Skip to main content

Magnetic Core-Shell Nanoparticles for Biomedical Applications

  • Chapter
  • First Online:
Complex Magnetic Nanostructures

Abstract

During the last couple of decades extensive investigation efforts have been directed toward the exploitation of iron oxide nanoparticles in biomedical and bioengineering applications. To improve these applications, high saturation magnetization values and sizes smaller than 100 nm with overall narrow particle size distribution are required, so that the particles have uniform physical and chemical properties. In addition, these applications need special surface coating of the magnetic nanoparticles, which must be not only nontoxic and biocompatible but also allow a targetable delivery with particle localization in a specific area. This chapter covers the most recent challenges and advances for numerous biomedical applications such as magnetic resonance imaging contrast enhancement, tissue repair, immunoassay, detoxification of biological fluids, hyperthermia, drug delivery, gene delivery, bioseparation, cell tracking, cell separation, and manipulation of cellular organalles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mandal S, Hossain M, Devi PS, Kumar GS, Chaudhuri K (2013) Interaction of carbon nanoparticles to serum albumin: elucidation of the extent of perturbation of serum albumin conformations and thermodynamical parameters. J Hazard Mater 15:238–245

    Article  Google Scholar 

  2. Mandal S, Hossain M, Muruganandan T, Kumar GS, Chaudhuri K (2013) Gold nanoparticles alter Taq DNA polymerase activity during polymerase chain reaction. RSC Adv 3:20793–20799

    Article  Google Scholar 

  3. Bridot J-L, Faure A-C, Laurent S, Riviere C, Billotey C, Hiba B et al (2007) Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. J Am Chem Soc 129(16):5076–5084

    Article  Google Scholar 

  4. Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX et al (2004) Monodisperse MFe2O4 (M=Fe, Co, Mn) nanoparticles. J Am Chem Soc 126(1):273–279

    Article  Google Scholar 

  5. Mandal S, Chaudhuri K (2012) A Simple method for the synthesis of ultrafine carbon nanoparticles and its interaction with bovine serum albumin. Adv Sci Lett 5(1):139–143

    Article  Google Scholar 

  6. Gupta AK, Curtis ASG (2004) Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials 25(15):3029–3040

    Article  Google Scholar 

  7. Mahmoudi M, Simchi A, Imani M (2010) Recent advances in surface engineering of superparamagnetic iron oxide nanoparticles for biomedical applications. J Iran Chem Soc 7(2):S1–S27

    Article  Google Scholar 

  8. Lin C-W, Tseng SJ, Kempson IM, Yang S-C, Hong T-M, Yang P-C (2013) Extracellular delivery of modified oligonucleotide and superparamagnetic iron oxide nanoparticles from a degradable hydrogel triggered by tumor acidosis. Biomaterials 34(17):4387–4393

    Article  Google Scholar 

  9. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110

    Article  Google Scholar 

  10. Sonvico F, Mornet SP, Vasseur SB, Dubernet C, Jaillard D, Degrouard J et al (2005) Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments. Bioconjug Chem 16(5):1181–1188

    Article  Google Scholar 

  11. Nasongkla N, Shuai X, Ai H, Weinberg BD, Pink J, Boothman DA et al (2004) cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew Chem Int Ed Engl 43(46):6483–6487

    Article  Google Scholar 

  12. Dias A, Hussain A, Marcos AS, Roque ACA (2011) A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnol Adv 29(1):142–155

    Article  Google Scholar 

  13. Basuki JS, Esser L, Duong HTT, Zhang Q, Wilson P, Whittaker MR et al (2014) Magnetic nanoparticles with diblock glycopolymer shells give lectin concentration-dependent MRI signals and selective cell uptake. Chem Sci 5:715–726

    Article  Google Scholar 

  14. Kralj S, Rojnik M, Jagodič M, Kos J, Makovec D (2012) Effect of surface charge on the cellular uptake of fluorescent magnetic nanoparticles. J Nanopart Res 14:1–14

    Article  Google Scholar 

  15. Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl 46(8):1222–1244

    Article  Google Scholar 

  16. Johnson SH, Johnson CL, May SJ, Hirsch S, Cole MW, Spanier JE (2009) Co@ CoO@ Au core-multi-shell nanocrystals. J Mater Chem 20:439–443

    Article  Google Scholar 

  17. Grass RN, Stark WJ (2006) Gas phase synthesis of fcc-cobalt nanoparticles. J Mater Chem 16:1825–1830

    Article  Google Scholar 

  18. Shafi KVPM, Ulman A, Yan X, Yang N-L, Estournes C, White H et al (2001) Sonochemical synthesis of functionalized amorphous iron oxide nanoparticles. Langmuir 17(16):5093–5097

    Article  Google Scholar 

  19. Sjøgren CE, Briley-Saebø K, Hanson M, Johansson C (1994) Magnetic characterization of iron oxides for magnetic resonance imaging. Magn Reson Med 31(3):268–272

    Article  Google Scholar 

  20. Jiang W, Yang H-C, Yang S-Y, Horng H-E, Hung JC, Chen YC et al (2004) Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible. J Magn Magn Mater 283(2–3):210–214

    Article  Google Scholar 

  21. Gupta AK, Wells S (2004) Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans Nanobioscience 3(1):66–73

    Article  Google Scholar 

  22. Wang X, Zhuang J, Peng Q, Li Y (2005) A general strategy for nanocrystal synthesis. Nature 437:121–124

    Article  Google Scholar 

  23. Peng X, Wickham J, Alivisatos AP (1998) Kinetics of II–VI and III–V colloidal semiconductor nanocrystal growth: “Focusing” of size distributions. J Am Chem Soc 120(21):5343–5344

    Article  Google Scholar 

  24. Samia ACS, Hyzer K, Schlueter JA, Qin C-J, Jiang JS, Bader SD et al (2005) Ligand effect on the growth and the digestion of Co nanocrystals. Am Chem Soc 127(12):4126–4127

    Article  Google Scholar 

  25. Li Y, Afzaal M, O’Brien P (2006) The synthesis of amine-capped magnetic (Fe, Mn, Co, Ni) oxide nanocrystals and their surface modification for aqueous dispersibility. J Mater Chem 16:2175–2180

    Article  Google Scholar 

  26. Farrell D, Majetich SA, Wilcoxon JP (2003) Preparation and characterization of monodisperse Fe nanoparticles. Phys Chem B 107(40):11022–11030

    Article  Google Scholar 

  27. Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124(28):8204–8205

    Article  Google Scholar 

  28. Li Z, Kawashita M, Araki N, Mitsumori M, Hiraoka M, Doi M (2011) Preparation of magnetic iron oxide nanoparticles for hyperthermia of cancer in a FeCl2-NaNO3-NaOH aqueous system. J Biomater Appl 25(7):643–661

    Article  Google Scholar 

  29. Park J, Lee E, Hwang NM, Kang M, Kim SC, Hwang Y et al (2005) One-nanometer-scale size-controlled synthesis of monodisperse magnetic Iron oxide nanoparticles. Angew Chem Int Ed Engl 44(19):2932–2937

    Article  Google Scholar 

  30. Li Z, Sun Q, Gao M (2004) Preparation of water-soluble magnetite nanocrystals from hydrated ferric salts in 2-pyrrolidone: mechanism leading to Fe3O4. Angew Chem Int Ed Engl 44(1):123–126

    Article  Google Scholar 

  31. Hu FQ, Wei L, Zhou Z, Ran YL, Li Z, Gao MY (2006) Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer. Adv Mater 18(19):2553–2556

    Article  Google Scholar 

  32. Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370–374

    Article  Google Scholar 

  33. Dumestre F, Chaudret B, Amiens C, Renaud P, Fejes P (2004) Superlattices of iron nanocubes synthesized from Fe [N (SiMe3)2]2. Science 303(5659):821–823

    Article  Google Scholar 

  34. Song Q, Zhang ZJ (2004) Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J Am Chem Soc 126(19):6164–6168

    Article  Google Scholar 

  35. Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291(5511):2115–2117

    Article  Google Scholar 

  36. Dumestre F, Chaudret B, Amiens C, Respaud M, Fejes P, Renaud P et al (2003) Unprecedented Crystalline Super-Lattices of Monodisperse Cobalt Nanorods. Angew Chem Int Ed Engl 42(42):5213–5216

    Article  Google Scholar 

  37. Cordente N, Respaud M, Fo S, Casanove M-J, Amiens C, Chaudret B (2001) Synthesis and magnetic properties of nickel nanorods. Nano Lett 1(10):565–568

    Article  Google Scholar 

  38. Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287(5460):1989–1992

    Article  Google Scholar 

  39. Tegus O, Brük E, Buschow KHJ, De Boer FR (2002) Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 415:150–152

    Article  Google Scholar 

  40. Perera SC, Tsoi G, Wenger LE, Brock SL (2003) Synthesis of MnP nanocrystals by treatment of metal carbonyl complexes with phosphines: a new, versatile route to nanoscale transition metal phosphides. J Am Chem Soc 125(46):13960–13961

    Article  Google Scholar 

  41. Qian C, Kim F, Ma L, Tsui F, Yang P, Liu J (2004) Solution-phase synthesis of single-crystalline iron phosphide nanorods/nanowires. J Am Chem Soc 126(4):1195–1198

    Article  Google Scholar 

  42. McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60(11):1241–1251

    Article  Google Scholar 

  43. Ling D, Hyeon T (2013) Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small 9(9–10):1450–1466

    Article  Google Scholar 

  44. Nazli C, Ergenc TI, Yar Y, Acar HY, Kizilel S (2012) RGDS-functionalized polyethylene glycol hydrogel-coated magnetic iron oxide nanoparticles enhance specific intracellular uptake by HeLa cells. Int J Nanomedicine 7:1903–1920

    Google Scholar 

  45. Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63(1–2):24–46

    Article  Google Scholar 

  46. Neuberger T, Schöpf B, Hofmann H, Hofmann M, Von Rechenberg B (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293(1):483–496

    Article  Google Scholar 

  47. Kataby G, Ulman A, Prozorov R, Gedanken A (1998) Coating of amorphous iron nanoparticles by long-chain alcohols. Langmuir 14(7):1512–1515

    Article  Google Scholar 

  48. Anbarasu M, Anandan M, Chinnasamy E, Gopinath V, Balamurugan K (2015) Synthesis and characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co-precipitation method for biomedical applications. Spectrochim Acta A Mol Biomol Spectrosc 135:536–539

    Article  Google Scholar 

  49. Masoudi A, Hosseini HRM, Shokrgozar MA, Ahmadi R, Oghabian MA (2012) The effect of poly (ethylene glycol) coating on colloidal stability of superparamagnetic iron oxide nanoparticles as potential MRI contrast agent. Int J Pharm 433(1–2):129–141

    Article  Google Scholar 

  50. Demirer GS, Okur AC, Kizilel S (2015) Synthesis and design of biologically inspired biocompatible iron oxide nanoparticles for biomedical applications. J Mater Chem B 3:7831–7849

    Article  Google Scholar 

  51. Rahman MM, Afrin S, Haque P (2014) Characterization of crystalline cellulose of jute reinforced poly (vinyl alcohol)(PVA) biocomposite film for potential biomedical applications. Progress Biomater 3:1–9

    Article  Google Scholar 

  52. Zhang Y, Kohler N, Zhang M (2002) Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23(7):1553–1561

    Article  Google Scholar 

  53. Shubayev VI, Pisanic TR, Jin S (2009) Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 61(6):467–477

    Article  Google Scholar 

  54. Shagholani H, Ghoreishi SM, Mousazadeh M (2015) Improvement of interaction between PVA and chitosan via magnetite nanoparticles for drug delivery application. Int J Biol Macromol 78:130–136

    Article  Google Scholar 

  55. Zhu X-M, Wang YX, Leung KC, Lee S-F, Zhao F, Wang D-W et al (2012) Enhanced cellular uptake of aminosilane-coated superparamagnetic iron oxide nanoparticles in mammalian cell lines. Int J Nanomedicine 7:953–964

    Article  Google Scholar 

  56. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    Article  Google Scholar 

  57. Du L, Chen J, Qi Y, Li D, Yuan C, Lin MC et al (2007) Preparation and biomedical application of a non-polymer coated superparamagnetic nanoparticle. Int J Nanomedicine 2(4):805–812. http://www.dovepress.com/articles.php?journal_id=5

    Google Scholar 

  58. Josephson L, Tung C-H, Moore A, Weissleder R (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug Chem 10(2):186–191

    Article  Google Scholar 

  59. Jafari A, Salouti M, Shayesteh SF, Heidari Z, Rajabi AB, Boustani K et al (2015) Synthesis and characterization of Bombesin-superparamagnetic iron oxide nanoparticles as a targeted contrast agent for imaging of breast cancer using MRI. Nanotechnology 26(7):075101

    Article  Google Scholar 

  60. Zeng L, Piao Z, Huang S, Jia W, Chen Z (2015) Label-free optical-resolution photoacoustic microscopy of superficial microvasculature using a compact visible laser diode excitation. Opt Express 23(24):31026–31033

    Article  Google Scholar 

  61. Xu M, Wang LV (2006) Photoacoustic imaging in biomedicine. Rev Sci Instrum 77:041101

    Article  Google Scholar 

  62. Zhang Y, Hong H, Cai W. Photoacoustic imaging. Cold Spring Harbor Laboratory Press. p. pdb. top065508.

    Google Scholar 

  63. Wang X, Pang Y, Ku G, Stoica G, Wang LV (2003) Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact. Opt Lett 28(19):1739–1741

    Article  Google Scholar 

  64. Oh J-T, Li M-L, Zhang HF, Maslov K, Stoica G, Wang LV (2006) Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy. J Biomed Opt 11(3):034032–034034

    Article  Google Scholar 

  65. Shashkov EV, Everts M, Galanzha EI, Zharov VP (2008) Quantum dots as multimodal photoacoustic and photothermal contrast agents. Nano Lett 8(11):3953–3958

    Article  Google Scholar 

  66. Luke GP, Yeager D, Emelianov SY (2012) Biomedical applications of photoacoustic imaging with exogenous contrast agents. Ann Biomed Eng 40(2):422–437

    Article  Google Scholar 

  67. Jin Y, Jia C, Huang S-W, O’Donnell M, Gao X (2010) Multifunctional nanoparticles as coupled contrast agents. Nat Commun 1:41

    Article  Google Scholar 

  68. Xu Z, Hou Y, Sun S (2007) Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J Am Chem Soc 129(28):8698–8699

    Article  Google Scholar 

  69. Ji X, Shao R, Elliott AM, Stafford RJ, Esparza-Coss E, Bankson JA et al (2007) Bifunctional gold nanoshells with a superparamagnetic iron oxide-silica core suitable for both MR imaging and photothermal therapy. J Phys Chem C 111(17):6245–6251

    Article  Google Scholar 

  70. Tartaj P, del Puerto MM, Veintemillas-Verdaguer S, González-Carreño T, Serna CJ (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 42(22):R182

    Article  Google Scholar 

  71. Basuki JS, Esser L, Zetterlund PB, Whittaker MR, Boyer C, Davis TP (2013) Grafting of P (OEGA) onto magnetic nanoparticles using Cu (0) mediated polymerization: comparing grafting “from” and “to” approaches in the search for the optimal material design of nanoparticle MRI contrast agents. Macromolecules 46(15):6038–6047

    Article  Google Scholar 

  72. Mandal S, Chatterjee N, Das S, Saha KD, Chaudhuri K (2014) Magnetic core–shell nanoprobe for sensitive killing of cancer cells via induction with a strong external magnetic field. RSC Adv 4:20077–20085

    Article  Google Scholar 

  73. Basuki JS, Jacquemin A, Esser L, Li Y, Boyer C, Davis TP (2014) A block copolymer-stabilized co-precipitation approach to magnetic iron oxide nanoparticles for potential use as MRI contrast agents. Polym Chem 5:2611–2620

    Article  Google Scholar 

  74. Bremerich J, Bilecen D, Reimer P (2007) MR angiography with blood pool contrast agents. Eur Radiol 17(12):3017–3024

    Article  Google Scholar 

  75. Ito A, Shinkai M, Honda H, Kobayashi T (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100(1):1–11

    Article  Google Scholar 

  76. Mandal S, Chaudhuri K (2016) Engineered magnetic core shell nanoprobes: synthesis and applications to cancer imaging and therapeutics. World J Biol Chem 7(1):158–167

    Article  Google Scholar 

  77. Sb B, Laurent S, Elst LV, Muller RN (2006) Specific E-selectin targeting with a superparamagnetic MRI contrast agent. Contrast Media Mol Imaging 1(1):15–22

    Article  Google Scholar 

  78. Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ et al (2008) Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed Engl 47(29):5362–5365

    Article  Google Scholar 

  79. Yang X, Hong H, Grailer JJ, Rowland IJ, Javadi A, Hurley SA et al (2011) cRGD-functionalized, DOX-conjugated, and 64 Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials 32(17):4151–4160

    Article  Google Scholar 

  80. Orive G, Hernandez RM, Rodríguez Gascón A, Domínguez-Gil A, Pedraz JL (2003) Drug delivery in biotechnology: present and future. Curr Opin Biotechnol 14(6):659–664

    Article  Google Scholar 

  81. Colombo M, Carregal-Romero S, Casula MF, Gutierrez L, Morales MP, Boehm IB et al (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41:4306–4334

    Article  Google Scholar 

  82. Mashhadizadeh MH, Amoli-Diva M (2013) Atomic absorption spectrometric determination of Al3+ and Cr3+ after preconcentration and separation on 3-mercaptopropionic acid modified silica coated-Fe3O4 nanoparticles. J Anal At Spectrom 28:251–258

    Article  Google Scholar 

  83. Kievit FM, Wang FY, Fang C, Mok H, Wang K, Silber JR et al (2011) Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro. J Control Release 152(1):76–83

    Article  Google Scholar 

  84. Chomoucka J, Drbohlavova J, Huska D, Adam V, Kizek R, Hubalek J (2010) Magnetic nanoparticles and targeted drug delivering. Pharmacol Res 62(2):144–149

    Article  Google Scholar 

  85. N’Guyen TTT, Duong HTT, Basuki J, Vr M, Pascual S, Cm G et al (2013) Functional iron oxide magnetic nanoparticles with hyperthermia-induced drug release ability by using a combination of orthogonal click reactions. Angew Chem Int Ed Engl 52(52):14152–14156

    Article  Google Scholar 

  86. McBain SC, Yiu HHP, Dobson J (2008) Magnetic nanoparticles for gene and drug delivery. Int J Nanomedicine 3(2):169–180

    Google Scholar 

  87. Wilson MW, Kerlan RK Jr, Fidelman NA, Venook AP, LaBerge JM, Koda J et al (2004) Hepatocellular carcinoma: regional therapy with a magnetic targeted carrier bound to doxorubicin in a dual MR imaging/conventional angiography suite–initial experience with four patients. Radiology 230(1):287–293

    Article  Google Scholar 

  88. Basuki JS, Duong HTT, Macmillan A, Erlich RB, Esser L, Akerfeldt MC et al (2013) Using fluorescence lifetime imaging microscopy to monitor theranostic nanoparticle uptake and intracellular doxorubicin release. ACS Nano 7(11):10175–10189

    Article  Google Scholar 

  89. Laurent S, Dutz S, Häfeli UO, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 166(1–2):8–23

    Article  Google Scholar 

  90. Shen J-M, Guan X-M, Liu X-Y, Lan J-F, Cheng T, Zhang H-X (2012) Luminescent/magnetic hybrid nanoparticles with folate-conjugated peptide composites for tumor-targeted drug delivery. Bioconjug Chem 23(5):1010–1021

    Article  Google Scholar 

  91. Kebede A, Singh AK, Rai PK, Giri NK, Rai AK, Watal G et al (2013) Controlled synthesis, characterization, and application of iron oxide nanoparticles for oral delivery of insulin. Lasers Med Sci 28(2):579–587

    Article  Google Scholar 

  92. Shen J-M, Xu L, Lu Y, Cao H-M, Xu Z-G, Chen T et al (2012) Chitosan-based luminescent/magnetic hybrid nanogels for insulin delivery, cell imaging, and antidiabetic research of dietary supplements. Int J Pharm 427(2):400–409

    Article  Google Scholar 

  93. Yu MK, Kim D, Lee IH, So JS, Jeong YY (2011) Jon S. Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small 7(15):2241–2249

    Article  Google Scholar 

  94. Chen F-H, Zhang L-M, Chen Q-T, Zhang Y, Zhang Z-J (2010) Synthesis of a novel magnetic drug delivery system composed of doxorubicin-conjugated Fe3O4 nanoparticle cores and a PEG-functionalized porous silica shell. Chem Commun (Camb) 46(45):8633–8635

    Article  Google Scholar 

  95. Kruse AM, Meenach SA, Anderson KW, Hilt JZ (2014) Synthesis and characterization of CREKA-conjugated iron oxide nanoparticles for hyperthermia applications. Acta Biomater 10(6):2622–2629

    Article  Google Scholar 

  96. Zhao M, Kircher MF, Josephson L, Weissleder R (2002) Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconjug Chem 13(4):840–844

    Article  Google Scholar 

  97. Strable E, Bulte JWM, Moskowitz B, Vivekanandan K, Allen M, Douglas T (2001) Synthesis and characterization of soluble iron oxide-dendrimer composites. Chem Mater 13(6):2201–2209

    Article  Google Scholar 

  98. Bulte JWM, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17(7):484–499

    Article  Google Scholar 

  99. Lu C-W, Hung Y, Hsiao J-K, Yao M, Chung T-H, Lin Y-S et al (2007) Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. Nano Lett 7(1):149–154

    Article  Google Scholar 

  100. Arbab AS, Yocum GT, Kalish H, Jordan EK, Anderson SA, Khakoo AY et al (2004) Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104(4):1217–1223

    Article  Google Scholar 

  101. Yeh TC, Zhang W, Ildstad ST, Ho C (1995) In vivo dynamic MRI tracking of rat T-cells labeled with superparamagnetic iron-oxide particles. Magn Reson Med 33(2):200–208

    Article  Google Scholar 

  102. Dodd CH, Hsu H-C, Chu W-J, Yang P, Zhang H-G, Mountz JD et al (2001) Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles. J Immunol Methods 256(1–2):89–105

    Article  Google Scholar 

  103. Cherukuri P, Glazer ES, Curley SA (2010) Targeted hyperthermia using metal nanoparticles. Adv Drug Deliv Rev 62(3):339–345

    Article  Google Scholar 

  104. Chatterjee DK, Diagaradjane P, Krishnan S (2011) Nanoparticle-mediated hyperthermia in cancer therapy. Ther Deliv 2(8):1001–1014

    Article  Google Scholar 

  105. Silva AC, Oliveira TR, Mamani JB, Malheiros SMF, Malavolta L, Pavon LF et al (2011) Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment. Int J Nanomedicine 6:591–603

    Google Scholar 

  106. Johannsen M, Thiesen B, Wust P, Jordan A (2010) Magnetic nanoparticle hyperthermia for prostate cancer. Int J Hyperthermia 26(8):790–795

    Article  Google Scholar 

  107. Johannsen M, Gneveckow U, Eckelt L, Feussner A, Waldöfner N, Scholz R et al (2005) Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int J Hyperthermia 21(7):637–647

    Article  Google Scholar 

  108. Gordon AC, Lewandowski RJ, Salem R, Day DE, Omary RA, Larson AC (2014) Localized hyperthermia with iron oxide-doped yttrium microparticles: steps toward image-guided thermoradiotherapy in liver cancer. J Vasc Interv Radiol 25(3):397–404

    Article  Google Scholar 

  109. Hayashi K, Ono K, Suzuki H, Sawada M, Moriya M, Sakamoto W et al (2010) High-frequency, magnetic-field-responsive drug release from magnetic nanoparticle/organic hybrid based on hyperthermic effect. ACS Appl Mater Interfaces 2(7):1903–1911

    Article  Google Scholar 

  110. Dobbrow C, Schmidt AM (2012) Improvement of the oxidation stability of cobalt nanoparticles. Beilstein J Nanotechnol 3:75–81

    Article  Google Scholar 

  111. Hergt R, Dutz S (2007) Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy. J Magn Magn Mater 311(1):187–192

    Article  Google Scholar 

  112. Walther W, Siegel R, Kobelt D, Knösel T, Dietel M, Bembenek A et al (2008) Novel jet-injection technology for nonviral intratumoral gene transfer in patients with melanoma and breast cancer. Clin Cancer Res 14(22):7545–7553

    Article  Google Scholar 

  113. Cederfjäll E, Sahin G, Kirik D (2012) Key factors determining the efficacy of gene therapy for continuous DOPA delivery in the Parkinsonian brain. Neurobiol Dis 48(2):222–227

    Article  Google Scholar 

  114. Huschka R, Barhoumi A, Liu Q, Roth JA, Ji L, Halas NJ (2012) Gene silencing by gold nanoshell-mediated delivery and laser-triggered release of antisense oligonucleotide and siRNA. ACS Nano 6(9):7681–7691

    Article  Google Scholar 

  115. Dobson J (2006) Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther 13(4):283–287

    Article  Google Scholar 

  116. Boyer C, Priyanto P, Davis TP, Pissuwan D, Bulmus V, Kavallaris M et al (2010) Anti-fouling magnetic nanoparticles for siRNA delivery. J Mater Chem 20:255–265

    Article  Google Scholar 

  117. Yu-Feng T, Shu-Jun H, Shi-Shen Y, Liang-Mo M (2013) Oxide magnetic semiconductors: materials, properties, and devices. Chinese Physics B 22(8):088505

    Article  Google Scholar 

  118. Mah C, Fraites TJ Jr, Zolotukhin I, Song S, Flotte TR, Dobson J et al (2002) Improved method of recombinant AAV2 delivery for systemic targeted gene therapy. Mol Ther 6(1):106–112

    Article  Google Scholar 

  119. Safarik I, Safarikova M (2004) Magnetic techniques for the isolation and purification of proteins and peptides. Biomagn Res Technol 2:1

    Article  Google Scholar 

  120. Widjojoatmodjo MN, Fluit AC, Torensma R, Verhoef J (1993) Comparison of immunomagnetic beads coated with protein A, protein G, or goat anti-mouse immunoglobulins Applications in enzyme immunoassays and immunomagnetic separations. J Immunol Methods 165(1):11–19

    Article  Google Scholar 

  121. Fan J, Lu J, Xu R, Jiang R, Gao Y (2003) Use of water-dispersible Fe2O3 nanoparticles with narrow size distributions in isolating avidin. J Colloid Interface Sci 266(1):215–218

    Article  Google Scholar 

  122. Nagatani N, Shinkai M, Honda H, Kobayashi T (1998) Development of a new transformation method using magnetite cationic liposomes and magnetic selection of transformed cells. Biotech Techn 12(7):525–528

    Article  Google Scholar 

  123. Lobel B, Eyal O, Kariv N, Katzir A (2000) Temperature controlled CO2 laser welding of soft tissues: urinary bladder welding in different animal models (rats, rabbits, and cats). Lasers Surg Med 26(1):4–12

    Article  Google Scholar 

  124. Dew DK, Supik L, Darrow CR, Price GF (1993) Tissue repair using lasers: a review. Orthopedics 16(5):581–587

    Google Scholar 

  125. Domenech M, Marrero-Berrios I, Torres-Lugo M, Rinaldi C (2013) Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields. ACS Nano 7(6):5091–5101

    Article  Google Scholar 

  126. Choi J, Shin J, Lee J, Cha M (2012) Magnetic response of mitochondria-targeted cancer cells with bacterial magnetic nanoparticles. Chem Commun 48:7474–7476

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keya Chaudhuri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mandal, S., Chaudhuri, K. (2017). Magnetic Core-Shell Nanoparticles for Biomedical Applications. In: Sharma, S. (eds) Complex Magnetic Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-52087-2_12

Download citation

Publish with us

Policies and ethics