (eds) Vertebral Lesions. New Procedures in Spinal Interventional Neuroradiology. Springer, Cham. https://doi.org/10.1007/978-3-319-52634-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52634-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52632-4

  • Online ISBN: 978-3-319-52634-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics